1.
89 (getal)
–
89 is the natural number following 88 and preceding 90. 89 is, the 24th prime number, following 83 and preceding 97, the smallest Sophie Germain prime to start a Cunningham chain of the first kind of six terms. An Eisenstein prime with no part and real part of the form 3n −1. A Fibonacci number and thus a Fibonacci prime as well, the first few digits of its reciprocal coincide with the Fibonacci sequence due to the identity 189 = ∑ n =1 ∞ F ×10 − =0.011235955 …. A Markov number, appearing in solutions to the Markov Diophantine equation with other odd-indexed Fibonacci numbers, M89 is the 10th Mersenne prime. Although 89 is not a Lychrel number in base 10, it is unusual that it takes 24 iterations of the reverse, among the known non-Lychrel numbers in the first 10000 integers, no other number requires that many or more iterations. The palindrome reached is also unusually large, eighty-nine is, The atomic number of actinium. Messier object M89, a magnitude 11.5 elliptical galaxy in the constellation Virgo, the New General Catalogue object NGC89, a magnitude 13.5 peculiar spiral galaxy in the constellation Phoenix and a member of Roberts Quartet. The Oklahoma Redhawks, an American minor league team, were formerly known as the Oklahoma 89ers. The number alludes to the Land Run of 1889, when the Unassigned Lands of Oklahoma were opened to white settlement, the teams home of Oklahoma City was founded during this event. In Rugby, an 89 or eight-nine move is a following a scrum, in which the number 8 catches the ball. The Elite 89 Award is presented by the U. S. NCAA to the participant in each of the NCAAs 89 championship finals with the highest grade point average. The jersey number 89 has been retired by three National Football League teams in honor of past playing greats, The Baltimore Colts, for Hall of Famer Gino Marchetti, the franchise continues to honor the number in its current identity as the Indianapolis Colts. The Boston Patriots, for Bob Dee, the franchise, now the New England Patriots, continues to honor the number. The Chicago Bears, for Mike Ditka, eighty-nine is also, The designation of Interstate 89, a freeway that runs from New Hampshire to Vermont The designation of U. S. The number of units of each colour in the board game Blokus The number of the French department Yonne Information Is Beautiful cites eighty-nine as one of the words censored on the Chinese internet

2.
95 (getal)
–
95 is the natural number following 94 and preceding 96. 95 is, the thirtieth distinct semiprime and the fifth of the form, the third composite number in the 6-aliquot tree. The aliquot sum of 95 is 25 within the aliquot sequence, the last member in the third triplet of distinct semiprimes 93,94 and 95. At ninety-five, the Mertens function sets a new high of 2, further, the Saros number of the lunar eclipse series which began on 331 April and ended on 1611 May, with a duration of 1280.1 years and 72 lunar eclipses. Ninety-five is also, The atomic number of americium, an actinide, the number of theses in Martin Luthers 95 Theses. 95 Poems by E. E. Cummings The book The Prince, Utopia, Ninety-Five Thesis by Sir Thomas More The designation of American Interstate 95, U. S. Highway 95, a freeway that runs through the western part of the United States. In Toy Story 3, Woody is seen driving a locomotive at the beginning of the film. The steam locomotives number is 95 in reference to Lightning McQueens racing number, OC Transpo Route 95, A Transitway bus route in Ottawa, Ontario Part of the designation of, Z-95 Headhunter, a fictitious starfighter from the Star Wars Expanded Universe. STS-95 Space Shuttle Discovery mission launched October 28,1998 and it was the historic second space flight for Senator John Glenn. ANSI/ISA-95, or ISA-95, is a standard for developing an automated interface between enterprise and control systems Presidents signal in Phillips Code. A telegraph wire signal used to indicate top priority, +95 is the ITU country code for the Union of Myanmar

3.
98 (getal)
–
98 is the natural number following 97 and preceding 99. 98 is a Wedderburn-Etherington number and a nontotient, messier 98, a magnitude 11.0 spiral galaxy in the constellation Coma Berenices. The New General Catalogue object NGC98, a magnitude 12.7 spiral galaxy in the constellation Phoenix.6 degrees Fahrenheit is normal body temperature 98, the number on a Ford Fusion in the NASCAR Sprint Cup Series, formerly driven by Josh Wise in 2015

4.
100 (getal)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number

5.
Natuurlijk getal
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory

6.
Geheel getal
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain

7.
Ordinaalgetal
–
In set theory, an ordinal number, or ordinal, is one generalization of the concept of a natural number that is used to describe a way to arrange a collection of objects in order, one after another. Any finite collection of objects can be put in order just by the process of counting, labeling the objects with distinct whole numbers, Ordinal numbers are thus the labels needed to arrange collections of objects in order. An ordinal number is used to describe the type of a well ordered set. Whereas ordinals are useful for ordering the objects in a collection, they are distinct from cardinal numbers, although the distinction between ordinals and cardinals is not always apparent in finite sets, different infinite ordinals can describe the same cardinal. Like other kinds of numbers, ordinals can be added, multiplied, a natural number can be used for two purposes, to describe the size of a set, or to describe the position of an element in a sequence. When restricted to finite sets these two concepts coincide, there is one way to put a finite set into a linear sequence. This is because any set has only one size, there are many nonisomorphic well-orderings of any infinite set. Whereas the notion of number is associated with a set with no particular structure on it. A well-ordered set is an ordered set in which there is no infinite decreasing sequence, equivalently. Ordinals may be used to label the elements of any given well-ordered set and this length is called the order type of the set. Any ordinal is defined by the set of ordinals that precede it, in fact, the most common definition of ordinals identifies each ordinal as the set of ordinals that precede it. For example, the ordinal 42 is the type of the ordinals less than it, i. e. the ordinals from 0 to 41. Conversely, any set of ordinals that is downward-closed—meaning that for any ordinal α in S and any ordinal β < α, β is also in S—is an ordinal. There are infinite ordinals as well, the smallest infinite ordinal is ω, which is the type of the natural numbers. After all of these come ω·2, ω·2+1, ω·2+2, and so on, then ω·3, now the set of ordinals formed in this way must itself have an ordinal associated with it, and that is ω2. Further on, there will be ω3, then ω4, and so on, and ωω, then ωωω, then later ωωωω and this can be continued indefinitely far. The smallest uncountable ordinal is the set of all countable ordinals, in a well-ordered set, every non-empty subset contains a distinct smallest element. Given the axiom of dependent choice, this is equivalent to just saying that the set is ordered and there is no infinite decreasing sequence

8.
Priemfactor
–
In number theory, the prime factors of a positive integer are the prime numbers that divide that integer exactly. The prime factorization of an integer is a list of the integers prime factors, together with their multiplicities. The fundamental theorem of arithmetic says that every integer has a single unique prime factorization. To shorten prime factorizations, factors are expressed in powers. For example,360 =2 ×2 ×2 ×3 ×3 ×5 =23 ×32 ×5, in which the factors 2,3 and 5 have multiplicities of 3,2 and 1, respectively. For a prime factor p of n, the multiplicity of p is the largest exponent a for which pa divides n exactly. For a positive n, the number of prime factors of n. Perfect square numbers can be recognized by the fact all of their prime factors have even multiplicities. For example, the number 144 has the prime factors 144 =2 ×2 ×2 ×2 ×3 ×3 =24 ×32. These can be rearranged to make the more visible,144 =2 ×2 ×2 ×2 ×3 ×3 = × =2 =2. Because every prime factor appears a number of times, the original number can be expressed as the square of some smaller number. In the same way, perfect cube numbers will have prime factors whose multiplicities are multiples of three, and so on, positive integers with no prime factors in common are said to be coprime. Two integers a and b can also be defined as if their greatest common divisor gcd =1. Euclids algorithm can be used to determine whether two integers are coprime without knowing their prime factors, the runs in a time that is polynomial in the number of digits involved. The integer 1 is coprime to every integer, including itself. This is because it has no prime factors, it is the empty product and this implies that gcd =1 for any b ≥1. The function, ω, represents the number of prime factors of n, while the function, Ω. If n = ∏ i =1 ω p i α i, for example,24 =23 ×31, so ω =2 and Ω =3 +1 =4

9.
Deler
–
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some other integer to produce n. In this case one says also that n is a multiple of m, an integer n is divisible by another integer m if m is a divisor of n, this implies dividing n by m leaves no remainder. Under this definition, the statement m ∣0 holds for every m, as before, but with the additional constraint k ≠0. Under this definition, the statement m ∣0 does not hold for m ≠0, in the remainder of this article, which definition is applied is indicated where this is significant. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4, they are 1,2,4, −1, −2, and −4,1 and −1 divide every integer. Every integer is a divisor of itself, every integer is a divisor of 0. Integers divisible by 2 are called even, and numbers not divisible by 2 are called odd,1, −1, n and −n are known as the trivial divisors of n. A divisor of n that is not a divisor is known as a non-trivial divisor. A non-zero integer with at least one divisor is known as a composite number, while the units −1 and 1. There are divisibility rules which allow one to recognize certain divisors of a number from the numbers digits, the generalization can be said to be the concept of divisibility in any integral domain. 7 is a divisor of 42 because 7 ×6 =42 and it can also be said that 42 is divisible by 7,42 is a multiple of 7,7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2,3, the positive divisors of 42 are 1,2,3,6,7,14,21,42. 5 ∣0, because 5 ×0 =0, if a ∣ b and b ∣ a, then a = b or a = − b. If a ∣ b and a ∣ c, then a ∣ holds, however, if a ∣ b and c ∣ b, then ∣ b does not always hold. If a ∣ b c, and gcd =1, then a ∣ c, if p is a prime number and p ∣ a b then p ∣ a or p ∣ b. A positive divisor of n which is different from n is called a proper divisor or a part of n. A number that does not evenly divide n but leaves a remainder is called an aliquant part of n, an integer n >1 whose only proper divisor is 1 is called a prime number

10.
Binair
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra