1.
Wiskunde
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Edmond Laguerre
–
Edmond Nicolas Laguerre was a French mathematician, a member of the Académie française. His main works were in the areas of geometry and complex analysis, laguerres method is a root-finding algorithm tailored to polynomials. He laid the foundations of a geometry of oriented spheres, including the Laguerre transformation or transformation by reciprocal directions, notes sur la résolution des équations numériques. Sur la transformation par directions réciproques, théorie des équations numériques, Paris, Gauthier-Villars. 1884 on Google Books Recherches sur la géométrie de direction, méthodes de transformation, oeuvres de Laguerre publ. sous les auspices de lAcadémie des sciences par MM. Charles Hermite, Henri Poincaré, et Eugène Rouché, more than 80 articles on Nundam. org. In, Nouvelles annales de mathématiques, 3rd series, vol,8, p. 494–496—Obituary OConnor, John J. Robertson, Edmund F. Edmond Laguerre, MacTutor History of Mathematics archive, University of St Andrews

3.
Differentiaalvergelijking
–
A differential equation is a mathematical equation that relates some function with its derivatives. In applications, the functions usually represent physical quantities, the derivatives represent their rates of change, because such relations are extremely common, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. In pure mathematics, differential equations are studied from different perspectives. Only the simplest differential equations are solvable by explicit formulas, however, if a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. Differential equations first came into existence with the invention of calculus by Newton, jacob Bernoulli proposed the Bernoulli differential equation in 1695. This is a differential equation of the form y ′ + P y = Q y n for which the following year Leibniz obtained solutions by simplifying it. Historically, the problem of a string such as that of a musical instrument was studied by Jean le Rond dAlembert, Leonhard Euler, Daniel Bernoulli. In 1746, d’Alembert discovered the wave equation, and within ten years Euler discovered the three-dimensional wave equation. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a particle will fall to a fixed point in a fixed amount of time. Lagrange solved this problem in 1755 and sent the solution to Euler, both further developed Lagranges method and applied it to mechanics, which led to the formulation of Lagrangian mechanics. Contained in this book was Fouriers proposal of his heat equation for conductive diffusion of heat and this partial differential equation is now taught to every student of mathematical physics. For example, in mechanics, the motion of a body is described by its position. Newtons laws allow one to express these variables dynamically as an equation for the unknown position of the body as a function of time. In some cases, this equation may be solved explicitly. An example of modelling a real world problem using differential equations is the determination of the velocity of a ball falling through the air, considering only gravity, the balls acceleration towards the ground is the acceleration due to gravity minus the acceleration due to air resistance. Gravity is considered constant, and air resistance may be modeled as proportional to the balls velocity and this means that the balls acceleration, which is a derivative of its velocity, depends on the velocity. Finding the velocity as a function of time involves solving a differential equation, Differential equations can be divided into several types

4.
Polynoom
–
In mathematics, a polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents. An example of a polynomial of a single indeterminate x is x2 − 4x +7, an example in three variables is x3 + 2xyz2 − yz +1. Polynomials appear in a variety of areas of mathematics and science. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, central concepts in algebra, the word polynomial joins two diverse roots, the Greek poly, meaning many, and the Latin nomen, or name. It was derived from the binomial by replacing the Latin root bi- with the Greek poly-. The word polynomial was first used in the 17th century, the x occurring in a polynomial is commonly called either a variable or an indeterminate. When the polynomial is considered as an expression, x is a symbol which does not have any value. It is thus correct to call it an indeterminate. However, when one considers the function defined by the polynomial, then x represents the argument of the function, many authors use these two words interchangeably. It is a convention to use uppercase letters for the indeterminates. However one may use it over any domain where addition and multiplication are defined, in particular, when a is the indeterminate x, then the image of x by this function is the polynomial P itself. This equality allows writing let P be a polynomial as a shorthand for let P be a polynomial in the indeterminate x. A polynomial is an expression that can be built from constants, the word indeterminate means that x represents no particular value, although any value may be substituted for it. The mapping that associates the result of substitution to the substituted value is a function. This can be expressed concisely by using summation notation, ∑ k =0 n a k x k That is. Each term consists of the product of a number—called the coefficient of the term—and a finite number of indeterminates, because x = x1, the degree of an indeterminate without a written exponent is one. A term and a polynomial with no indeterminates are called, respectively, a constant term, the degree of a constant term and of a nonzero constant polynomial is 0. The degree of the polynomial,0, is generally treated as not defined

5.
Kwantummechanica
–
Quantum mechanics, including quantum field theory, is a branch of physics which is the fundamental theory of nature at small scales and low energies of atoms and subatomic particles. Classical physics, the physics existing before quantum mechanics, derives from quantum mechanics as an approximation valid only at large scales, early quantum theory was profoundly reconceived in the mid-1920s. The reconceived theory is formulated in various specially developed mathematical formalisms, in one of them, a mathematical function, the wave function, provides information about the probability amplitude of position, momentum, and other physical properties of a particle. In 1803, Thomas Young, an English polymath, performed the famous experiment that he later described in a paper titled On the nature of light. This experiment played a role in the general acceptance of the wave theory of light. In 1838, Michael Faraday discovered cathode rays, Plancks hypothesis that energy is radiated and absorbed in discrete quanta precisely matched the observed patterns of black-body radiation. In 1896, Wilhelm Wien empirically determined a distribution law of black-body radiation, ludwig Boltzmann independently arrived at this result by considerations of Maxwells equations. However, it was only at high frequencies and underestimated the radiance at low frequencies. Later, Planck corrected this model using Boltzmanns statistical interpretation of thermodynamics and proposed what is now called Plancks law, following Max Plancks solution in 1900 to the black-body radiation problem, Albert Einstein offered a quantum-based theory to explain the photoelectric effect. Among the first to study quantum phenomena in nature were Arthur Compton, C. V. Raman, robert Andrews Millikan studied the photoelectric effect experimentally, and Albert Einstein developed a theory for it. In 1913, Peter Debye extended Niels Bohrs theory of structure, introducing elliptical orbits. This phase is known as old quantum theory, according to Planck, each energy element is proportional to its frequency, E = h ν, where h is Plancks constant. Planck cautiously insisted that this was simply an aspect of the processes of absorption and emission of radiation and had nothing to do with the reality of the radiation itself. In fact, he considered his quantum hypothesis a mathematical trick to get the right rather than a sizable discovery. He won the 1921 Nobel Prize in Physics for this work, lower energy/frequency means increased time and vice versa, photons of differing frequencies all deliver the same amount of action, but do so in varying time intervals. High frequency waves are damaging to human tissue because they deliver their action packets concentrated in time, the Copenhagen interpretation of Niels Bohr became widely accepted. In the mid-1920s, developments in mechanics led to its becoming the standard formulation for atomic physics. In the summer of 1925, Bohr and Heisenberg published results that closed the old quantum theory, out of deference to their particle-like behavior in certain processes and measurements, light quanta came to be called photons

6.
Recursie
–
Recursion occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic, the most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines a number of instances, it is often done in such a way that no loop or infinite chain of references can occur. The ancestors of ones ancestors are also ones ancestors, the Fibonacci sequence is a classic example of recursion, Fib =0 as base case 1, Fib =1 as base case 2, For all integers n >1, Fib, = Fib + Fib. Many mathematical axioms are based upon recursive rules, for example, the formal definition of the natural numbers by the Peano axioms can be described as,0 is a natural number, and each natural number has a successor, which is also a natural number. By this base case and recursive rule, one can generate the set of all natural numbers, recursively defined mathematical objects include functions, sets, and especially fractals. There are various more tongue-in-cheek definitions of recursion, see recursive humor, Recursion is the process a procedure goes through when one of the steps of the procedure involves invoking the procedure itself. A procedure that goes through recursion is said to be recursive, to understand recursion, one must recognize the distinction between a procedure and the running of a procedure. A procedure is a set of steps based on a set of rules, the running of a procedure involves actually following the rules and performing the steps. An analogy, a procedure is like a recipe, running a procedure is like actually preparing the meal. Recursion is related to, but not the same as, a reference within the specification of a procedure to the execution of some other procedure. For instance, a recipe might refer to cooking vegetables, which is another procedure that in turn requires heating water, for this reason recursive definitions are very rare in everyday situations. An example could be the procedure to find a way through a maze. Proceed forward until reaching either an exit or a branching point, If the point reached is an exit, terminate. Otherwise try each branch in turn, using the procedure recursively, if every trial fails by reaching only dead ends, return on the path led to this branching point. Whether this actually defines a terminating procedure depends on the nature of the maze, in any case, executing the procedure requires carefully recording all currently explored branching points, and which of their branches have already been exhaustively tried. This can be understood in terms of a definition of a syntactic category. A sentence can have a structure in which what follows the verb is another sentence, Dorothy thinks witches are dangerous, so a sentence can be defined recursively as something with a structure that includes a noun phrase, a verb, and optionally another sentence

7.
Orthogonaal
–
The concept of orthogonality has been broadly generalized in mathematics, as well as in areas such as chemistry, and engineering. The word comes from the Greek ὀρθός, meaning upright, and γωνία, the ancient Greek ὀρθογώνιον orthogōnion and classical Latin orthogonium originally denoted a rectangle. Later, they came to mean a right triangle, in the 12th century, the post-classical Latin word orthogonalis came to mean a right angle or something related to a right angle. In geometry, two Euclidean vectors are orthogonal if they are perpendicular, i. e. they form a right angle, two vectors, x and y, in an inner product space, V, are orthogonal if their inner product ⟨ x, y ⟩ is zero. This relationship is denoted x ⊥ y, two vector subspaces, A and B, of an inner product space, V, are called orthogonal subspaces if each vector in A is orthogonal to each vector in B. The largest subspace of V that is orthogonal to a subspace is its orthogonal complement. Given a module M and its dual M∗, an element m′ of M∗, two sets S′ ⊆ M∗ and S ⊆ M are orthogonal if each element of S′ is orthogonal to each element of S. A term rewriting system is said to be if it is left-linear and is non-ambiguous. Orthogonal term rewriting systems are confluent, a set of vectors in an inner product space is called pairwise orthogonal if each pairing of them is orthogonal. Such a set is called an orthogonal set, nonzero pairwise orthogonal vectors are always linearly independent. In certain cases, the normal is used to mean orthogonal. For example, the y-axis is normal to the curve y = x2 at the origin, however, normal may also refer to the magnitude of a vector. In particular, a set is called if it is an orthogonal set of unit vectors. As a result, use of the normal to mean orthogonal is often avoided. The word normal also has a different meaning in probability and statistics, a vector space with a bilinear form generalizes the case of an inner product. When the bilinear form applied to two results in zero, then they are orthogonal. The case of a pseudo-Euclidean plane uses the term hyperbolic orthogonality, in the diagram, axes x′ and t′ are hyperbolic-orthogonal for any given ϕ. In 2-D or higher-dimensional Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i. e. they make an angle of 90°, hence orthogonality of vectors is an extension of the concept of perpendicular vectors into higher-dimensional spaces

8.
Complexe vlak
–
In mathematics, the complex plane or z-plane is a geometric representation of the complex numbers established by the real axis and the perpendicular imaginary axis. It can be thought of as a modified Cartesian plane, with the part of a complex number represented by a displacement along the x-axis. The concept of the plane allows a geometric interpretation of complex numbers. Under addition, they add like vectors, in particular, multiplication by a complex number of modulus 1 acts as a rotation. The complex plane is known as the Argand plane. These are named after Jean-Robert Argand, although they were first described by Norwegian-Danish land surveyor, Argand diagrams are frequently used to plot the positions of the poles and zeroes of a function in the complex plane. In this customary notation the number z corresponds to the point in the Cartesian plane. In the Cartesian plane the point can also be represented in coordinates as = =. In the Cartesian plane it may be assumed that the arctangent takes values from −π/2 to π/2, and some care must be taken to define the real arctangent function for points when x ≤0. Here |z| is the value or modulus of the complex number z, θ, the argument of z, is usually taken on the interval 0 ≤ θ < 2π. Notice that without the constraint on the range of θ, the argument of z is multi-valued, because the exponential function is periodic. Thus, if θ is one value of arg, the values are given by arg = θ + 2nπ. The theory of contour integration comprises a part of complex analysis. In this context the direction of travel around a curve is important – reversing the direction in which the curve is traversed multiplies the value of the integral by −1. By convention the direction is counterclockwise. Almost all of complex analysis is concerned with complex functions – that is, here it is customary to speak of the domain of f as lying in the z-plane, while referring to the range or image of f as a set of points in the w-plane. In symbols we write z = x + i y, f = w = u + i v and it can be useful to think of the complex plane as if it occupied the surface of a sphere. We can establish a correspondence between the points on the surface of the sphere minus the north pole and the points in the complex plane as follows

9.
Chebyshev-polynoom
–
In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of orthogonal polynomials which are related to de Moivres formula and which can be defined recursively. One usually distinguishes between Chebyshev polynomials of the first kind which are denoted Tn and Chebyshev polynomials of the kind which are denoted Un. The letter T is used because of the alternative transliterations of the name Chebyshev as Tchebycheff, the Chebyshev polynomials Tn or Un are polynomials of degree n and the sequence of Chebyshev polynomials of either kind composes a polynomial sequence. The Chebyshev polynomials Tn are polynomials with the largest possible leading coefficient and they are also the extremal polynomials for many other properties. This approximation leads directly to the method of Clenshaw–Curtis quadrature and these equations are special cases of the Sturm–Liouville differential equation. The Chebyshev polynomials of the first kind are defined by the recurrence relation T0 =1 T1 = x T n +1 =2 x T n − T n −1. The generating function relevant for 2-dimensional potential theory and multipole expansion is ∑ n =1 ∞ T n t n n = ln 11 −2 t x + t 2. The Chebyshev polynomials of the second kind are defined by the recurrence relation U0 =1 U1 =2 x U n +1 =2 x U n − U n −1. The ordinary generating function for Un is ∑ n =0 ∞ U n t n =11 −2 t x + t 2, the exponential generating function is ∑ n =0 ∞ U n t n n. = e t x. which is a variant of Schröders equation, viz. Tn is functionally conjugate to nx, further compare to the spread polynomials, in the section below. That cos nx is a polynomial in cos x can be seen by observing that cos nx is the real part of one side of de Moivres formula. The real part of the side is a polynomial in cos x and sin x, in which all powers of sin x are even. When working with Chebyshev polynomials quite often products of two of them occur and these products can be reduced to combinations of Chebyshev polynomials with lower or higher degree and concluding statements about the product are easier to make. It shall be assumed that in the following the index m is greater than or equal to the n and n is not negative. It follows that also satisfy a pair of mutual recurrence equations. The Chebyshev polynomials of the first and second kinds are also connected by the following relations, U n =2 ∑ odd j n T j for odd n. U n =2 ∑ even j n T j −1 for even n, N −2 k n >0 = n ∑ k =0 n k. K n >0 =2 F1 where 2F1 is a hypergeometric function, Chebyshev polynomials of odd order have odd symmetry and contain only odd powers of x