1.
David C. Jewitt
–
Jewitt is an English astronomer and professor of astronomy at UCLAs Earth, Planetary, and Space Science Department in California. He is best known for having discovered the first body in the Kuiper belt and he was born in 1958 in England, and is a 1979 graduate of University College, London. Jewitt received an M. Sc. and a Ph. D. in astronomy at the California Institute of Technology in 1980 and 1983, respectively. His research interests cover all aspects of the system, including the trans-Neptunian Solar System, Solar System formation, ice in the asteroids. Along with Jane Luu, he discovered the first Kuiper belt object in 1992 and those resonant objects in the 3,2 mean-motion resonance he called plutinos as a reminder that Pluto is one such object. Jewitt is a member of national academies. He was also awarded the Kavli Prize in the same year and he is a fellow of the Norwegian Academy of Science and Letters. Jewitt is also featured in the 1985 BBC Horizon episode Halleys Comet, The Apparition and he has also discovered the Jovian moon Adrastea on images taken by Voyager 2 in 1979, and is credited by the Minor Planet Center with the discovery of more than 40 minor planets. The inner main-belt asteroid 6434 Jewitt, discovered by Edward Bowell in 1981, was named in his honor, naming citation was published on 1 July 1996. A selection of his recent publications includes, J. Li, D. Jewitt, J. Clover, outburst of Comet 17P/Holmes Observed With The Solar Mass Ejection Imager. A Near-Infrared Search for Silicates in Jovian Trojan Asteroids, M. Drahus, D. Jewitt, A. Guilbert-Lepoutre, W. Waniak, J. Hoge, D. Lis, H. Yoshida and R. Peng. Rotation State of Comet 103P/Hartley 2 from Radio Spectroscopy at 1-mm, D. Jewitt, H. Weaver, M. Mutchler, S. Larson and J. Agarwal. Hubble Space Telescope Observations of Main Belt Comet Scheila,733, L4 H. Hsieh, P. Lacerda, M. Ishiguro and D. Jewitt. Physical Properties of Main-Belt Comet 176P/LINEAR, D. Jewitt, S. Stuart and J. Li. Prediscovery Observations of Disrupting Asteroid P/2010 A2, thermal Shadows and Compositional Structure in Comet Nuclei. Ap. J.743,31 D. Jewitt and A. Guilbert-Lepoutre, limits to Ice on Asteroids Themis and Cybele. J.143,21 Curriculum vitae Publications David Jewitt website Video interview on YouTube about the Kuiper belt, Pan-STARRS, and icy main-belt comets
2.
Chadwick A. Trujillo
–
Chadwick A. Chad Trujillo is an American astronomer, discoverer of minor planets and the co-discoverer of Eris, the most massive dwarf planet known in the Solar System. Trujillo works with software and has examined the orbits of the numerous trans-Neptunian objects. In late August 2005, it was announced that Trujillo, along with Michael E. Brown, as a result of the discovery of the satellite Dysnomia, Eris was the first TNO known to be more massive than Pluto. Trujillo attended Oak Park and River Forest High School in Oak Park, Trujillo was later a postdoctoral scholar at Caltech, and is currently an astronomer at the Gemini Observatory in Hawaii. He studies the Kuiper belt and the outer Solar System, the main-belt asteroid 12101 Trujillo is named for him. Trujillo is credited by the Minor Planet Center with the discovery and co-discovery of 50 numbered minor planets between 1996 and 2007, including many trans-Neptunian objects from the Kuiper belt, makemake, co-discovered with Brown and Rabinowitz in 2005, one of the first 5 official dwarf planets
3.
Jun Chen
–
Jun Chen is a Chinese American astronomer and discoverer of minor planets. She obtained her BS at Beijing University in 1990, and obtained her Ph. D. from the University of Hawaii in 1997, working together with David Jewitt and Jane Luu and other astronomers, she has co-discovered a number of Kuiper belt objects. The Minor Planet Center credits her with the co-discovery of 10 minor planets during 1994–1997 and she is currently working as a software developer in private industry
4.
Minor planet
–
A minor planet is an astronomical object in direct orbit around the Sun that is neither a planet nor exclusively classified as a comet. Minor planets can be dwarf planets, asteroids, trojans, centaurs, Kuiper belt objects, as of 2016, the orbits of 709,706 minor planets were archived at the Minor Planet Center,469,275 of which had received permanent numbers. The first minor planet to be discovered was Ceres in 1801, the term minor planet has been used since the 19th century to describe these objects. The term planetoid has also used, especially for larger objects such as those the International Astronomical Union has called dwarf planets since 2006. Historically, the asteroid, minor planet, and planetoid have been more or less synonymous. This terminology has become complicated by the discovery of numerous minor planets beyond the orbit of Jupiter. A Minor planet seen releasing gas may be classified as a comet. Before 2006, the IAU had officially used the term minor planet, during its 2006 meeting, the IAU reclassified minor planets and comets into dwarf planets and small Solar System bodies. Objects are called dwarf planets if their self-gravity is sufficient to achieve hydrostatic equilibrium, all other minor planets and comets are called small Solar System bodies. The IAU stated that the minor planet may still be used. However, for purposes of numbering and naming, the distinction between minor planet and comet is still used. Hundreds of thousands of planets have been discovered within the Solar System. The Minor Planet Center has documented over 167 million observations and 729,626 minor planets, of these,20,570 have official names. As of March 2017, the lowest-numbered unnamed minor planet is 1974 FV1, as of March 2017, the highest-numbered named minor planet is 458063 Gustavomuler. There are various broad minor-planet populations, Asteroids, traditionally, most have been bodies in the inner Solar System. Near-Earth asteroids, those whose orbits take them inside the orbit of Mars. Further subclassification of these, based on distance, is used, Apohele asteroids orbit inside of Earths perihelion distance. Aten asteroids, those that have semi-major axes of less than Earths, Apollo asteroids are those asteroids with a semimajor axis greater than Earths, while having a perihelion distance of 1.017 AU or less. Like Aten asteroids, Apollo asteroids are Earth-crossers, amor asteroids are those near-Earth asteroids that approach the orbit of Earth from beyond, but do not cross it
5.
Trans-Neptunian object
–
A trans-Neptunian object is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune,30 astronomical units. Twelve minor planets with a semi-major axis greater than 150 AU and perihelion greater than 30 AU are known, the first trans-Neptunian object to be discovered was Pluto in 1930. It took until 1992 to discover a second trans-Neptunian object orbiting the Sun directly,1992 QB1, as of February 2017 over 2,300 trans-Neptunian objects appear on the Minor Planet Centers List of Transneptunian Objects. Of these TNOs,2,000 have a perihelion farther out than Neptune, as of November 2016,242 of these have their orbits well-enough determined that they have been given a permanent minor planet designation. The largest known object is Pluto, followed by Eris,2007 OR10, Makemake. The Kuiper belt, scattered disk, and Oort cloud are three divisions of this volume of space, though treatments vary and a few objects such as Sedna do not fit easily into any division. The orbit of each of the planets is slightly affected by the influences of the other planets. Discrepancies in the early 1900s between the observed and expected orbits of Uranus and Neptune suggested that there were one or more additional planets beyond Neptune, the search for these led to the discovery of Pluto in February 1930, which was too small to explain the discrepancies. Revised estimates of Neptunes mass from the Voyager 2 flyby in 1989 showed that the problem was spurious, Pluto was easiest to find because it has the highest apparent magnitude of all known trans-Neptunian objects. It also has an inclination to the ecliptic than most other large TNOs. After Plutos discovery, American astronomer Clyde Tombaugh continued searching for years for similar objects. For a long time, no one searched for other TNOs as it was believed that Pluto. Only after the 1992 discovery of a second TNO,1992 QB1, a broad strip of the sky around the ecliptic was photographed and digitally evaluated for slowly moving objects. Hundreds of TNOs were found, with diameters in the range of 50 to 2,500 kilometers, Pluto and Eris were eventually classified as dwarf planets by the International Astronomical Union. Kuiper belt objects are classified into the following two groups, Resonant objects are locked in an orbital resonance with Neptune. Objects with a 1,2 resonance are called twotinos, and objects with a 2,3 resonance are called plutinos, after their most prominent member, classical Kuiper belt objects have no such resonance, moving on almost circular orbits, unperturbed by Neptune. Examples are 1992 QB1,50000 Quaoar and Makemake, the scattered disc contains objects farther from the Sun, usually with very irregular orbits. A typical example is the most massive known TNO, Eris, scattered-extended —Scattered-extended objects have a Tisserand parameter greater than 3 and have a time-averaged eccentricity greater than 0
6.
Classical Kuiper belt object
–
A classical Kuiper belt object, also called a cubewano, is a low-eccentricity Kuiper belt object that orbits beyond Neptune and is not controlled by an orbital resonance with Neptune. Cubewanos have orbits with semi-major axes in the 40–50 AU range and, unlike Pluto and that is, they have low-eccentricity and sometimes low-inclination orbits like the classical planets. The name cubewano derives from the first trans-Neptunian object found after Pluto, similar objects found later were often called QB1-os, or cubewanos, after this object, though the term classical is much more frequently used in the scientific literature. Most cubewanos are found between the 2,3 orbital resonance with Neptune and the 1,2 resonance,50000 Quaoar, for example, has a near-circular orbit close to the ecliptic. Plutinos, on the hand, have more eccentric orbits bringing some of them closer to the Sun than Neptune. The majority of objects, have low inclinations and near-circular orbits, a smaller population is characterised by highly inclined, more eccentric orbits. The Deep Ecliptic Survey reports the distributions of the two populations, one with the inclination centered at 4. 6° and another with inclinations extending beyond 30°, the vast majority of KBOs have inclinations of less than 5° and eccentricities of less than 0.1. The hot and cold populations are different, more than 30% of all cubewanos are in low inclination. The parameters of the orbits are more evenly distributed, with a local maximum in moderate eccentricities in 0. 15–0.2 range. See also the comparison with scattered disk objects, when orbital inclinations are compared, hot cubewanos can be easily distinguished by their higher inclinations, as the plutinos typically keep orbits below 20°. In addition to the orbital characteristics, the two populations display different physical characteristics. The difference in colour between the red cold population and more heterogeneous hot population was observed as early as in 2002, another difference between the low-inclination and high-inclination classical objects is the observed number of binary objects. Binaries are quite common on low-inclination orbits and are typically similar-brightness systems, binaries are less common on high-inclination orbits and their components typically differ in brightness. There is no definition of cubewano or classical KBO. However, the terms are used to refer to objects free from significant perturbation from Neptune. The Minor Planet Center and the Deep Ecliptic Survey do not list cubewanos using the same criteria, many TNOs classified as cubewanos by the MPC are classified as ScatNear by the DES. Dwarf planet Makemake is such a borderline classical cubewano/scatnear object,2002 KX14 may be an inner cubewano near the plutinos. Furthermore, there is evidence that the Kuiper belt has an edge, in that an apparent lack of objects beyond 47–49 AU was suspected as early as 1998
7.
Perihelion and aphelion
–
The perihelion is the point in the orbit of a celestial body where it is nearest to its orbital focus, generally a star. It is the opposite of aphelion, which is the point in the orbit where the body is farthest from its focus. The word perihelion stems from the Ancient Greek words peri, meaning around or surrounding, aphelion derives from the preposition apo, meaning away, off, apart. According to Keplers first law of motion, all planets, comets. Hence, a body has a closest and a farthest point from its parent object, that is, a perihelion. Each extreme is known as an apsis, orbital eccentricity measures the flatness of the orbit. Because of the distance at aphelion, only 93. 55% of the solar radiation from the Sun falls on a given area of land as does at perihelion. However, this fluctuation does not account for the seasons, as it is summer in the northern hemisphere when it is winter in the southern hemisphere and vice versa. Instead, seasons result from the tilt of Earths axis, which is 23.4 degrees away from perpendicular to the plane of Earths orbit around the sun. Winter falls on the hemisphere where sunlight strikes least directly, and summer falls where sunlight strikes most directly, in the northern hemisphere, summer occurs at the same time as aphelion. Despite this, there are larger land masses in the northern hemisphere, consequently, summers are 2.3 °C warmer in the northern hemisphere than in the southern hemisphere under similar conditions. Apsis Ellipse Solstice Dates and times of Earths perihelion and aphelion, 2000–2025 from the United States Naval Observatory
8.
Astronomical unit
–
The astronomical unit is a unit of length, roughly the distance from Earth to the Sun. However, that varies as Earth orbits the Sun, from a maximum to a minimum. Originally conceived as the average of Earths aphelion and perihelion, it is now defined as exactly 149597870700 metres, the astronomical unit is used primarily as a convenient yardstick for measuring distances within the Solar System or around other stars. However, it is also a component in the definition of another unit of astronomical length. A variety of symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A for the astronomical unit, in 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In 2012, the IAU, noting that various symbols are presently in use for the astronomical unit, in the 2014 revision of the SI Brochure, the BIPM used the unit symbol au. In ISO 80000-3, the symbol of the unit is ua. Earths orbit around the Sun is an ellipse, the semi-major axis of this ellipse is defined to be half of the straight line segment that joins the aphelion and perihelion. The centre of the sun lies on this line segment. In addition, it mapped out exactly the largest straight-line distance that Earth traverses over the course of a year, knowing Earths shift and a stars shift enabled the stars distance to be calculated. But all measurements are subject to some degree of error or uncertainty, improvements in precision have always been a key to improving astronomical understanding. Improving measurements were continually checked and cross-checked by means of our understanding of the laws of celestial mechanics, the expected positions and distances of objects at an established time are calculated from these laws, and assembled into a collection of data called an ephemeris. NASAs Jet Propulsion Laboratory provides one of several ephemeris computation services, in 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition. Equivalently, by definition, one AU is the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass. As with all measurements, these rely on measuring the time taken for photons to be reflected from an object. However, for precision the calculations require adjustment for such as the motions of the probe. In addition, the measurement of the time itself must be translated to a scale that accounts for relativistic time dilation
9.
Orders of magnitude (length)
–
The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Victoria, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake. 2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres. 13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe
10.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction
11.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit
12.
Second
–
The second is the base unit of time in the International System of Units. It is qualitatively defined as the division of the hour by sixty. SI definition of second is the duration of 9192631770 periods of the corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom. Seconds may be measured using a mechanical, electrical or an atomic clock, SI prefixes are combined with the word second to denote subdivisions of the second, e. g. the millisecond, the microsecond, and the nanosecond. Though SI prefixes may also be used to form multiples of the such as kilosecond. The second is also the unit of time in other systems of measurement, the centimetre–gram–second, metre–kilogram–second, metre–tonne–second. Absolute zero implies no movement, and therefore zero external radiation effects, the second thus defined is consistent with the ephemeris second, which was based on astronomical measurements. The realization of the second is described briefly in a special publication from the National Institute of Standards and Technology. 1 international second is equal to, 1⁄60 minute 1⁄3,600 hour 1⁄86,400 day 1⁄31,557,600 Julian year 1⁄, more generally, = 1⁄, the Hellenistic astronomers Hipparchus and Ptolemy subdivided the day into sixty parts. They also used an hour, simple fractions of an hour. No sexagesimal unit of the day was used as an independent unit of time. The modern second is subdivided using decimals - although the third remains in some languages. The earliest clocks to display seconds appeared during the last half of the 16th century, the second became accurately measurable with the development of mechanical clocks keeping mean time, as opposed to the apparent time displayed by sundials. The earliest spring-driven timepiece with a hand which marked seconds is an unsigned clock depicting Orpheus in the Fremersdorf collection. During the 3rd quarter of the 16th century, Taqi al-Din built a clock with marks every 1/5 minute, in 1579, Jost Bürgi built a clock for William of Hesse that marked seconds. In 1581, Tycho Brahe redesigned clocks that displayed minutes at his observatory so they also displayed seconds, however, they were not yet accurate enough for seconds. In 1587, Tycho complained that his four clocks disagreed by plus or minus four seconds, in 1670, London clockmaker William Clement added this seconds pendulum to the original pendulum clock of Christiaan Huygens. From 1670 to 1680, Clement made many improvements to his clock and this clock used an anchor escapement mechanism with a seconds pendulum to display seconds in a small subdial
13.
Mean anomaly
–
In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. Define T as the time required for a body to complete one orbit. In time T, the radius vector sweeps out 2π radians or 360°. The average rate of sweep, n, is then n =2 π T or n =360 ∘ T, define τ as the time at which the body is at the pericenter. From the above definitions, a new quantity, M, the mean anomaly can be defined M = n, because the rate of increase, n, is a constant average, the mean anomaly increases uniformly from 0 to 2π radians or 0° to 360° during each orbit. It is equal to 0 when the body is at the pericenter, π radians at the apocenter, if the mean anomaly is known at any given instant, it can be calculated at any later instant by simply adding n δt where δt represents the time difference. Mean anomaly does not measure an angle between any physical objects and it is simply a convenient uniform measure of how far around its orbit a body has progressed since pericenter. The mean anomaly is one of three parameters that define a position along an orbit, the other two being the eccentric anomaly and the true anomaly. Define l as the longitude, the angular distance of the body from the same reference direction. Thus mean anomaly is also M = l − ϖ, mean angular motion can also be expressed, n = μ a 3, where μ is a gravitational parameter which varies with the masses of the objects, and a is the semi-major axis of the orbit. Mean anomaly can then be expanded, M = μ a 3, and here mean anomaly represents uniform angular motion on a circle of radius a
14.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
15.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky
16.
Longitude of the ascending node
–
The longitude of the ascending node is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a direction, called the origin of longitude, to the direction of the ascending node. The ascending node is the point where the orbit of the passes through the plane of reference. Commonly used reference planes and origins of longitude include, For a geocentric orbit, Earths equatorial plane as the plane. In this case, the longitude is called the right ascension of the ascending node. The angle is measured eastwards from the First Point of Aries to the node, for a heliocentric orbit, the ecliptic as the reference plane, and the First Point of Aries as the origin of longitude. The angle is measured counterclockwise from the First Point of Aries to the node, the angle is measured eastwards from north to the node. pp.40,72,137, chap. In the case of a star known only from visual observations, it is not possible to tell which node is ascending. In this case the orbital parameter which is recorded is the longitude of the node, Ω, here, n=<nx, ny, nz> is a vector pointing towards the ascending node. The reference plane is assumed to be the xy-plane, and the origin of longitude is taken to be the positive x-axis, K is the unit vector, which is the normal vector to the xy reference plane. For non-inclined orbits, Ω is undefined, for computation it is then, by convention, set equal to zero, that is, the ascending node is placed in the reference direction, which is equivalent to letting n point towards the positive x-axis. Kepler orbits Equinox Orbital node perturbation of the plane can cause revolution of the ascending node
17.
Argument of periapsis
–
The argument of periapsis, symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the ascending node to its periapsis. For specific types of orbits, words such as perihelion, perigee, periastron, an argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the body will reach periapsis at its northmost distance from the plane of reference. Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis, however, especially in discussions of binary stars and exoplanets, the terms longitude of periapsis or longitude of periastron are often used synonymously with argument of periapsis. In the case of equatorial orbits, the argument is strictly undefined, where, ex and ey are the x- and y-components of the eccentricity vector e. In the case of circular orbits it is assumed that the periapsis is placed at the ascending node. Kepler orbit Orbital mechanics Orbital node
18.
Minimum orbit intersection distance
–
Minimum orbit intersection distance is a measure used in astronomy to assess potential close approaches and collision risks between astronomical objects. It is defined as the distance between the closest points of the orbits of two bodies. Of greatest interest is the risk of a collision with Earth, Earth MOID is often listed on comet and asteroid databases such as the JPL Small-Body Database. MOID values are defined with respect to other bodies as well, Jupiter MOID, Venus MOID. An object is classified as a hazardous object – that is, posing a possible risk to Earth – if, among other conditions. A low MOID does not mean that a collision is inevitable as the planets frequently perturb the orbit of small bodies. It is also necessary that the two bodies reach that point in their orbits at the time before the smaller body is perturbed into a different orbit with a different MOID value. Two Objects gravitationally locked in orbital resonance may never approach one another, numerical integrations become increasingly divergent as trajectories are projected further forward in time, especially beyond times where the smaller body is repeatedly perturbed by other planets. MOID has the convenience that it is obtained directly from the elements of the body. The only object that has ever been rated at 4 on the Torino Scale and this is not the smallest Earth MOID in the catalogues, many bodies with a small Earth MOID are not classed as PHOs because the objects are less than roughly 140 meters in diameter. Earth MOID values are more practical for asteroids less than 140 meters in diameter as those asteroids are very dim. It is even smaller at the more precise JPL Small Body Database
19.
Mass
–
In physics, mass is a property of a physical body. It is the measure of a resistance to acceleration when a net force is applied. It also determines the strength of its gravitational attraction to other bodies. The basic SI unit of mass is the kilogram, Mass is not the same as weight, even though mass is often determined by measuring the objects weight using a spring scale, rather than comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity and this is because weight is a force, while mass is the property that determines the strength of this force. In Newtonian physics, mass can be generalized as the amount of matter in an object, however, at very high speeds, special relativity postulates that energy is an additional source of mass. Thus, any body having mass has an equivalent amount of energy. In addition, matter is a defined term in science. There are several distinct phenomena which can be used to measure mass, active gravitational mass measures the gravitational force exerted by an object. Passive gravitational mass measures the force exerted on an object in a known gravitational field. The mass of an object determines its acceleration in the presence of an applied force, according to Newtons second law of motion, if a body of fixed mass m is subjected to a single force F, its acceleration a is given by F/m. A bodys mass also determines the degree to which it generates or is affected by a gravitational field and this is sometimes referred to as gravitational mass. The standard International System of Units unit of mass is the kilogram, the kilogram is 1000 grams, first defined in 1795 as one cubic decimeter of water at the melting point of ice. Then in 1889, the kilogram was redefined as the mass of the prototype kilogram. As of January 2013, there are proposals for redefining the kilogram yet again. In this context, the mass has units of eV/c2, the electronvolt and its multiples, such as the MeV, are commonly used in particle physics. The atomic mass unit is 1/12 of the mass of a carbon-12 atom, the atomic mass unit is convenient for expressing the masses of atoms and molecules. Outside the SI system, other units of mass include, the slug is an Imperial unit of mass, the pound is a unit of both mass and force, used mainly in the United States
20.
Density
–
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume, ρ = m V, where ρ is the density, m is the mass, and V is the volume. In some cases, density is defined as its weight per unit volume. For a pure substance the density has the numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity, osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. Thus a relative density less than one means that the floats in water. The density of a material varies with temperature and pressure and this variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object, increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a results in convection of the heat from the bottom to the top. This causes it to rise relative to more dense unheated material, the reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is a property in that increasing the amount of a substance does not increase its density. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass, upon this discovery, he leapt from his bath and ran naked through the streets shouting, Eureka. As a result, the term eureka entered common parlance and is used today to indicate a moment of enlightenment, the story first appeared in written form in Vitruvius books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time, from the equation for density, mass density has units of mass divided by volume. As there are units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per metre and the cgs unit of gram per cubic centimetre are probably the most commonly used units for density.1,000 kg/m3 equals 1 g/cm3. In industry, other larger or smaller units of mass and or volume are often more practical, see below for a list of some of the most common units of density
21.
Escape velocity
–
The escape velocity from Earth is about 11.186 km/s at the surface. More generally, escape velocity is the speed at which the sum of a kinetic energy. With escape velocity in a direction pointing away from the ground of a massive body, once escape velocity is achieved, no further impulse need be applied for it to continue in its escape. When given a speed V greater than the speed v e. In these equations atmospheric friction is not taken into account, escape velocity is only required to send a ballistic object on a trajectory that will allow the object to escape the gravity well of the mass M. The existence of escape velocity is a consequence of conservation of energy, by adding speed to the object it expands the possible places that can be reached until with enough energy they become infinite. For a given gravitational potential energy at a position, the escape velocity is the minimum speed an object without propulsion needs to be able to escape from the gravity. Escape velocity is actually a speed because it does not specify a direction, no matter what the direction of travel is, the simplest way of deriving the formula for escape velocity is to use conservation of energy. Imagine that a spaceship of mass m is at a distance r from the center of mass of the planet and its initial speed is equal to its escape velocity, v e. At its final state, it will be a distance away from the planet. The same result is obtained by a calculation, in which case the variable r represents the radial coordinate or reduced circumference of the Schwarzschild metric. All speeds and velocities measured with respect to the field, additionally, the escape velocity at a point in space is equal to the speed that an object would have if it started at rest from an infinite distance and was pulled by gravity to that point. In common usage, the point is on the surface of a planet or moon. On the surface of the Earth, the velocity is about 11.2 km/s. However, at 9,000 km altitude in space, it is less than 7.1 km/s. The escape velocity is independent of the mass of the escaping object and it does not matter if the mass is 1 kg or 1,000 kg, what differs is the amount of energy required. For an object of mass m the energy required to escape the Earths gravitational field is GMm / r, a related quantity is the specific orbital energy which is essentially the sum of the kinetic and potential energy divided by the mass. An object has reached escape velocity when the orbital energy is greater or equal to zero
22.
Temperature
–
A temperature is an objective comparative measurement of hot or cold. It is measured by a thermometer, several scales and units exist for measuring temperature, the most common being Celsius, Fahrenheit, and, especially in science, Kelvin. Absolute zero is denoted as 0 K on the Kelvin scale, −273.15 °C on the Celsius scale, the kinetic theory offers a valuable but limited account of the behavior of the materials of macroscopic bodies, especially of fluids. Temperature is important in all fields of science including physics, geology, chemistry, atmospheric sciences, medicine. The Celsius scale is used for temperature measurements in most of the world. Because of the 100 degree interval, it is called a centigrade scale.15, the United States commonly uses the Fahrenheit scale, on which water freezes at 32°F and boils at 212°F at sea-level atmospheric pressure. Many scientific measurements use the Kelvin temperature scale, named in honor of the Scottish physicist who first defined it and it is a thermodynamic or absolute temperature scale. Its zero point, 0K, is defined to coincide with the coldest physically-possible temperature and its degrees are defined through thermodynamics. The temperature of zero occurs at 0K = −273. 15°C. For historical reasons, the triple point temperature of water is fixed at 273.16 units of the measurement increment, Temperature is one of the principal quantities in the study of thermodynamics. There is a variety of kinds of temperature scale and it may be convenient to classify them as empirically and theoretically based. Empirical temperature scales are historically older, while theoretically based scales arose in the middle of the nineteenth century, empirically based temperature scales rely directly on measurements of simple physical properties of materials. For example, the length of a column of mercury, confined in a capillary tube, is dependent largely on temperature. Such scales are only within convenient ranges of temperature. For example, above the point of mercury, a mercury-in-glass thermometer is impracticable. A material is of no use as a thermometer near one of its phase-change temperatures, in spite of these restrictions, most generally used practical thermometers are of the empirically based kind. Especially, it was used for calorimetry, which contributed greatly to the discovery of thermodynamics, nevertheless, empirical thermometry has serious drawbacks when judged as a basis for theoretical physics. Theoretically based temperature scales are based directly on theoretical arguments, especially those of thermodynamics, kinetic theory and they rely on theoretical properties of idealized devices and materials
23.
Kelvin
–
The kelvin is a unit of measure for temperature based upon an absolute scale. It is one of the seven units in the International System of Units and is assigned the unit symbol K. The kelvin is defined as the fraction 1⁄273.16 of the temperature of the triple point of water. In other words, it is defined such that the point of water is exactly 273.16 K. The Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Lord Kelvin, unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or typeset as a degree. The kelvin is the unit of temperature measurement in the physical sciences, but is often used in conjunction with the Celsius degree. The definition implies that absolute zero is equivalent to −273.15 °C, Kelvin calculated that absolute zero was equivalent to −273 °C on the air thermometers of the time. This absolute scale is known today as the Kelvin thermodynamic temperature scale, when spelled out or spoken, the unit is pluralised using the same grammatical rules as for other SI units such as the volt or ohm. When reference is made to the Kelvin scale, the word kelvin—which is normally a noun—functions adjectivally to modify the noun scale and is capitalized, as with most other SI unit symbols there is a space between the numeric value and the kelvin symbol. Before the 13th CGPM in 1967–1968, the unit kelvin was called a degree and it was distinguished from the other scales with either the adjective suffix Kelvin or with absolute and its symbol was °K. The latter term, which was the official name from 1948 until 1954, was ambiguous since it could also be interpreted as referring to the Rankine scale. Before the 13th CGPM, the form was degrees absolute. The 13th CGPM changed the name to simply kelvin. Its measured value was 7002273160280000000♠0.01028 °C with an uncertainty of 60 µK, the use of SI prefixed forms of the degree Celsius to express a temperature interval has not been widely adopted. In 2005 the CIPM embarked on a program to redefine the kelvin using a more experimentally rigorous methodology, the current definition as of 2016 is unsatisfactory for temperatures below 20 K and above 7003130000000000000♠1300 K. In particular, the committee proposed redefining the kelvin such that Boltzmanns constant takes the exact value 6977138065049999999♠1. 3806505×10−23 J/K, from a scientific point of view, this will link temperature to the rest of SI and result in a stable definition that is independent of any particular substance. From a practical point of view, the redefinition will pass unnoticed, the kelvin is often used in the measure of the colour temperature of light sources. Colour temperature is based upon the principle that a black body radiator emits light whose colour depends on the temperature of the radiator, black bodies with temperatures below about 7003400000000000000♠4000 K appear reddish, whereas those above about 7003750000000000000♠7500 K appear bluish
24.
Sun
–
The Sun is the star at the center of the Solar System. It is a perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. It is by far the most important source of energy for life on Earth. Its diameter is about 109 times that of Earth, and its mass is about 330,000 times that of Earth, accounting for about 99. 86% of the total mass of the Solar System. About three quarters of the Suns mass consists of hydrogen, the rest is mostly helium, with smaller quantities of heavier elements, including oxygen, carbon, neon. The Sun is a G-type main-sequence star based on its spectral class and it formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the center, whereas the rest flattened into a disk that became the Solar System. The central mass became so hot and dense that it eventually initiated nuclear fusion in its core and it is thought that almost all stars form by this process. The Sun is roughly middle-aged, it has not changed dramatically for more than four billion years and it is calculated that the Sun will become sufficiently large enough to engulf the current orbits of Mercury, Venus, and probably Earth. The enormous effect of the Sun on Earth has been recognized since prehistoric times, the synodic rotation of Earth and its orbit around the Sun are the basis of the solar calendar, which is the predominant calendar in use today. The English proper name Sun developed from Old English sunne and may be related to south, all Germanic terms for the Sun stem from Proto-Germanic *sunnōn. The English weekday name Sunday stems from Old English and is ultimately a result of a Germanic interpretation of Latin dies solis, the Latin name for the Sun, Sol, is not common in general English language use, the adjectival form is the related word solar. The term sol is used by planetary astronomers to refer to the duration of a solar day on another planet. A mean Earth solar day is approximately 24 hours, whereas a mean Martian sol is 24 hours,39 minutes, and 35.244 seconds. From at least the 4th Dynasty of Ancient Egypt, the Sun was worshipped as the god Ra, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the New Empire period, the Sun became identified with the dung beetle, in the form of the Sun disc Aten, the Sun had a brief resurgence during the Amarna Period when it again became the preeminent, if not only, divinity for the Pharaoh Akhenaton. The Sun is viewed as a goddess in Germanic paganism, Sól/Sunna, in ancient Roman culture, Sunday was the day of the Sun god. It was adopted as the Sabbath day by Christians who did not have a Jewish background, the symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions
25.
Chad Trujillo
–
Chadwick A. Chad Trujillo is an American astronomer, discoverer of minor planets and the co-discoverer of Eris, the most massive dwarf planet known in the Solar System. Trujillo works with software and has examined the orbits of the numerous trans-Neptunian objects. In late August 2005, it was announced that Trujillo, along with Michael E. Brown, as a result of the discovery of the satellite Dysnomia, Eris was the first TNO known to be more massive than Pluto. Trujillo attended Oak Park and River Forest High School in Oak Park, Trujillo was later a postdoctoral scholar at Caltech, and is currently an astronomer at the Gemini Observatory in Hawaii. He studies the Kuiper belt and the outer Solar System, the main-belt asteroid 12101 Trujillo is named for him. Trujillo is credited by the Minor Planet Center with the discovery and co-discovery of 50 numbered minor planets between 1996 and 2007, including many trans-Neptunian objects from the Kuiper belt, makemake, co-discovered with Brown and Rabinowitz in 2005, one of the first 5 official dwarf planets
26.
Mauna Kea Observatories
–
The facilities are located in a 525-acre special land use zone known as the Astronomy Precinct, which is located within the 11, 228-acre Mauna Kea Science Reserve. The Astronomy Precinct was established in 1967 and is located on land protected by the Historical Preservation Act for its significance to Hawaiian culture. After studying photos for NASAs Apollo program that contained greater detail than any ground based telescope, while he first began looking in Chile, he also made the decision to perform tests in the Hawaiian Islands. Tests on Mauis Haleakalā were promising, but the mountain was too low in the inversion layer, on the Big Island of Hawaiʻi, Mauna Kea is considered the highest island mountain in the world. While the summit is covered with snow, the air is extremely dry. Kuiper began looking into the possibility of an observatory on Mauna Kea, after testing, he discovered the low humidity was perfect for infrared signals. He persuaded Hawaiʻi Governor John A. Burns to bulldoze a road to the summit where he built a small telescope on Puʻu Poliʻahu. The peak was the second highest on the mountain with the highest peak being holy ground, next, Kuiper tried enlisting NASA to fund a larger facility with a large telescope, housing and other needed structures. NASA, in turn decided to make the open to competition. Professor of physics, John Jefferies of the University of Hawaii placed a bid on behalf of the university, Jefferies had gained his reputation through observations at Sacramento Peak Observatory. The proposal was for a telescope to serve both the needs of NASA and the university. Kuiper would abandon his site over the competition and begin work in Arizona on a different NASA project, after considerable testing by Jefferies team, the best locations were determined to be near the summit at the top of the cinder cones. Testing also determined Mauna Kea to be superb for nighttime viewing due to many factors, including the air, constant trade winds. Jefferies would build a 2.24 meter telescope with the State of Hawaiʻi agreeing to build a reliable, building began in 1967 and first light was seen in 1970. Other groups began requesting subleases on the newly accessible mountaintop, by 1970, two 24 in telescopes had been constructed by the United States Air Force and Lowell Observatory. In 1973, Canada and France agreed to build the 3.6 m CFHT on Mauna Kea, however, local organizations started to raise concerns about the environmental impact of the observatory. This led the Department of Land and Natural Resources to prepare a management plan, drafted in 1977. In January 1982, the University of Hawaiʻi Board of Regents approved a plan to support the development of scientific facilities at the site
27.
Hawaii
–
Hawaii is the 50th and most recent state to have joined the United States of America, having received statehood on August 21,1959. Hawaii is the only U. S. state located in Oceania and it is the northernmost island group in Polynesia, occupying most of an archipelago in the central Pacific Ocean. Hawaii is the only U. S. state not located in the Americas, the state encompasses nearly the entire volcanic Hawaiian archipelago, which comprises hundreds of islands spread over 1,500 miles. At the southeastern end of the archipelago, the eight main islands are—in order from northwest to southeast, Niʻihau, Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Kahoʻolawe, Maui, and the Island of Hawaiʻi. The last is the largest island in the group, it is called the Big Island or Hawaiʻi Island to avoid confusion with the state or archipelago. The archipelago is physiographically and ethnologically part of the Polynesian subregion of Oceania, Hawaii has over a million permanent residents, along with many visitors and U. S. military personnel. Its capital is Honolulu on the island of Oʻahu, Hawaii is the 8th-smallest and the 11th-least populous, but the 13th-most densely populated of the fifty U. S. states. It is the state with an Asian plurality. The states coastline is about 750 miles long, the fourth longest in the U. S. after the coastlines of Alaska, Florida, the state of Hawaii derives its name from the name of its largest island, Hawaiʻi. A common Hawaiian explanation of the name of Hawaiʻi is that was named for Hawaiʻiloa and he is said to have discovered the islands when they were first settled. The Hawaiian language word Hawaiʻi is very similar to Proto-Polynesian *Sawaiki, cognates of Hawaiʻi are found in other Polynesian languages, including Māori, Rarotongan and Samoan. According to linguists Pukui and Elbert, lsewhere in Polynesia, Hawaiʻi or a cognate is the name of the underworld or of the home, but in Hawaii. A somewhat divisive political issue arose in 1978 when the Constitution of the State of Hawaii added Hawaiian as an official state language. The title of the constitution is The Constitution of the State of Hawaii. Article XV, Section 1 of the Constitution uses The State of Hawaii, diacritics were not used because the document, drafted in 1949, predates the use of the okina and the kahakō in modern Hawaiian orthography. The exact spelling of the name in the Hawaiian language is Hawaiʻi. In the Hawaii Admission Act that granted Hawaiian statehood, the government recognized Hawaii as the official state name. Official government publications, department and office titles, and the Seal of Hawaii use the spelling with no symbols for glottal stops or vowel length
28.
Marc William Buie
–
In 2008 Marc Buie moved to Boulder, Colorado to work at the Southwest Research Institute in the Space Science Department. Buie grew up in Baton Rouge, Louisiana and received his B. Sc. in physics from Louisiana State University in 1980 and he then switched fields and earned his Ph. D. in Planetary Science from the University of Arizona in 1984. Dr. Buie was a fellow at the University of Hawaii from 1985 to 1988. Dr. Buie joined the staff at Lowell Observatory in 1991, since 1983 Pluto has been a central theme of research done by Buie, who has published over 85 scientific papers and journal articles. His first result was to prove that the methane visible on Pluto was on its surface and he is also one of the co-discoverers of Plutos moons, Nix and Hydra. He has been working with the Deep Ecliptic Survey team who have been responsible for the discovery of over 1,000 of these distant objects, beyond the work of just locating these objects, he additionally seeks to develop a better picture of the structure and nature of them. A spin-off project from this endeavor is his participation in the project to locate a Kuiper belt object that is within the range of the New Horizons mission once it passes by Pluto. In an effort closer to home, he also studies near-Earth asteroids to try to more about these potentially dangerous solar system neighbors. Most of these research efforts involve the use of Lowell Observatory telescopes in addition to use of the Hubble. The inner main-belt asteroid 7553 Buie was named in the honor on 28 July 1999. He is also profiled as part of an article on Pluto in Air & Space Smithsonian magazine, from the desk of Marc W. Buie page from Lowell Portrait of Marc Buie by Dan Coogan
29.
NASA
–
President Dwight D. Eisenhower established NASA in 1958 with a distinctly civilian orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29,1958, disestablishing NASAs predecessor, the new agency became operational on October 1,1958. Since that time, most US space exploration efforts have led by NASA, including the Apollo Moon landing missions, the Skylab space station. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle, the agency is also responsible for the Launch Services Program which provides oversight of launch operations and countdown management for unmanned NASA launches. NASA shares data with various national and international such as from the Greenhouse Gases Observing Satellite. Since 2011, NASA has been criticized for low cost efficiency, from 1946, the National Advisory Committee for Aeronautics had been experimenting with rocket planes such as the supersonic Bell X-1. In the early 1950s, there was challenge to launch a satellite for the International Geophysical Year. An effort for this was the American Project Vanguard, after the Soviet launch of the worlds first artificial satellite on October 4,1957, the attention of the United States turned toward its own fledgling space efforts. This led to an agreement that a new federal agency based on NACA was needed to conduct all non-military activity in space. The Advanced Research Projects Agency was created in February 1958 to develop technology for military application. On July 29,1958, Eisenhower signed the National Aeronautics and Space Act, a NASA seal was approved by President Eisenhower in 1959. Elements of the Army Ballistic Missile Agency and the United States Naval Research Laboratory were incorporated into NASA, earlier research efforts within the US Air Force and many of ARPAs early space programs were also transferred to NASA. In December 1958, NASA gained control of the Jet Propulsion Laboratory, NASA has conducted many manned and unmanned spaceflight programs throughout its history. Some missions include both manned and unmanned aspects, such as the Galileo probe, which was deployed by astronauts in Earth orbit before being sent unmanned to Jupiter, the experimental rocket-powered aircraft programs started by NACA were extended by NASA as support for manned spaceflight. This was followed by a space capsule program, and in turn by a two-man capsule program. This goal was met in 1969 by the Apollo program, however, reduction of the perceived threat and changing political priorities almost immediately caused the termination of most of these plans. NASA turned its attention to an Apollo-derived temporary space laboratory, to date, NASA has launched a total of 166 manned space missions on rockets, and thirteen X-15 rocket flights above the USAF definition of spaceflight altitude,260,000 feet. The X-15 was an NACA experimental rocket-powered hypersonic research aircraft, developed in conjunction with the US Air Force, the design featured a slender fuselage with fairings along the side containing fuel and early computerized control systems
30.
Jet Propulsion Laboratory
–
The Jet Propulsion Laboratory is a federally funded research and development center and NASA field center in La Cañada Flintridge, California and Pasadena, California, United States. The JPL is managed by the nearby California Institute of Technology for NASA, the laboratorys primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASAs Deep Space Network and they are also responsible for managing the JPL Small-Body Database, and provides physical data and lists of publications for all known small Solar System bodies. The JPLs Space Flight Operations Facility and Twenty-Five-Foot Space Simulator are designated National Historic Landmarks, JPL traces its beginnings to 1936 in the Guggenheim Aeronautical Laboratory at the California Institute of Technology when the first set of rocket experiments were carried out in the Arroyo Seco. Malinas thesis advisor was engineer/aerodynamicist Theodore von Kármán, who arranged for U. S. Army financial support for this GALCIT Rocket Project in 1939. In 1941, Malina, Parsons, Forman, Martin Summerfield, in 1943, von Kármán, Malina, Parsons, and Forman established the Aerojet Corporation to manufacture JATO motors. The project took on the name Jet Propulsion Laboratory in November 1943, during JPLs Army years, the laboratory developed two deployed weapon systems, the MGM-5 Corporal and MGM-29 Sergeant intermediate range ballistic missiles. These missiles were the first US ballistic missiles developed at JPL and it also developed a number of other weapons system prototypes, such as the Loki anti-aircraft missile system, and the forerunner of the Aerobee sounding rocket. At various times, it carried out testing at the White Sands Proving Ground, Edwards Air Force Base. A lunar lander was developed in 1938-39 which influenced design of the Apollo Lunar Module in the 1960s. The team lost that proposal to Project Vanguard, and instead embarked on a project to demonstrate ablative re-entry technology using a Jupiter-C rocket. They carried out three successful flights in 1956 and 1957. Using a spare Juno I, the two organizations then launched the United States first satellite, Explorer 1, on February 1,1958, JPL was transferred to NASA in December 1958, becoming the agencys primary planetary spacecraft center. JPL engineers designed and operated Ranger and Surveyor missions to the Moon that prepared the way for Apollo, JPL also led the way in interplanetary exploration with the Mariner missions to Venus, Mars, and Mercury. In 1998, JPL opened the Near-Earth Object Program Office for NASA, as of 2013, it has found 95% of asteroids that are a kilometer or more in diameter that cross Earths orbit. JPL was early to employ women mathematicians, in the 1940s and 1950s, using mechanical calculators, women in an all-female computations group performed trajectory calculations. In 1961, JPL hired Dana Ulery as their first woman engineer to work alongside male engineers as part of the Ranger and Mariner mission tracking teams, when founded, JPLs site was a rocky flood-plain just outside the city limits of Pasadena. Almost all of the 177 acres of the U. S, the city of La Cañada Flintridge, California was incorporated in 1976, well after JPL attained international recognition with a Pasadena address