1.
Stelling van Pythagoras
–
In mathematics, the Pythagorean theorem, also known as Pythagorass theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse is equal to the sum of the squares of the two sides. There is some evidence that Babylonian mathematicians understood the formula, although little of it indicates an application within a mathematical framework, Mesopotamian, Indian and Chinese mathematicians all discovered the theorem independently and, in some cases, provided proofs for special cases. The theorem has been given numerous proofs – possibly the most for any mathematical theorem and they are very diverse, including both geometric proofs and algebraic proofs, with some dating back thousands of years. The Pythagorean theorem was known long before Pythagoras, but he may well have been the first to prove it, in any event, the proof attributed to him is very simple, and is called a proof by rearrangement. The two large squares shown in the figure each contain four triangles, and the only difference between the two large squares is that the triangles are arranged differently. Therefore, the space within each of the two large squares must have equal area. Equating the area of the white space yields the Pythagorean theorem and that Pythagoras originated this very simple proof is sometimes inferred from the writings of the later Greek philosopher and mathematician Proclus. Several other proofs of this theorem are described below, but this is known as the Pythagorean one, If the length of both a and b are known, then c can be calculated as c = a 2 + b 2. If the length of the c and of one side are known. The Pythagorean equation relates the sides of a triangle in a simple way. Another corollary of the theorem is that in any triangle, the hypotenuse is greater than any one of the other sides. A generalization of this theorem is the law of cosines, which allows the computation of the length of any side of any triangle, If the angle between the other sides is a right angle, the law of cosines reduces to the Pythagorean equation. This theorem may have more known proofs than any other, the book The Pythagorean Proposition contains 370 proofs, Let ABC represent a right triangle, with the right angle located at C, as shown on the figure. Draw the altitude from point C, and call H its intersection with the side AB, point H divides the length of the hypotenuse c into parts d and e. By a similar reasoning, the triangle CBH is also similar to ABC, the proof of similarity of the triangles requires the triangle postulate, the sum of the angles in a triangle is two right angles, and is equivalent to the parallel postulate. Similarity of the leads to the equality of ratios of corresponding sides. The first result equates the cosines of the angles θ, whereas the second result equates their sines, the role of this proof in history is the subject of much speculation

2.
Richtingscoëfficiënt
–
In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line. The direction of a line is increasing, decreasing, horizontal or vertical. A line is increasing if it goes up from left to right, the slope is positive, i. e. m >0. A line is decreasing if it goes down from left to right, the slope is negative, i. e. m <0. If a line is horizontal the slope is zero, if a line is vertical the slope is undefined. The steepness, incline, or grade of a line is measured by the value of the slope. A slope with an absolute value indicates a steeper line Slope is calculated by finding the ratio of the vertical change to the horizontal change between two distinct points on a line. Sometimes the ratio is expressed as a quotient, giving the number for every two distinct points on the same line. A line that is decreasing has a negative rise, the line may be practical - as set by a road surveyor, or in a diagram that models a road or a roof either as a description or as a plan. The rise of a road between two points is the difference between the altitude of the road at two points, say y1 and y2, or in other words, the rise is = Δy. Here the slope of the road between the two points is described as the ratio of the altitude change to the horizontal distance between any two points on the line. In mathematical language, the m of the line is m = y 2 − y 1 x 2 − x 1. The concept of slope applies directly to grades or gradients in geography, as a generalization of this practical description, the mathematics of differential calculus defines the slope of a curve at a point as the slope of the tangent line at that point. When the curve given by a series of points in a diagram or in a list of the coordinates of points, thereby, the simple idea of slope becomes one of the main basis of the modern world in terms of both technology and the built environment. This is described by the equation, m = Δ y Δ x = vertical change horizontal change = rise run. Given two points and, the change in x from one to the other is x2 − x1, substituting both quantities into the above equation generates the formula, m = y 2 − y 1 x 2 − x 1. The formula fails for a line, parallel to the y axis. Suppose a line runs through two points, P = and Q =, since the slope is positive, the direction of the line is increasing