1.
Wetenschap
–
Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe. The formal sciences are often excluded as they do not depend on empirical observations, disciplines which use science, like engineering and medicine, may also be considered to be applied sciences. However, during the Islamic Golden Age foundations for the method were laid by Ibn al-Haytham in his Book of Optics. In the 17th and 18th centuries, scientists increasingly sought to formulate knowledge in terms of physical laws, over the course of the 19th century, the word science became increasingly associated with the scientific method itself as a disciplined way to study the natural world. It was during this time that scientific disciplines such as biology, chemistry, Science in a broad sense existed before the modern era and in many historical civilizations. Modern science is distinct in its approach and successful in its results, Science in its original sense was a word for a type of knowledge rather than a specialized word for the pursuit of such knowledge. In particular, it was the type of knowledge which people can communicate to each other, for example, knowledge about the working of natural things was gathered long before recorded history and led to the development of complex abstract thought. This is shown by the construction of calendars, techniques for making poisonous plants edible. For this reason, it is claimed these men were the first philosophers in the strict sense and they were mainly speculators or theorists, particularly interested in astronomy. In contrast, trying to use knowledge of nature to imitate nature was seen by scientists as a more appropriate interest for lower class artisans. A clear-cut distinction between formal and empirical science was made by the pre-Socratic philosopher Parmenides, although his work Peri Physeos is a poem, it may be viewed as an epistemological essay on method in natural science. Parmenides ἐὸν may refer to a system or calculus which can describe nature more precisely than natural languages. Physis may be identical to ἐὸν and he criticized the older type of study of physics as too purely speculative and lacking in self-criticism. He was particularly concerned that some of the early physicists treated nature as if it could be assumed that it had no intelligent order, explaining things merely in terms of motion and matter. The study of things had been the realm of mythology and tradition, however. Aristotle later created a less controversial systematic programme of Socratic philosophy which was teleological and he rejected many of the conclusions of earlier scientists. For example, in his physics, the sun goes around the earth, each thing has a formal cause and final cause and a role in the rational cosmic order. Motion and change is described as the actualization of potentials already in things, while the Socratics insisted that philosophy should be used to consider the practical question of the best way to live for a human being, they did not argue for any other types of applied science

2.
Wiskundig model
–
A mathematical model is a description of a system using mathematical concepts and language. The process of developing a model is termed mathematical modeling. Mathematical models are used in the sciences and engineering disciplines. Physicists, engineers, statisticians, operations research analysts, and economists use mathematical models most extensively, a model may help to explain a system and to study the effects of different components, and to make predictions about behaviour. Mathematical models can take many forms, including systems, statistical models, differential equations. These and other types of models can overlap, with a model involving a variety of abstract structures. In general, mathematical models may include logical models, in many cases, the quality of a scientific field depends on how well the mathematical models developed on the theoretical side agree with results of repeatable experiments. Lack of agreement between theoretical mathematical models and experimental measurements often leads to important advances as better theories are developed, in the physical sciences, the traditional mathematical model contains four major elements. These are Governing equations Defining equations Constitutive equations Constraints Mathematical models are composed of relationships. Relationships can be described by operators, such as operators, functions, differential operators. Variables are abstractions of system parameters of interest, that can be quantified, a model is considered to be nonlinear otherwise. The definition of linearity and nonlinearity is dependent on context, for example, in a statistical linear model, it is assumed that a relationship is linear in the parameters, but it may be nonlinear in the predictor variables. Similarly, an equation is said to be linear if it can be written with linear differential operators. In a mathematical programming model, if the functions and constraints are represented entirely by linear equations. If one or more of the functions or constraints are represented with a nonlinear equation. Nonlinearity, even in simple systems, is often associated with phenomena such as chaos. Although there are exceptions, nonlinear systems and models tend to be difficult to study than linear ones. A common approach to nonlinear problems is linearization, but this can be if one is trying to study aspects such as irreversibility

3.
Logica
–
Logic, originally meaning the word or what is spoken, is generally held to consist of the systematic study of the form of arguments. A valid argument is one where there is a relation of logical support between the assumptions of the argument and its conclusion. Historically, logic has been studied in philosophy and mathematics, and recently logic has been studied in science, linguistics, psychology. The concept of form is central to logic. The validity of an argument is determined by its logical form, traditional Aristotelian syllogistic logic and modern symbolic logic are examples of formal logic. Informal logic is the study of natural language arguments, the study of fallacies is an important branch of informal logic. Since much informal argument is not strictly speaking deductive, on some conceptions of logic, formal logic is the study of inference with purely formal content. An inference possesses a purely formal content if it can be expressed as an application of a wholly abstract rule, that is. The works of Aristotle contain the earliest known study of logic. Modern formal logic follows and expands on Aristotle, in many definitions of logic, logical inference and inference with purely formal content are the same. This does not render the notion of informal logic vacuous, because no formal logic captures all of the nuances of natural language, Symbolic logic is the study of symbolic abstractions that capture the formal features of logical inference. Symbolic logic is divided into two main branches, propositional logic and predicate logic. Mathematical logic is an extension of logic into other areas, in particular to the study of model theory, proof theory, set theory. Logic is generally considered formal when it analyzes and represents the form of any valid argument type, the form of an argument is displayed by representing its sentences in the formal grammar and symbolism of a logical language to make its content usable in formal inference. Simply put, formalising simply means translating English sentences into the language of logic and this is called showing the logical form of the argument. It is necessary because indicative sentences of ordinary language show a variety of form. Second, certain parts of the sentence must be replaced with schematic letters, thus, for example, the expression all Ps are Qs shows the logical form common to the sentences all men are mortals, all cats are carnivores, all Greeks are philosophers, and so on. The schema can further be condensed into the formula A, where the letter A indicates the judgement all - are -, the importance of form was recognised from ancient times

4.
Experiment
–
An experiment is a procedure carried out to support, refute, or validate a hypothesis. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated, experiments vary greatly in goal and scale, but always rely on repeatable procedure and logical analysis of the results. There also exists natural experimental studies, a child may carry out basic experiments to understand gravity, while teams of scientists may take years of systematic investigation to advance their understanding of a phenomenon. Experiments and other types of activities are very important to student learning in the science classroom. Experiments can raise test scores and help a student become more engaged and interested in the material they are learning, experiments can vary from personal and informal natural comparisons, to highly controlled. Uses of experiments vary considerably between the natural and human sciences, experiments typically include controls, which are designed to minimize the effects of variables other than the single independent variable. This increases the reliability of the results, often through a comparison between control measurements and the other measurements, scientific controls are a part of the scientific method. Ideally, all variables in an experiment are controlled and none are uncontrolled, in such an experiment, if all controls work as expected, it is possible to conclude that the experiment works as intended, and that results are due to the effect of the tested variable. In the scientific method, an experiment is a procedure that arbitrates between competing models or hypotheses. Researchers also use experimentation to test existing theories or new hypotheses to support or disprove them, an experiment usually tests a hypothesis, which is an expectation about how a particular process or phenomenon works. However, an experiment may also aim to answer a question, without a specific expectation about what the experiment reveals. If an experiment is conducted, the results usually either support or disprove the hypothesis. According to some philosophies of science, an experiment can never prove a hypothesis, on the other hand, an experiment that provides a counterexample can disprove a theory or hypothesis. An experiment must also control the possible confounding factors—any factors that would mar the accuracy or repeatability of the experiment or the ability to interpret the results, confounding is commonly eliminated through scientific controls and/or, in randomized experiments, through random assignment. In engineering and the sciences, experiments are a primary component of the scientific method. They are used to test theories and hypotheses about how physical processes work under particular conditions, typically, experiments in these fields focus on replication of identical procedures in hopes of producing identical results in each replication. In medicine and the sciences, the prevalence of experimental research varies widely across disciplines. In contrast to norms in the sciences, the focus is typically on the average treatment effect or another test statistic produced by the experiment

5.
Wetenschappelijke methode
–
The scientific method is a body of techniques for investigating phenomena, acquiring new knowledge, or correcting and integrating previous knowledge. To be termed scientific, a method of inquiry is commonly based on empirical or measurable evidence subject to specific principles of reasoning, experiments need to be designed to test hypotheses. The most important part of the method is the experiment. The scientific method is a process, which usually begins with observations about the natural world. Human beings are naturally inquisitive, so often come up with questions about things they see or hear. The best hypotheses lead to predictions that can be tested in various ways, in general, the strongest tests of hypotheses come from carefully controlled and replicated experiments that gather empirical data. Depending on how well the tests match the predictions, the hypothesis may require refinement. If a particular hypothesis becomes very well supported a theory may be developed. Although procedures vary from one field of inquiry to another, identifiable features are shared in common between them. The overall process of the method involves making conjectures, deriving predictions from them as logical consequences. A hypothesis is a conjecture, based on knowledge obtained while formulating the question, the hypothesis might be very specific or it might be broad. Scientists then test hypotheses by conducting experiments, the purpose of an experiment is to determine whether observations agree with or conflict with the predictions derived from a hypothesis. Experiments can take anywhere from a college lab to CERNs Large Hadron Collider. There are difficulties in a statement of method, however. Though the scientific method is presented as a fixed sequence of steps. Not all steps take place in scientific inquiry, and are not always in the same order. Some philosophers and scientists have argued there is no scientific method, such as Lee Smolin. Nola and Sankey remark that For some, the idea of a theory of scientific method is yester-years debate

6.
Wiskunde
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

7.
Informatica
–
Computer science is the study of the theory, experimentation, and engineering that form the basis for the design and use of computers. An alternate, more succinct definition of science is the study of automating algorithmic processes that scale. A computer scientist specializes in the theory of computation and the design of computational systems and its fields can be divided into a variety of theoretical and practical disciplines. Some fields, such as computational complexity theory, are highly abstract, other fields still focus on challenges in implementing computation. Human–computer interaction considers the challenges in making computers and computations useful, usable, the earliest foundations of what would become computer science predate the invention of the modern digital computer. Machines for calculating fixed numerical tasks such as the abacus have existed since antiquity, further, algorithms for performing computations have existed since antiquity, even before the development of sophisticated computing equipment. Wilhelm Schickard designed and constructed the first working mechanical calculator in 1623, in 1673, Gottfried Leibniz demonstrated a digital mechanical calculator, called the Stepped Reckoner. He may be considered the first computer scientist and information theorist, for, among other reasons and he started developing this machine in 1834, and in less than two years, he had sketched out many of the salient features of the modern computer. A crucial step was the adoption of a card system derived from the Jacquard loom making it infinitely programmable. Around 1885, Herman Hollerith invented the tabulator, which used punched cards to process statistical information, when the machine was finished, some hailed it as Babbages dream come true. During the 1940s, as new and more powerful computing machines were developed, as it became clear that computers could be used for more than just mathematical calculations, the field of computer science broadened to study computation in general. Computer science began to be established as an academic discipline in the 1950s. The worlds first computer science program, the Cambridge Diploma in Computer Science. The first computer science program in the United States was formed at Purdue University in 1962. Since practical computers became available, many applications of computing have become distinct areas of study in their own rights and it is the now well-known IBM brand that formed part of the computer science revolution during this time. IBM released the IBM704 and later the IBM709 computers, still, working with the IBM was frustrating if you had misplaced as much as one letter in one instruction, the program would crash, and you would have to start the whole process over again. During the late 1950s, the science discipline was very much in its developmental stages. Time has seen significant improvements in the usability and effectiveness of computing technology, modern society has seen a significant shift in the users of computer technology, from usage only by experts and professionals, to a near-ubiquitous user base

8.
Biologie
–
Biology is a natural science concerned with the study of life and living organisms, including their structure, function, growth, evolution, distribution, identification and taxonomy. Modern biology is a vast and eclectic field, composed of branches and subdisciplines. However, despite the broad scope of biology, there are certain unifying concepts within it that consolidate it into single, coherent field. In general, biology recognizes the cell as the unit of life, genes as the basic unit of heredity. It is also understood today that all organisms survive by consuming and transforming energy and by regulating their internal environment to maintain a stable, the term biology is derived from the Greek word βίος, bios, life and the suffix -λογία, -logia, study of. The Latin-language form of the term first appeared in 1736 when Swedish scientist Carl Linnaeus used biologi in his Bibliotheca botanica, the first German use, Biologie, was in a 1771 translation of Linnaeus work. In 1797, Theodor Georg August Roose used the term in the preface of a book, karl Friedrich Burdach used the term in 1800 in a more restricted sense of the study of human beings from a morphological, physiological and psychological perspective. The science that concerns itself with these objects we will indicate by the biology or the doctrine of life. Although modern biology is a recent development, sciences related to. Natural philosophy was studied as early as the ancient civilizations of Mesopotamia, Egypt, the Indian subcontinent, however, the origins of modern biology and its approach to the study of nature are most often traced back to ancient Greece. While the formal study of medicine back to Hippocrates, it was Aristotle who contributed most extensively to the development of biology. Especially important are his History of Animals and other works where he showed naturalist leanings, and later more empirical works that focused on biological causation and the diversity of life. Aristotles successor at the Lyceum, Theophrastus, wrote a series of books on botany that survived as the most important contribution of antiquity to the plant sciences, even into the Middle Ages. Scholars of the medieval Islamic world who wrote on biology included al-Jahiz, Al-Dīnawarī, who wrote on botany, biology began to quickly develop and grow with Anton van Leeuwenhoeks dramatic improvement of the microscope. It was then that scholars discovered spermatozoa, bacteria, infusoria, investigations by Jan Swammerdam led to new interest in entomology and helped to develop the basic techniques of microscopic dissection and staining. Advances in microscopy also had a impact on biological thinking. In the early 19th century, a number of biologists pointed to the importance of the cell. Thanks to the work of Robert Remak and Rudolf Virchow, however, meanwhile, taxonomy and classification became the focus of natural historians

9.
Aardwetenschappen
–
Earth science or geoscience is a widely embraced term for the fields of science related to the planet Earth. Earth science can be considered to be a branch of planetary science, there are both reductionist and holistic approaches to Earth sciences. The Earth sciences can include the study of geology, the lithosphere, and the structure of the Earths interior, as well as the atmosphere, hydrosphere. Typically, Earth scientists use tools from geography, chronology, physics, chemistry, biology, Geology describes the rocky parts of the Earths crust and its historic development. Major subdisciplines are mineralogy and petrology, geochemistry, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, geophysics and geodesy investigate the shape of the Earth, its reaction to forces and its magnetic and gravity fields. Geophysicists explore the Earths core and mantle as well as the tectonic and seismic activity of the lithosphere, geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. Soil science covers the outermost layer of the Earths crust that is subject to soil formation processes, major subdisciplines include edaphology and pedology. Ecology covers the interactions between the biota, with their natural environment and this field of study differentiates the study of the Earth, from the study of other planets in the Solar System, the Earth being the only planet teeming with life. Hydrology is a study revolved around the movement, distribution, and quality of the water and involves all the components of the cycle on the earth. Sub-disciplines of hydrology include hydrometeorology, surface hydrology, hydrogeology, watershed science, forest hydrology. Glaciology covers the icy parts of the Earth, atmospheric sciences cover the gaseous parts of the Earth between the surface and the exosphere. Major subdisciplines include meteorology, climatology, atmospheric chemistry, and atmospheric physics, plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the Earths crust. Beneath the Earths crust lies the mantle which is heated by the decay of heavy elements. The mantle is not quite solid and consists of magma which is in a state of semi-perpetual convection and this convection process causes the lithospheric plates to move, albeit slowly. The resulting process is known as plate tectonics, plate tectonics might be thought of as the process by which the Earth is resurfaced. As the result of spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures. Through subduction, oceanic crust and lithosphere returns to the convecting mantle, volcanoes result primarily from the melting of subducted crust material. Crust material that is forced into the asthenosphere melts, and some portion of the material becomes light enough to rise to the surface—giving birth to volcanoes