1.
Meetkunde
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space

2.
Lijn (meetkunde)
–
The notion of line or straight line was introduced by ancient mathematicians to represent straight objects with negligible width and depth. Lines are an idealization of such objects, the straight line is that which is equally extended between its points. In modern mathematics, given the multitude of geometries, the concept of a line is tied to the way the geometry is described. When a geometry is described by a set of axioms, the notion of a line is left undefined. The properties of lines are determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry, thus in differential geometry a line may be interpreted as a geodesic, while in some projective geometries a line is a 2-dimensional vector space. This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a light ray as being a line, to avoid this vicious circle certain concepts must be taken as primitive concepts, terms which are given no definition. In geometry, it is frequently the case that the concept of line is taken as a primitive, in those situations where a line is a defined concept, as in coordinate geometry, some other fundamental ideas are taken as primitives. When the line concept is a primitive, the behaviour and properties of lines are dictated by the axioms which they must satisfy, in a non-axiomatic or simplified axiomatic treatment of geometry, the concept of a primitive notion may be too abstract to be dealt with. In this circumstance it is possible that a description or mental image of a notion is provided to give a foundation to build the notion on which would formally be based on the axioms. Descriptions of this type may be referred to, by some authors and these are not true definitions and could not be used in formal proofs of statements. The definition of line in Euclids Elements falls into this category, when geometry was first formalised by Euclid in the Elements, he defined a general line to be breadthless length with a straight line being a line which lies evenly with the points on itself. These definitions serve little purpose since they use terms which are not, themselves, in fact, Euclid did not use these definitions in this work and probably included them just to make it clear to the reader what was being discussed. In an axiomatic formulation of Euclidean geometry, such as that of Hilbert, for example, for any two distinct points, there is a unique line containing them, and any two distinct lines intersect in at most one point. In two dimensions, i. e. the Euclidean plane, two lines which do not intersect are called parallel, in higher dimensions, two lines that do not intersect are parallel if they are contained in a plane, or skew if they are not. Any collection of many lines partitions the plane into convex polygons. Lines in a Cartesian plane or, more generally, in affine coordinates, in two dimensions, the equation for non-vertical lines is often given in the slope-intercept form, y = m x + b where, m is the slope or gradient of the line. B is the y-intercept of the line, X is the independent variable of the function y = f

3.
Zijde (meetkunde)
–
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object, a three-dimensional solid bounded exclusively by flat faces is a polyhedron. In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, in elementary geometry, a face is a polygon on the boundary of a polyhedron. Other names for a polygonal face include side of a polyhedron, for example, any of the six squares that bound a cube is a face of the cube. Sometimes face is used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, some other polygons, which are not faces, are also important for polyhedra and tessellations. These include Petrie polygons, vertex figures and facets, any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Eulers polyhedron formula, thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, in higher-dimensional geometry the faces of a polytope are features of all dimensions. A face of dimension k is called a k-face, for example, the polygonal faces of an ordinary polyhedron are 2-faces. In set theory, the set of faces of a polytope includes the polytope itself, for any n-polytope, −1 ≤ k ≤ n. For example, with meaning, the faces of a cube include the empty set, its vertices, edges and squares. Formally, a face of a polytope P is the intersection of P with any closed halfspace whose boundary is disjoint from the interior of P, from this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. In other areas of mathematics, such as the theories of abstract polytopes and star polytopes, abstract theory still requires that the set of faces include the polytope itself and the empty set. A cell is an element of a 4-dimensional polytope or 3-dimensional tessellation. Cells are facets for 4-polytopes and 3-honeycombs, examples, In higher-dimensional geometry, the facets of a n-polytope are the -faces of dimension one less than the polytope itself. A polytope is bounded by its facets, for example, The facets of a line segment are its 0-faces or vertices. The facets of a polygon are its 1-faces or edges, the facets of a polyhedron or plane tiling are its 2-faces. The facets of a 4D polytope or 3-honeycomb are its 3-faces, the facets of a 5D polytope or 4-honeycomb are its 4-faces

4.
Driehoek (meetkunde)
–
A triangle is a polygon with three edges and three vertices. It is one of the shapes in geometry. A triangle with vertices A, B, and C is denoted △ A B C, in Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. This article is about triangles in Euclidean geometry except where otherwise noted, triangles can be classified according to the lengths of their sides, An equilateral triangle has all sides the same length. An equilateral triangle is also a polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length, some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides. The latter definition would make all equilateral triangles isosceles triangles, the 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths, equivalently, it has all angles of different measure. Hatch marks, also called tick marks, are used in diagrams of triangles, a side can be marked with a pattern of ticks, short line segments in the form of tally marks, two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is no more than 3 ticks. Similarly, patterns of 1,2, or 3 concentric arcs inside the angles are used to indicate equal angles, triangles can also be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°, the side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti of the triangle, special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 +42 =52, in this situation,3,4, and 5 are a Pythagorean triple. The other one is a triangle that has 2 angles that each measure 45 degrees. Triangles that do not have an angle measuring 90° are called oblique triangles, a triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, a triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, a triangle with an interior angle of 180° is degenerate

5.
Vierkant (meetkunde)
–
In geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle in which two adjacent sides have equal length, a square with vertices ABCD would be denoted ◻ ABCD. e. A rhombus with equal diagonals a convex quadrilateral with sides a, b, c, d whose area is A =12 =12. Opposite sides of a square are both parallel and equal in length, all four angles of a square are equal. All four sides of a square are equal, the diagonals of a square are equal. The square is the n=2 case of the families of n-hypercubes and n-orthoplexes, a truncated square, t, is an octagon. An alternated square, h, is a digon, the perimeter of a square whose four sides have length ℓ is P =4 ℓ and the area A is A = ℓ2. In classical times, the power was described in terms of the area of a square. This led to the use of the square to mean raising to the second power. The area can also be calculated using the diagonal d according to A = d 22. In terms of the circumradius R, the area of a square is A =2 R2, since the area of the circle is π R2, in terms of the inradius r, the area of the square is A =4 r 2. Because it is a polygon, a square is the quadrilateral of least perimeter enclosing a given area. Dually, a square is the quadrilateral containing the largest area within a given perimeter. Indeed, if A and P are the area and perimeter enclosed by a quadrilateral, then the isoperimetric inequality holds,16 A ≤ P2 with equality if. The diagonals of a square are 2 times the length of a side of the square and this value, known as the square root of 2 or Pythagoras constant, was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles, if a figure is both a rectangle and a rhombus, then it is a square. If a circle is circumscribed around a square, the area of the circle is π /2 times the area of the square, if a circle is inscribed in the square, the area of the circle is π /4 times the area of the square. A square has an area than any other quadrilateral with the same perimeter

6.
Veelhoek
–
In elementary geometry, a polygon /ˈpɒlɪɡɒn/ is a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed polygonal chain or circuit. These segments are called its edges or sides, and the points where two edges meet are the vertices or corners. The interior of the polygon is called its body. An n-gon is a polygon with n sides, for example, a polygon is a 2-dimensional example of the more general polytope in any number of dimensions. The basic geometrical notion of a polygon has been adapted in various ways to suit particular purposes, mathematicians are often concerned only with the bounding closed polygonal chain and with simple polygons which do not self-intersect, and they often define a polygon accordingly. A polygonal boundary may be allowed to intersect itself, creating star polygons and these and other generalizations of polygons are described below. The word polygon derives from the Greek adjective πολύς much, many and it has been suggested that γόνυ knee may be the origin of “gon”. Polygons are primarily classified by the number of sides, Polygons may be characterized by their convexity or type of non-convexity, Convex, any line drawn through the polygon meets its boundary exactly twice. As a consequence, all its interior angles are less than 180°, equivalently, any line segment with endpoints on the boundary passes through only interior points between its endpoints. Non-convex, a line may be found which meets its boundary more than twice, equivalently, there exists a line segment between two boundary points that passes outside the polygon. Simple, the boundary of the polygon does not cross itself, there is at least one interior angle greater than 180°. Star-shaped, the interior is visible from at least one point. The polygon must be simple, and may be convex or concave, self-intersecting, the boundary of the polygon crosses itself. Branko Grünbaum calls these coptic, though this term does not seem to be widely used, star polygon, a polygon which self-intersects in a regular way. A polygon cannot be both a star and star-shaped, equiangular, all corner angles are equal. Cyclic, all lie on a single circle, called the circumcircle. Isogonal or vertex-transitive, all lie within the same symmetry orbit. The polygon is cyclic and equiangular

7.
Hoekpunt (meetkunde)
–
In the geometry of planar curves, a vertex is a point of where the first derivative of curvature is zero. This is typically a maximum or minimum of curvature. However, other cases may occur, for instance when the second derivative is also zero. For space curves, on the hand, a vertex is a point where the torsion vanishes. A hyperbola has two vertices, one on each branch, they are the closest of any two points lying on opposite branches of the hyperbola, and they lie on the principal axis, on a parabola, the sole vertex lies on the axis of symmetry. On an ellipse, two of the four vertices lie on the axis and two lie on the minor axis. For a circle, which has constant curvature, every point is a vertex, vertices are points where the curve has 4-point contact with the osculating circle at that point. In contrast, generic points on a curve typically only have 3-point contact with their osculating circle. The symmetry set of a curve has endpoints at the corresponding to the vertices, and the medial axis. According to the classical four-vertex theorem, every simple closed planar smooth curve must have at least four vertices. A more general fact is that every simple closed curve which lies on the boundary of a convex body, or even bounds a locally convex disk. If a planar curve is bilaterally symmetric, it will have a vertex at the point or points where the axis of symmetry crosses the curve. Thus, the notion of a vertex for a curve is related to that of an optical vertex. Computer Graphics and Geometric Modelling, Mathematics, Springer, ISBN9781852338176, fuks, D. B.07626 Gibson, C. G. Elementary Geometry of Differentiable Curves, An Undergraduate Introduction, Cambridge University Press, ISBN9780521011075. Four vertices of a space curve, Bull

8.
Diagonaal
–
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal, in matrix algebra, a diagonal of a square matrix is a set of entries extending from one corner to the farthest corner. There are also other, non-mathematical uses, diagonal pliers are wire-cutting pliers defined by the cutting edges of the jaws intersects the joint rivet at an angle or on a diagonal, hence the name. A diagonal lashing is a type of lashing used to bind spars or poles together applied so that the cross over the poles at an angle. In association football, the system of control is the method referees. As applied to a polygon, a diagonal is a line segment joining any two non-consecutive vertices, therefore, a quadrilateral has two diagonals, joining opposite pairs of vertices. For any convex polygon, all the diagonals are inside the polygon, in a convex polygon, if no three diagonals are concurrent at a single point, the number of regions that the diagonals divide the interior into is given by + =24. The number of regions is 1,4,11,25,50,91,154,246, in a polygon with n angles the number of diagonals is given by n ∗2. The number of intersections between the diagonals is given by, in the case of a square matrix, the main or principal diagonal is the diagonal line of entries running from the top-left corner to the bottom-right corner. For a matrix A with row index specified by i and column index specified by j, the off-diagonal entries are those not on the main diagonal. A diagonal matrix is one whose off-diagonal entries are all zero, a superdiagonal entry is one that is directly above and to the right of the main diagonal. Just as diagonal entries are those A i j with j = i and this plays an important part in geometry, for example, the fixed points of a mapping F from X to itself may be obtained by intersecting the graph of F with the diagonal. In geometric studies, the idea of intersecting the diagonal with itself is common, not directly and this is related at a deep level with the Euler characteristic and the zeros of vector fields. For example, the circle S1 has Betti numbers 1,1,0,0,0, a geometric way of expressing this is to look at the diagonal on the two-torus S1xS1 and observe that it can move off itself by the small motion to. Topics In Algebra, Waltham, Blaisdell Publishing Company, ISBN 978-1114541016 Nering, linear Algebra and Matrix Theory, New York, Wiley, LCCN76091646 Diagonals of a polygon with interactive animation Polygon diagonal from MathWorld. Diagonal of a matrix from MathWorld

9.
Kromme
–
In mathematics, a curve is, generally speaking, an object similar to a line but that need not be straight. Thus, a curve is a generalization of a line, in that curvature is not necessarily zero, various disciplines within mathematics have given the term different meanings depending on the area of study, so the precise meaning depends on context. However, many of these meanings are special instances of the definition which follows, a curve is a topological space which is locally homeomorphic to a line. In everyday language, this means that a curve is a set of points which, near each of its points, looks like a line, a simple example of a curve is the parabola, shown to the right. A large number of curves have been studied in multiple mathematical fields. A closed curve is a curve that forms a path whose starting point is also its ending point—that is, closely related meanings include the graph of a function and a two-dimensional graph. Interest in curves began long before they were the subject of mathematical study and this can be seen in numerous examples of their decorative use in art and on everyday objects dating back to prehistoric times. Curves, or at least their graphical representations, are simple to create, historically, the term line was used in place of the more modern term curve. Hence the phrases straight line and right line were used to distinguish what are called lines from curved lines. For example, in Book I of Euclids Elements, a line is defined as a breadthless length, Euclids idea of a line is perhaps clarified by the statement The extremities of a line are points. Later commentators further classified according to various schemes. For example, Composite lines Incomposite lines Determinate Indeterminate The Greek geometers had studied many kinds of curves. One reason was their interest in solving problems that could not be solved using standard compass. These curves include, The conic sections, deeply studied by Apollonius of Perga The cissoid of Diocles, studied by Diocles, the conchoid of Nicomedes, studied by Nicomedes as a method to both double the cube and to trisect an angle. The Archimedean spiral, studied by Archimedes as a method to trisect an angle, the spiric sections, sections of tori studied by Perseus as sections of cones had been studied by Apollonius. A fundamental advance in the theory of curves was the advent of analytic geometry in the seventeenth century and this enabled a curve to be described using an equation rather than an elaborate geometrical construction. Previously, curves had been described as geometrical or mechanical according to how they were, or supposedly could be, conic sections were applied in astronomy by Kepler. Newton also worked on an example in the calculus of variations

10.
Cirkel
–
A circle is a simple closed shape in Euclidean geometry. The distance between any of the points and the centre is called the radius, a circle is a simple closed curve which divides the plane into two regions, an interior and an exterior. Annulus, the object, the region bounded by two concentric circles. Arc, any connected part of the circle, centre, the point equidistant from the points on the circle. Chord, a segment whose endpoints lie on the circle. Circumference, the length of one circuit along the circle, or the distance around the circle and it is a special case of a chord, namely the longest chord, and it is twice the radius. Disc, the region of the bounded by a circle. Lens, the intersection of two discs, passant, a coplanar straight line that does not touch the circle. Radius, a line segment joining the centre of the circle to any point on the circle itself, or the length of such a segment, sector, a region bounded by two radii and an arc lying between the radii. Segment, a region, not containing the centre, bounded by a chord, secant, an extended chord, a coplanar straight line cutting the circle at two points. Semicircle, an arc that extends from one of a diameters endpoints to the other, in non-technical common usage it may mean the diameter, arc, and its interior, a two dimensional region, that is technically called a half-disc. A half-disc is a case of a segment, namely the largest one. Tangent, a straight line that touches the circle at a single point. The word circle derives from the Greek κίρκος/κύκλος, itself a metathesis of the Homeric Greek κρίκος, the origins of the words circus and circuit are closely related. The circle has been known since before the beginning of recorded history, natural circles would have been observed, such as the Moon, Sun, and a short plant stalk blowing in the wind on sand, which forms a circle shape in the sand. The circle is the basis for the wheel, which, with related inventions such as gears, in mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Some highlights in the history of the circle are,1700 BCE – The Rhind papyrus gives a method to find the area of a circular field. The result corresponds to 256/81 as a value of π.300 BCE – Book 3 of Euclids Elements deals with the properties of circles