1.
Verzamelingenleer
–
Set theory is a branch of mathematical logic that studies sets, which informally are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics, the language of set theory can be used in the definitions of nearly all mathematical objects. The modern study of set theory was initiated by Georg Cantor, Set theory is commonly employed as a foundational system for mathematics, particularly in the form of Zermelo–Fraenkel set theory with the axiom of choice. Beyond its foundational role, set theory is a branch of mathematics in its own right, contemporary research into set theory includes a diverse collection of topics, ranging from the structure of the real number line to the study of the consistency of large cardinals. Mathematical topics typically emerge and evolve through interactions among many researchers, Set theory, however, was founded by a single paper in 1874 by Georg Cantor, On a Property of the Collection of All Real Algebraic Numbers. Since the 5th century BC, beginning with Greek mathematician Zeno of Elea in the West and early Indian mathematicians in the East, especially notable is the work of Bernard Bolzano in the first half of the 19th century. Modern understanding of infinity began in 1867–71, with Cantors work on number theory, an 1872 meeting between Cantor and Richard Dedekind influenced Cantors thinking and culminated in Cantors 1874 paper. Cantors work initially polarized the mathematicians of his day, while Karl Weierstrass and Dedekind supported Cantor, Leopold Kronecker, now seen as a founder of mathematical constructivism, did not. This utility of set theory led to the article Mengenlehre contributed in 1898 by Arthur Schoenflies to Kleins encyclopedia, in 1899 Cantor had himself posed the question What is the cardinal number of the set of all sets. Russell used his paradox as a theme in his 1903 review of continental mathematics in his The Principles of Mathematics, in 1906 English readers gained the book Theory of Sets of Points by William Henry Young and his wife Grace Chisholm Young, published by Cambridge University Press. The momentum of set theory was such that debate on the paradoxes did not lead to its abandonment, the work of Zermelo in 1908 and Abraham Fraenkel in 1922 resulted in the set of axioms ZFC, which became the most commonly used set of axioms for set theory. The work of such as Henri Lebesgue demonstrated the great mathematical utility of set theory. Set theory is used as a foundational system, although in some areas category theory is thought to be a preferred foundation. Set theory begins with a binary relation between an object o and a set A. If o is a member of A, the notation o ∈ A is used, since sets are objects, the membership relation can relate sets as well. A derived binary relation between two sets is the relation, also called set inclusion. If all the members of set A are also members of set B, then A is a subset of B, for example, is a subset of, and so is but is not. As insinuated from this definition, a set is a subset of itself, for cases where this possibility is unsuitable or would make sense to be rejected, the term proper subset is defined
2.
Natuurlijk getal
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
3.
Lege verzameling
–
In mathematics, and more specifically set theory, the empty set is the unique set having no elements, its size or cardinality is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, in other theories, many possible properties of sets are vacuously true for the empty set. Null set was once a synonym for empty set, but is now a technical term in measure theory. The empty set may also be called the void set, common notations for the empty set include, ∅, and ∅. The latter two symbols were introduced by the Bourbaki group in 1939, inspired by the letter Ø in the Norwegian, although now considered an improper use of notation, in the past,0 was occasionally used as a symbol for the empty set. The empty-set symbol ∅ is found at Unicode point U+2205, in LaTeX, it is coded as \emptyset for ∅ or \varnothing for ∅. In standard axiomatic set theory, by the principle of extensionality, hence there is but one empty set, and we speak of the empty set rather than an empty set. The mathematical symbols employed below are explained here, in this context, zero is modelled by the empty set. For any property, For every element of ∅ the property holds, There is no element of ∅ for which the property holds. Conversely, if for some property and some set V, the two statements hold, For every element of V the property holds, There is no element of V for which the property holds. By the definition of subset, the empty set is a subset of any set A. That is, every element x of ∅ belongs to A. Indeed, since there are no elements of ∅ at all, there is no element of ∅ that is not in A. Any statement that begins for every element of ∅ is not making any substantive claim and this is often paraphrased as everything is true of the elements of the empty set. When speaking of the sum of the elements of a finite set, the reason for this is that zero is the identity element for addition. Similarly, the product of the elements of the empty set should be considered to be one, a disarrangement of a set is a permutation of the set that leaves no element in the same position. The empty set is a disarrangment of itself as no element can be found that retains its original position. Since the empty set has no members, when it is considered as a subset of any ordered set, then member of that set will be an upper bound. For example, when considered as a subset of the numbers, with its usual ordering, represented by the real number line
4.
Georg Cantor
–
Georg Ferdinand Ludwig Philipp Cantor was a German mathematician. He invented set theory, which has become a theory in mathematics. In fact, Cantors method of proof of this theorem implies the existence of an infinity of infinities and he defined the cardinal and ordinal numbers and their arithmetic. Cantors work is of great philosophical interest, a fact of which he was well aware, E. J. Brouwer, while Ludwig Wittgenstein raised philosophical objections. Cantor, a devout Lutheran, believed the theory had been communicated to him by God, Kronecker objected to Cantors proofs that the algebraic numbers are countable, and that the transcendental numbers are uncountable, results now included in a standard mathematics curriculum. The harsh criticism has been matched by later accolades, in 1904, the Royal Society awarded Cantor its Sylvester Medal, the highest honor it can confer for work in mathematics. David Hilbert defended it from its critics by declaring, From his paradise that Cantor with us unfolded, we hold our breath in awe, knowing, we shall not be expelled. Georg Cantor was born in the merchant colony in Saint Petersburg, Russia. Georg, the oldest of six children, was regarded as an outstanding violinist and his grandfather Franz Böhm was a well-known musician and soloist in a Russian imperial orchestra. In 1860, Cantor graduated with distinction from the Realschule in Darmstadt, his skills in mathematics. In 1862, Cantor entered the Swiss Federal Polytechnic and he spent the summer of 1866 at the University of Göttingen, then and later a center for mathematical research. Cantor submitted his dissertation on number theory at the University of Berlin in 1867, after teaching briefly in a Berlin girls school, Cantor took up a position at the University of Halle, where he spent his entire career. He was awarded the habilitation for his thesis, also on number theory. In 1874, Cantor married Vally Guttmann and they had six children, the last born in 1886. Cantor was able to support a family despite modest academic pay, during his honeymoon in the Harz mountains, Cantor spent much time in mathematical discussions with Richard Dedekind, whom he had met two years earlier while on Swiss holiday. Cantor was promoted to Extraordinary Professor in 1872 and made full Professor in 1879, however, his work encountered too much opposition for that to be possible. Worse yet, Kronecker, a figure within the mathematical community and Cantors former professor. Cantor came to believe that Kroneckers stance would make it impossible for him ever to leave Halle, in 1881, Cantors Halle colleague Eduard Heine died, creating a vacant chair
5.
Rij (wiskunde)
–
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members, the number of elements is called the length of the sequence. Unlike a set, order matters, and exactly the elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the numbers or the set of the first n natural numbers. The position of an element in a sequence is its rank or index and it depends on the context or of a specific convention, if the first element has index 0 or 1. For example, is a sequence of letters with the letter M first, also, the sequence, which contains the number 1 at two different positions, is a valid sequence. Sequences can be finite, as in these examples, or infinite, the empty sequence is included in most notions of sequence, but may be excluded depending on the context. A sequence can be thought of as a list of elements with a particular order, Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations, Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers. There are a number of ways to denote a sequence, some of which are useful for specific types of sequences. One way to specify a sequence is to list the elements, for example, the first four odd numbers form the sequence. This notation can be used for sequences as well. For instance, the sequence of positive odd integers can be written. Listing is most useful for sequences with a pattern that can be easily discerned from the first few elements. Other ways to denote a sequence are discussed after the examples, the prime numbers are the natural numbers bigger than 1, that have no divisors but 1 and themselves. Taking these in their natural order gives the sequence, the prime numbers are widely used in mathematics and specifically in number theory. The Fibonacci numbers are the integer sequence whose elements are the sum of the two elements. The first two elements are either 0 and 1 or 1 and 1 so that the sequence is, for a large list of examples of integer sequences, see On-Line Encyclopedia of Integer Sequences
6.
Ordetheorie
–
Order theory is a branch of mathematics which investigates the intuitive notion of order using binary relations. It provides a framework for describing statements such as this is less than that or this precedes that. This article introduces the field and provides basic definitions, a list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the order on the natural numbers e. g.2 is less than 3,10 is greater than 5. This intuitive concept can be extended to orders on sets of numbers, such as the integers. The idea of being greater than or less than another number is one of the basic intuitions of number systems in general, other familiar examples of orderings are the alphabetical order of words in a dictionary and the genealogical property of lineal descent within a group of people. The notion of order is very general, extending beyond contexts that have an immediate, in other contexts orders may capture notions of containment or specialization. Abstractly, this type of order amounts to the relation, e. g. Pediatricians are physicians. However, many other orders do not and those orders like the subset-of relation for which there exist incomparable elements are called partial orders, orders for which every pair of elements is comparable are total orders. Order theory captures the intuition of orders that arises from such examples in a general setting and this is achieved by specifying properties that a relation ≤ must have to be a mathematical order. This more abstract approach makes sense, because one can derive numerous theorems in the general setting. These insights can then be transferred to many less abstract applications. Driven by the wide usage of orders, numerous special kinds of ordered sets have been defined. In addition, order theory does not restrict itself to the classes of ordering relations. A simple example of an order theoretic property for functions comes from analysis where monotone functions are frequently found and this section introduces ordered sets by building upon the concepts of set theory, arithmetic, and binary relations. Suppose that P is a set and that ≤ is a relation on P, a set with a partial order on it is called a partially ordered set, poset, or just an ordered set if the intended meaning is clear. By checking these properties, one sees that the well-known orders on natural numbers, integers, rational numbers
7.
Verzameling (wiskunde)
–
In mathematics, a set is a well-defined collection of distinct objects, considered as an object in its own right. For example, the numbers 2,4, and 6 are distinct objects when considered separately, Sets are one of the most fundamental concepts in mathematics. Developed at the end of the 19th century, set theory is now a part of mathematics. In mathematics education, elementary topics such as Venn diagrams are taught at a young age, the German word Menge, rendered as set in English, was coined by Bernard Bolzano in his work The Paradoxes of the Infinite. A set is a collection of distinct objects. The objects that make up a set can be anything, numbers, people, letters of the alphabet, other sets, Sets are conventionally denoted with capital letters. Sets A and B are equal if and only if they have precisely the same elements. Cantors definition turned out to be inadequate, instead, the notion of a set is taken as a notion in axiomatic set theory. There are two ways of describing, or specifying the members of, a set, one way is by intensional definition, using a rule or semantic description, A is the set whose members are the first four positive integers. B is the set of colors of the French flag, the second way is by extension – that is, listing each member of the set. An extensional definition is denoted by enclosing the list of members in curly brackets, one often has the choice of specifying a set either intensionally or extensionally. In the examples above, for instance, A = C and B = D, there are two important points to note about sets. First, in a definition, a set member can be listed two or more times, for example. However, per extensionality, two definitions of sets which differ only in one of the definitions lists set members multiple times, define, in fact. Hence, the set is identical to the set. The second important point is that the order in which the elements of a set are listed is irrelevant and we can illustrate these two important points with an example, = =. For sets with many elements, the enumeration of members can be abbreviated, for instance, the set of the first thousand positive integers may be specified extensionally as, where the ellipsis indicates that the list continues in the obvious way. Ellipses may also be used where sets have infinitely many members, thus the set of positive even numbers can be written as
8.
Deelruimtetopologie
–
In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology. Given a topological space and a subset S of X, the topology on S is defined by τ S =. That is, a subset of S is open in the subspace topology if, if S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of. Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated, alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map ι, S ↪ X is continuous. More generally, suppose ι is an injection from a set S to a topological space X, then the subspace topology on S is defined as the coarsest topology for which ι is continuous. The open sets in topology are precisely the ones of the form ι −1 for U open in X. S is then homeomorphic to its image in X and ι is called a topological embedding. A subspace S is called a subspace if the injection ι is an open map. Likewise it is called a subspace if the injection ι is a closed map. The distinction between a set and a space is often blurred notationally, for convenience, which can be a source of confusion when one first encounters these definitions. In the following, R represents the numbers with their usual topology. The subspace topology of the numbers, as a subspace of R, is the discrete topology. The rational numbers Q considered as a subspace of R do not have the discrete topology. If a and b are rational, then the intervals and are open and closed. The set as a subspace of R is both open and closed, whereas as a subset of R it is only closed, as a subspace of R, ∪ is composed of two disjoint open subsets, and is therefore a disconnected space. Let S = [0, 1) be a subspace of the real line R, then [0, 1/2) is open in S but not in R. Likewise [½, 1) is closed in S but not in R. S is both open and closed as a subset of itself but not as a subset of R, the subspace topology has the following characteristic property. Let Y be a subspace of X and let i, Y → X be the inclusion map, then for any topological space Z a map f, Z → Y is continuous if and only if the composite map i ∘ f is continuous. This property is characteristic in the sense that it can be used to define the topology on Y
9.
Geheel getal
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain
10.
Kardinaalgetal
–
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality of sets. The cardinality of a set is a natural number, the number of elements in the set. The transfinite cardinal numbers describe the sizes of infinite sets, cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, in the case of finite sets, this agrees with the intuitive notion of size. In the case of sets, the behavior is more complex. It is also possible for a subset of an infinite set to have the same cardinality as the original set. There is a sequence of cardinal numbers,0,1,2,3, …, n, …, ℵ0, ℵ1, ℵ2, …, ℵ α, …. This sequence starts with the natural numbers including zero, which are followed by the aleph numbers, the aleph numbers are indexed by ordinal numbers. Under the assumption of the axiom of choice, this transfinite sequence includes every cardinal number, If one rejects that axiom, the situation is more complicated, with additional infinite cardinals that are not alephs. Cardinality is studied for its own sake as part of set theory and it is also a tool used in branches of mathematics including model theory, combinatorics, abstract algebra, and mathematical analysis. In category theory, the numbers form a skeleton of the category of sets. The notion of cardinality, as now understood, was formulated by Georg Cantor, cardinality can be used to compare an aspect of finite sets, e. g. the sets and are not equal, but have the same cardinality, namely three. Cantor applied his concept of bijection to infinite sets, e. g. the set of natural numbers N =, thus, all sets having a bijection with N he called denumerable sets and they all have the same cardinal number. This cardinal number is called ℵ0, aleph-null and he called the cardinal numbers of these infinite sets transfinite cardinal numbers. Cantor proved that any unbounded subset of N has the same cardinality as N and he later proved that the set of all real algebraic numbers is also denumerable. His proof used an argument with nested intervals, but in an 1891 paper he proved the result using his ingenious. The new cardinal number of the set of numbers is called the cardinality of the continuum. His continuum hypothesis is the proposition that c is the same as ℵ1 and this hypothesis has been found to be independent of the standard axioms of mathematical set theory, it can neither be proved nor disproved from the standard assumptions