1.
Neoclassical Greek
–
Ancient Greek includes the forms of Greek used in ancient Greece and the ancient world from around the 9th century BC to the 6th century AD. It is often divided into the Archaic period, Classical period. It is antedated in the second millennium BC by Mycenaean Greek, the language of the Hellenistic phase is known as Koine. Koine is regarded as a historical stage of its own, although in its earliest form it closely resembled Attic Greek. Prior to the Koine period, Greek of the classic and earlier periods included several regional dialects, Ancient Greek was the language of Homer and of fifth-century Athenian historians, playwrights, and philosophers. It has contributed many words to English vocabulary and has been a subject of study in educational institutions of the Western world since the Renaissance. This article primarily contains information about the Epic and Classical phases of the language, Ancient Greek was a pluricentric language, divided into many dialects. The main dialect groups are Attic and Ionic, Aeolic, Arcadocypriot, some dialects are found in standardized literary forms used in literature, while others are attested only in inscriptions. There are also several historical forms, homeric Greek is a literary form of Archaic Greek used in the epic poems, the Iliad and Odyssey, and in later poems by other authors. Homeric Greek had significant differences in grammar and pronunciation from Classical Attic, the origins, early form and development of the Hellenic language family are not well understood because of a lack of contemporaneous evidence. Several theories exist about what Hellenic dialect groups may have existed between the divergence of early Greek-like speech from the common Proto-Indo-European language and the Classical period and they have the same general outline, but differ in some of the detail. The invasion would not be Dorian unless the invaders had some relationship to the historical Dorians. The invasion is known to have displaced population to the later Attic-Ionic regions, the Greeks of this period believed there were three major divisions of all Greek people—Dorians, Aeolians, and Ionians, each with their own defining and distinctive dialects. Often non-west is called East Greek, Arcadocypriot apparently descended more closely from the Mycenaean Greek of the Bronze Age. Boeotian had come under a strong Northwest Greek influence, and can in some respects be considered a transitional dialect, thessalian likewise had come under Northwest Greek influence, though to a lesser degree. Most of the dialect sub-groups listed above had further subdivisions, generally equivalent to a city-state and its surrounding territory, Doric notably had several intermediate divisions as well, into Island Doric, Southern Peloponnesus Doric, and Northern Peloponnesus Doric. The Lesbian dialect was Aeolic Greek and this dialect slowly replaced most of the older dialects, although Doric dialect has survived in the Tsakonian language, which is spoken in the region of modern Sparta. Doric has also passed down its aorist terminations into most verbs of Demotic Greek, by about the 6th century AD, the Koine had slowly metamorphosized into Medieval Greek
Neoclassical Greek
–
Inscription about the construction of the statue of
Athena Parthenos in the
Parthenon, 440/439 BC
Neoclassical Greek
–
Ostracon bearing the name of
Cimon,
Stoa of Attalos
Neoclassical Greek
–
The words ΜΟΛΩΝ ΛΑΒΕ as they are inscribed on the marble of the 1955
Leonidas Monument at
Thermopylae
2.
The Stagirite
–
Aristotle was an ancient Greek philosopher and scientist born in the city of Stagira, Chalkidice, on the northern periphery of Classical Greece. His father, Nicomachus, died when Aristotle was a child, at seventeen or eighteen years of age, he joined Platos Academy in Athens and remained there until the age of thirty-seven. Shortly after Plato died, Aristotle left Athens and, at the request of Philip II of Macedon, teaching Alexander the Great gave Aristotle many opportunities and an abundance of supplies. He established a library in the Lyceum which aided in the production of many of his hundreds of books and he believed all peoples concepts and all of their knowledge was ultimately based on perception. Aristotles views on natural sciences represent the groundwork underlying many of his works, Aristotles views on physical science profoundly shaped medieval scholarship. Their influence extended from Late Antiquity and the Early Middle Ages into the Renaissance, some of Aristotles zoological observations, such as on the hectocotyl arm of the octopus, were not confirmed or refuted until the 19th century. His works contain the earliest known study of logic, which was incorporated in the late 19th century into modern formal logic. Aristotle was well known among medieval Muslim intellectuals and revered as The First Teacher and his ethics, though always influential, gained renewed interest with the modern advent of virtue ethics. All aspects of Aristotles philosophy continue to be the object of academic study today. Though Aristotle wrote many elegant treatises and dialogues – Cicero described his style as a river of gold – it is thought that only around a third of his original output has survived. Aristotle, whose means the best purpose, was born in 384 BC in Stagira, Chalcidice. His father Nicomachus was the physician to King Amyntas of Macedon. Aristotle was orphaned at a young age, although there is little information on Aristotles childhood, he probably spent some time within the Macedonian palace, making his first connections with the Macedonian monarchy. At the age of seventeen or eighteen, Aristotle moved to Athens to continue his education at Platos Academy and he remained there for nearly twenty years before leaving Athens in 348/47 BC. Aristotle then accompanied Xenocrates to the court of his friend Hermias of Atarneus in Asia Minor, there, he traveled with Theophrastus to the island of Lesbos, where together they researched the botany and zoology of the island. Aristotle married Pythias, either Hermiass adoptive daughter or niece and she bore him a daughter, whom they also named Pythias. Soon after Hermias death, Aristotle was invited by Philip II of Macedon to become the tutor to his son Alexander in 343 BC, Aristotle was appointed as the head of the royal academy of Macedon. During that time he gave not only to Alexander
The Stagirite
–
Roman copy in marble of a Greek bronze bust of Aristotle by
Lysippus,
c. 330 BC. The
alabaster mantle is modern.
The Stagirite
–
Aristotelianism
The Stagirite
–
School of Aristotle in
Mieza,
Macedonia, Greece
The Stagirite
–
"Aristotle" by
Francesco Hayez (1791–1882)
3.
Structural dynamics
–
Structural analysis is mainly concerned with finding out the behavior of a physical structure when subjected to force. In essence all these loads are dynamic, including the self-weight of the structure because at some point in time these loads were not there. The distinction is made between the dynamic and the analysis on the basis of whether the applied action has enough acceleration in comparison to the structures natural frequency. If a load is applied sufficiently slowly, the forces can be ignored. Structural dynamics, therefore, is a type of analysis which covers the behavior of structures subjected to dynamic loading. Dynamic loads include people, wind, waves, traffic, earthquakes, any structure can be subjected to dynamic loading. Dynamic analysis can be used to find dynamic displacements, time history, a dynamic analysis is also related to the inertia forces developed by a structure when it is excited by means of dynamic loads applied suddenly. A static load is one which varies very slowly, a dynamic load is one which changes with time fairly quickly in comparison to the structures natural frequency. If it changes slowly, the response may be determined with static analysis, but if it varies quickly. Dynamic analysis for simple structures can be carried out manually, a dynamic load can have a significantly larger effect than a static load of the same magnitude due to the structures inability to respond quickly to the loading. Graphs of dynamic amplification factors vs non-dimensional rise time exist for standard loading functions, hence the DAF for a given loading can be read from the graph, the static deflection can be easily calculated for simple structures and the dynamic deflection found. A full time history will give the response of a structure over time during, to find the full time history of a structures response, you must solve the structures equation of motion. A simple single degree of system has the following equation of motion, M x ¨ + k x = F where x ¨ is the acceleration. If the loading F is a Heaviside step function, the solution to the equation of motion is, x = F0 k where ω = k M, however, in reality loads are never applied instantaneously - they build up over a period of time. This time is called the rise time, any real structure will dissipate energy. The natural frequency of a system is dependent only on the stiffness of the structure and it is not dependent on the load function. For a given mode shape of a degree of freedom system you can find an equivalent mass, stiffness. For simple structures the basic shapes can be found by inspection
Structural dynamics
–
Contents
4.
Motion (physics)
–
In physics, motion is a change in position of an object over time. Motion is described in terms of displacement, distance, velocity, acceleration, time, motion of a body is observed by attaching a frame of reference to an observer and measuring the change in position of the body relative to that frame. If the position of a body is not changing with respect to a frame of reference. An objects motion cannot change unless it is acted upon by a force, momentum is a quantity which is used for measuring motion of an object. As there is no frame of reference, absolute motion cannot be determined. Thus, everything in the universe can be considered to be moving, more generally, motion is a concept that applies to objects, bodies, and matter particles, to radiation, radiation fields and radiation particles, and to space, its curvature and space-time. One can also speak of motion of shapes and boundaries, so, the term motion in general signifies a continuous change in the configuration of a physical system. For example, one can talk about motion of a wave or about motion of a quantum particle, in physics, motion is described through two sets of apparently contradictory laws of mechanics. Motions of all large scale and familiar objects in the universe are described by classical mechanics, whereas the motion of very small atomic and sub-atomic objects is described by quantum mechanics. It produces very accurate results within these domains, and is one of the oldest and largest in science, engineering, classical mechanics is fundamentally based on Newtons laws of motion. These laws describe the relationship between the acting on a body and the motion of that body. They were first compiled by Sir Isaac Newton in his work Philosophiæ Naturalis Principia Mathematica and his three laws are, A body either is at rest or moves with constant velocity, until and unless an outer force is applied to it. An object will travel in one direction only until an outer force changes its direction, whenever one body exerts a force F onto a second body, the second body exerts the force −F on the first body. F and −F are equal in magnitude and opposite in sense, so, the body which exerts F will go backwards. Newtons three laws of motion, along with his Newtons law of motion, which were the first to provide a mathematical model for understanding orbiting bodies in outer space. This explanation unified the motion of bodies and motion of objects on earth. Classical mechanics was later enhanced by Albert Einsteins special relativity. Motion of objects with a velocity, approaching the speed of light
Motion (physics)
–
Motion involves a change in position, such as in this perspective of rapidly leaving
Yongsan Station.
5.
Rotational form
–
In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of time. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system, the functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions to the equations describing the motion of the dynamics. There are two descriptions of motion, dynamics and kinematics. Dynamics is general, since momenta, forces and energy of the particles are taken into account, in this instance, sometimes the term refers to the differential equations that the system satisfies, and sometimes to the solutions to those equations. However, kinematics is simpler as it concerns only variables derived from the positions of objects, equations of motion can therefore be grouped under these main classifiers of motion. In all cases, the types of motion are translations, rotations, oscillations. A differential equation of motion, usually identified as some physical law, solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a family of solutions. A particular solution can be obtained by setting the initial values, to state this formally, in general an equation of motion M is a function of the position r of the object, its velocity, and its acceleration, and time t. Euclidean vectors in 3D are denoted throughout in bold and this is equivalent to saying an equation of motion in r is a second order ordinary differential equation in r, M =0, where t is time, and each overdot denotes one time derivative. The initial conditions are given by the constant values at t =0, r, r ˙, the solution r to the equation of motion, with specified initial values, describes the system for all times t after t =0. Sometimes, the equation will be linear and is likely to be exactly solvable. In general, the equation will be non-linear, and cannot be solved exactly so a variety of approximations must be used, the solutions to nonlinear equations may show chaotic behavior depending on how sensitive the system is to the initial conditions. Despite the great strides made in the development of geometry made by Ancient Greeks and surveys in Rome, the exposure of Europe to Arabic numerals and their ease in computations encouraged first the scholars to learn them and then the merchants and invigorated the spread of knowledge throughout Europe. These studies led to a new body of knowledge that is now known as physics, thomas Bradwardine, one of those scholars, extended Aristotelian quantities such as distance and velocity, and assigned intensity and extension to them. Bradwardine suggested a law involving force, resistance, distance, velocity. Nicholas Oresme further extended Bradwardines arguments, for writers on kinematics before Galileo, since small time intervals could not be measured, the affinity between time and motion was obscure. They used time as a function of distance, and in free fall, de Sotos comments are shockingly correct regarding the definitions of acceleration and the observation that during the violent motion of ascent acceleration would be negative
Rotational form
–
Kinematic quantities of a classical particle of mass m: position r, velocity v, acceleration a.
6.
Continuous dynamical system
–
In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in a geometrical space. Examples include the models that describe the swinging of a clock pendulum, the flow of water in a pipe. At any given time, a system has a state given by a tuple of real numbers that can be represented by a point in an appropriate state space. The evolution rule of the system is a function that describes what future states follow from the current state. Often the function is deterministic, that is, for a time interval only one future state follows from the current state. However, some systems are stochastic, in random events also affect the evolution of the state variables. In physics, a system is described as a particle or ensemble of particles whose state varies over time. In order to make a prediction about the future behavior. Dynamical systems are a part of chaos theory, logistic map dynamics, bifurcation theory, the self-assembly process. The concept of a system has its origins in Newtonian mechanics. To determine the state for all future times requires iterating the relation many times—each advancing time a small step, the iteration procedure is referred to as solving the system or integrating the system. If the system can be solved, given a point it is possible to determine all its future positions. Before the advent of computers, finding an orbit required sophisticated mathematical techniques, numerical methods implemented on electronic computing machines have simplified the task of determining the orbits of a dynamical system. For simple dynamical systems, knowing the trajectory is often sufficient, the difficulties arise because, The systems studied may only be known approximately—the parameters of the system may not be known precisely or terms may be missing from the equations. The approximations used bring into question the validity or relevance of numerical solutions, to address these questions several notions of stability have been introduced in the study of dynamical systems, such as Lyapunov stability or structural stability. The stability of the dynamical system implies that there is a class of models or initial conditions for which the trajectories would be equivalent, the operation for comparing orbits to establish their equivalence changes with the different notions of stability. The type of trajectory may be more important than one particular trajectory, some trajectories may be periodic, whereas others may wander through many different states of the system. Applications often require enumerating these classes or maintaining the system within one class, classifying all possible trajectories has led to the qualitative study of dynamical systems, that is, properties that do not change under coordinate changes
Continuous dynamical system
–
The
Lorenz attractor arises in the study of the Lorenz Oscillator, a dynamical system.
7.
Material strength
–
Strength of materials, also called mechanics of materials, is a subject which deals with the behavior of solid objects subject to stresses and strains. An important founding pioneer in mechanics of materials was Stephen Timoshenko, the study of strength of materials often refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. In materials science, the strength of a material is its ability to withstand a load without failure or plastic deformation. The field of strength of materials deals with forces and deformations that result from their acting on a material, a load applied to a mechanical member will induce internal forces within the member called stresses when those forces are expressed on a unit basis. The stresses acting on the material cause deformation of the material in various manners, deformation of the material is called strain when those deformations too are placed on a unit basis. The applied loads may be axial, or rotational, the stresses and strains that develop within a mechanical member must be calculated in order to assess the load capacity of that member. This requires a description of the geometry of the member, its constraints, the loads applied to the member. With a complete description of the loading and the geometry of the member, once the state of stress and strain within the member is known, the strength of that member, its deformations, and its stability can be calculated. The calculated stresses may then be compared to some measure of the strength of the such as its material yield or ultimate strength. The calculated deflection of the member may be compared to a deflection criteria that is based on the members use, the calculated buckling load of the member may be compared to the applied load. The calculated stiffness and mass distribution of the member may be used to calculate the dynamic response. The ultimate strength refers to the point on the engineering stress–strain curve corresponding to the stress that produces fracture, transverse loading - Forces applied perpendicular to the longitudinal axis of a member. Transverse loading causes the member to bend and deflect from its position, with internal tensile. Transverse loading also induces shear forces that cause shear deformation of the material, axial loading - The applied forces are collinear with the longitudinal axis of the member. The forces cause the member to either stretch or shorten, uniaxial stress is expressed by σ = F A where F is the force acting on an area A. The area can be the area or the deformed area. A simple case of compression is the uniaxial compression induced by the action of opposite, compressive strength for materials is generally higher than their tensile strength. However, structures loaded in compression are subject to additional failure modes, such as buckling, that are dependent on the members geometry
Material strength
–
Internal
force lines are denser near the hole, a common
stress concentration
8.
Liquid flow
–
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids. It has several subdisciplines, including aerodynamics and hydrodynamics, before the twentieth century, hydrodynamics was synonymous with fluid dynamics. This is still reflected in names of some fluid dynamics topics, like magnetohydrodynamics and hydrodynamic stability, the foundational axioms of fluid dynamics are the conservation laws, specifically, conservation of mass, conservation of linear momentum, and conservation of energy. These are based on mechanics and are modified in quantum mechanics. They are expressed using the Reynolds transport theorem, in addition to the above, fluids are assumed to obey the continuum assumption. Fluids are composed of molecules that collide with one another and solid objects, however, the continuum assumption assumes that fluids are continuous, rather than discrete. The fact that the fluid is made up of molecules is ignored. The unsimplified equations do not have a general solution, so they are primarily of use in Computational Fluid Dynamics. The equations can be simplified in a number of ways, all of which make them easier to solve, some of the simplifications allow some simple fluid dynamics problems to be solved in closed form. Three conservation laws are used to solve fluid dynamics problems, the conservation laws may be applied to a region of the flow called a control volume. A control volume is a volume in space through which fluid is assumed to flow. The integral formulations of the laws are used to describe the change of mass, momentum. Mass continuity, The rate of change of fluid mass inside a control volume must be equal to the net rate of flow into the volume. Mass flow into the system is accounted as positive, and since the vector to the surface is opposite the sense of flow into the system the term is negated. The first term on the right is the net rate at which momentum is convected into the volume, the second term on the right is the force due to pressure on the volumes surfaces. The first two terms on the right are negated since momentum entering the system is accounted as positive, the third term on the right is the net acceleration of the mass within the volume due to any body forces. Surface forces, such as forces, are represented by F surf. The following is the form of the momentum conservation equation
Liquid flow
–
Continuum mechanics
9.
Baron G. W. von Leibniz
–
Leibnizs notation has been widely used ever since it was published. It was only in the 20th century that his Law of Continuity and he became one of the most prolific inventors in the field of mechanical calculators. He also refined the number system, which is the foundation of virtually all digital computers. Leibniz, along with René Descartes and Baruch Spinoza, was one of the three great 17th-century advocates of rationalism and he wrote works on philosophy, politics, law, ethics, theology, history, and philology. Leibnizs contributions to this vast array of subjects were scattered in various learned journals, in tens of thousands of letters and he wrote in several languages, but primarily in Latin, French, and German. There is no complete gathering of the writings of Leibniz in English, Gottfried Leibniz was born on July 1,1646, toward the end of the Thirty Years War, in Leipzig, Saxony, to Friedrich Leibniz and Catharina Schmuck. Friedrich noted in his journal,21. Juny am Sontag 1646 Ist mein Sohn Gottfried Wilhelm, post sextam vespertinam 1/4 uff 7 uhr abents zur welt gebohren, in English, On Sunday 21 June 1646, my son Gottfried Wilhelm is born into the world a quarter after six in the evening, in Aquarius. Leibniz was baptized on July 3 of that year at St. Nicholas Church, Leipzig and his father died when he was six and a half years old, and from that point on he was raised by his mother. Her teachings influenced Leibnizs philosophical thoughts in his later life, Leibnizs father had been a Professor of Moral Philosophy at the University of Leipzig, and the boy later inherited his fathers personal library. He was given access to it from the age of seven. Access to his fathers library, largely written in Latin, also led to his proficiency in the Latin language and he also composed 300 hexameters of Latin verse, in a single morning, for a special event at school at the age of 13. In April 1661 he enrolled in his fathers former university at age 15 and he defended his Disputatio Metaphysica de Principio Individui, which addressed the principle of individuation, on June 9,1663. Leibniz earned his masters degree in Philosophy on February 7,1664, after one year of legal studies, he was awarded his bachelors degree in Law on September 28,1665. His dissertation was titled De conditionibus, in early 1666, at age 19, Leibniz wrote his first book, De Arte Combinatoria, the first part of which was also his habilitation thesis in Philosophy, which he defended in March 1666. His next goal was to earn his license and Doctorate in Law, in 1666, the University of Leipzig turned down Leibnizs doctoral application and refused to grant him a Doctorate in Law, most likely due to his relative youth. Leibniz then enrolled in the University of Altdorf and quickly submitted a thesis, the title of his thesis was Disputatio Inauguralis de Casibus Perplexis in Jure. Leibniz earned his license to practice law and his Doctorate in Law in November 1666 and he next declined the offer of an academic appointment at Altdorf, saying that my thoughts were turned in an entirely different direction
Baron G. W. von Leibniz
–
Portrait by
Christoph Bernhard Francke
Baron G. W. von Leibniz
–
Engraving of Gottfried Wilhelm Leibniz
Baron G. W. von Leibniz
–
Stepped Reckoner
Baron G. W. von Leibniz
–
Leibniz's correspondence, papers and notes from 1669-1704,
National Library of Poland.
10.
Newton Isaac
–
His book Philosophiæ Naturalis Principia Mathematica, first published in 1687, laid the foundations of classical mechanics. Newton also made contributions to optics, and he shares credit with Gottfried Wilhelm Leibniz for developing the infinitesimal calculus. Newtons Principia formulated the laws of motion and universal gravitation that dominated scientists view of the universe for the next three centuries. Newtons work on light was collected in his influential book Opticks. He also formulated a law of cooling, made the first theoretical calculation of the speed of sound. Newton was a fellow of Trinity College and the second Lucasian Professor of Mathematics at the University of Cambridge, politically and personally tied to the Whig party, Newton served two brief terms as Member of Parliament for the University of Cambridge, in 1689–90 and 1701–02. He was knighted by Queen Anne in 1705 and he spent the last three decades of his life in London, serving as Warden and Master of the Royal Mint and his father, also named Isaac Newton, had died three months before. Born prematurely, he was a child, his mother Hannah Ayscough reportedly said that he could have fit inside a quart mug. When Newton was three, his mother remarried and went to live with her new husband, the Reverend Barnabas Smith, leaving her son in the care of his maternal grandmother, Newtons mother had three children from her second marriage. From the age of twelve until he was seventeen, Newton was educated at The Kings School, Grantham which taught Latin and Greek. He was removed from school, and by October 1659, he was to be found at Woolsthorpe-by-Colsterworth, Henry Stokes, master at the Kings School, persuaded his mother to send him back to school so that he might complete his education. Motivated partly by a desire for revenge against a bully, he became the top-ranked student. In June 1661, he was admitted to Trinity College, Cambridge and he started as a subsizar—paying his way by performing valets duties—until he was awarded a scholarship in 1664, which guaranteed him four more years until he would get his M. A. He set down in his notebook a series of Quaestiones about mechanical philosophy as he found it, in 1665, he discovered the generalised binomial theorem and began to develop a mathematical theory that later became calculus. Soon after Newton had obtained his B. A. degree in August 1665, in April 1667, he returned to Cambridge and in October was elected as a fellow of Trinity. Fellows were required to become ordained priests, although this was not enforced in the restoration years, however, by 1675 the issue could not be avoided and by then his unconventional views stood in the way. Nevertheless, Newton managed to avoid it by means of a special permission from Charles II. A and he was elected a Fellow of the Royal Society in 1672. Newtons work has been said to distinctly advance every branch of mathematics then studied and his work on the subject usually referred to as fluxions or calculus, seen in a manuscript of October 1666, is now published among Newtons mathematical papers
Newton Isaac
–
Portrait of Isaac Newton in 1689 (age 46) by
Godfrey Kneller
Newton Isaac
–
Newton in a 1702 portrait by
Godfrey Kneller
Newton Isaac
–
Isaac Newton (Bolton, Sarah K. Famous Men of Science. NY: Thomas Y. Crowell & Co., 1889)
Newton Isaac
–
Replica of Newton's second
Reflecting telescope that he presented to the
Royal Society in 1672