1.
Lincoln Near-Earth Asteroid Research
–
LINEAR was responsible for the majority of asteroid discoveries from 1998 until it was overtaken by the Catalina Sky Survey in 2005. As of 15 September 2011, LINEAR had detected 231,082 new small Solar System bodies, the instruments used by the LINEAR program are located at Lincoln Laboratorys Experimental Test Site on the White Sands Missile Range near Socorro, New Mexico. In the late 1970s, the new Lincoln Laboratorys Experimental Test Site facility was built at White Sands Missile Range, the projects prototype used low-light video cameras. In 1994 a new proposal was made for automated detection of asteroids, the wide-field Air Force telescopes were designed for optical observation of Earth-orbiting spacecraft. Initial field tests used a 1024 ×1024 pixel charge-coupled device detector, while this CCD detector filled only about one fifth of the telescopes field of view, four near-earth objects were discovered. A1960 ×2560 pixel CCD which covered the telescopes two-square degree field of view was then installed, the first LINEAR telescope became fully operational in March 1998. Beginning in October 1999, a second 1.0 m telescope was added to the search effort, in 2002, a 0.5 m telescope equipped with the original CCD was brought on-line to provide follow-up observations for the discoveries made by the two search telescopes. This allowed about 20% more of the sky to be searched each night, data recorded by the telescopes is sent to a Lincoln Laboratory facility at Hanscom Air Force Base in Lexington, Massachusetts for processing. Detections are then forwarded to the Minor Planet Center, other objects discovered include 1999 AN10,2002 TD66, and 2004 FH. Stokes, Frank Shelly, Herbert E. M. Viggh, Matthew S. Blythe, and Joseph S. Stuart Near Earth Object program – discovery statistics, Jet Propulsion Laboratory
2.
MIT Lincoln Laboratory
–
Research and development activities focus on long-term technology development as well as rapid system prototyping and demonstration. These efforts are aligned within key mission areas, the laboratory works with industry to transition new concepts and technology for system development and deployment. The laboratory also maintains several field sites around the world, the laboratorys inception was prompted by the Air Defense Systems Engineering Committees 1950 report that concluded the United States was unprepared for the threat of an air attack. S. Air Force suggested that MIT could provide the research needed to develop an air defense that could detect, identify, james R. Killian, then president of MIT, was not eager for MIT to become involved in air defense. He asked the Air Force if MIT could first conduct a study to evaluate the need for a new laboratory, killians proposal was approved, and a study named Project Charles was carried out between February and August 1951. The Semi-Automatic Ground Environment Air Defense System is the beginning of MIT Lincoln Laboratorys history of developing innovative technology, the system was conceived to meet the challenge of providing air defense to the continental United States. SAGE was designed to collect, analyze, and finally relay data from a multitude of radars, the key to this system was a computer that could perform reliably in real time. MITs Whirlwind computer, built in the 1940s, looked to be a candidate for the system. However, the Whirlwind was not reliable or fast enough for the processing needed for analyzing data coming in from dozens of, perhaps even 100, the magnetic core memory revolutionized computing. Computers became machines that were not just large and fast calculators, industry followed this development closely, adopting the magnetic core memory that expanded the capabilities of computers. Lincoln Laboratory quickly established a reputation for pioneering advanced electronics in air defense systems, many of the technical developments that later evolved into improved systems for the airborne detection and tracking of aircraft and ground vehicles have formed the basis for current research. Lincoln Laboratory conducts research and development pertinent to national security on behalf of the services, the Office of the Secretary of Defense. Projects focus on the development and prototyping of new technologies and capabilities, program activities extend from fundamental investigations, through simulation and analysis, to design and field testing of prototype systems. Emphasis is placed on transitioning technology to industry, the dissemination of information to the government, academia, and industry is a principal focus of Lincoln Laboratorys technical mission. Wide dissemination of information is achieved through annual technical workshops, seminars. Current news about Laboratory technical milestones is featured on the laboratorys website, MIT Lincoln Laboratory maintains a strong relationship with the MIT campus. Approximately 1700 technical staff members work on research, prototype building, the technical staff come from a broad range of scientific and engineering fields, with electrical engineering, physics, computer science and mathematics being among the most prevalent. Two-thirds of the staff hold advanced degrees, and 60% of those degrees are at the doctoral level
3.
Minor planet
–
A minor planet is an astronomical object in direct orbit around the Sun that is neither a planet nor exclusively classified as a comet. Minor planets can be dwarf planets, asteroids, trojans, centaurs, Kuiper belt objects, as of 2016, the orbits of 709,706 minor planets were archived at the Minor Planet Center,469,275 of which had received permanent numbers. The first minor planet to be discovered was Ceres in 1801, the term minor planet has been used since the 19th century to describe these objects. The term planetoid has also used, especially for larger objects such as those the International Astronomical Union has called dwarf planets since 2006. Historically, the asteroid, minor planet, and planetoid have been more or less synonymous. This terminology has become complicated by the discovery of numerous minor planets beyond the orbit of Jupiter. A Minor planet seen releasing gas may be classified as a comet. Before 2006, the IAU had officially used the term minor planet, during its 2006 meeting, the IAU reclassified minor planets and comets into dwarf planets and small Solar System bodies. Objects are called dwarf planets if their self-gravity is sufficient to achieve hydrostatic equilibrium, all other minor planets and comets are called small Solar System bodies. The IAU stated that the minor planet may still be used. However, for purposes of numbering and naming, the distinction between minor planet and comet is still used. Hundreds of thousands of planets have been discovered within the Solar System. The Minor Planet Center has documented over 167 million observations and 729,626 minor planets, of these,20,570 have official names. As of March 2017, the lowest-numbered unnamed minor planet is 1974 FV1, as of March 2017, the highest-numbered named minor planet is 458063 Gustavomuler. There are various broad minor-planet populations, Asteroids, traditionally, most have been bodies in the inner Solar System. Near-Earth asteroids, those whose orbits take them inside the orbit of Mars. Further subclassification of these, based on distance, is used, Apohele asteroids orbit inside of Earths perihelion distance. Aten asteroids, those that have semi-major axes of less than Earths, Apollo asteroids are those asteroids with a semimajor axis greater than Earths, while having a perihelion distance of 1.017 AU or less. Like Aten asteroids, Apollo asteroids are Earth-crossers, amor asteroids are those near-Earth asteroids that approach the orbit of Earth from beyond, but do not cross it
4.
Near-Earth object
–
A near-Earth object is any small Solar System body whose orbit brings it into proximity with Earth. By definition, a solar system body is a NEO if its closest approach to the Sun is less than 1.3 astronomical unit and it is now widely accepted that collisions in the past have had a significant role in shaping the geological and biological history of the Earth. NEOs have become of increased interest since the 1980s because of increased awareness of the potential danger some of the asteroids or comets pose, and mitigations are being researched. In January 2016, NASA announced the Planetary Defense Coordination Office to track NEOs larger than 30 to 50 meters in diameter and coordinate an effective threat response, NEAs have orbits that lie partly between 0.983 and 1.3 AU away from the Sun. When a NEA is detected it is submitted to the IAUs Minor Planet Center for cataloging, some NEAs orbits intersect that of Earths so they pose a collision danger. The United States, European Union, and other nations are currently scanning for NEOs in an effort called Spaceguard. In the United States and since 1998, NASA has a mandate to catalogue all NEOs that are at least 1 kilometer wide. In 2006, it was estimated that 20% of the objects had not yet been found. In 2011, largely as a result of NEOWISE, it was estimated that 93% of the NEAs larger than 1 km had been found, as of 5 February 2017, there have been 875 NEAs larger than 1 km discovered, of which 157 are potentially hazardous. The inventory is much less complete for smaller objects, which still have potential for scale, though not global. Potentially hazardous objects are defined based on parameters that measure the objects potential to make threatening close approaches to the Earth. Mostly objects with an Earth minimum orbit intersection distance of 0.05 AU or less, objects that cannot approach closer to the Earth than 0.05 AU, or are smaller than about 150 m in diameter, are not considered PHOs. This makes them a target for exploration. As of 2016, three near-Earth objects have been visited by spacecraft, more recently, a typical frame of reference for looking at NEOs has been through the scientific concept of risk. In this frame, the risk that any near-Earth object poses is typically seen through a lens that is a function of both the culture and the technology of human society, NEOs have been understood differently throughout history. Each time an NEO is observed, a different risk was posed and it is not just a matter of scientific knowledge. Such perception of risk is thus a product of religious belief, philosophic principles, scientific understanding, technological capabilities, and even economical resourcefulness.03 E −0.4 megatonnes. For instance, it gives the rate for bolides of 10 megatonnes or more as 1 per thousand years, however, the authors give a rather large uncertainty, due in part to uncertainties in determining the energies of the atmospheric impacts that they used in their determination
5.
Aten asteroid
–
The Aten asteroids are a group of asteroids, whose orbit brings them into proximity with Earth. The group is named after 2062 Aten, the first of its kind, since then, more than 1,000 Atens have been discovered, of which many are classified as potentially hazardous asteroids. For a list of existing articles, see Aten asteroids and List of Aten asteroids, Aten asteroids are defined by having a semi-major axis of less than one astronomical unit, the average distance from the Earth to the Sun. They also have a greater than 0.983 AU. Asteroids orbits can be highly eccentric, an Aten orbit need not be entirely contained within Earths orbit, as nearly all known Aten asteroids have their aphelion greater than 1 AU although their semi-major axis is less than 1 AU. Observation of objects inferior to the Earths orbit is difficult and this difficulty may be the cause of some sampling bias in the apparent preponderance of eccentric Atens, Aten asteroids account for only about 6% of the known near-Earth asteroid population. Many more Apollo-class asteroids are known than Aten-class asteroids, possibly because of the sampling bias, the shortest semi-major axis for any known Aten asteroid is 2008 EY5 at 0.626 AU. A very small possibility of impact remained for 2036, but this was also eliminated, there are also sixteen known Apohele asteroids, traditionally listed as a subclass of Atens, but generally regarded a separate class of their own. Unlike Atens, Apoheles permanently stay within Earths orbit and do not cross it
6.
Potentially hazardous object
–
A potentially hazardous object can be known not to be a threat to Earth for the next 100 years or more, if its orbit is reasonably well determined. Potentially hazardous asteroids with some threat of impacting Earth in the next 100 years are listed on the Sentry Risk Table, as of March 2017 there are 1,786 known potentially hazardous asteroids and only 205 have an observation arc shorter than 30 days. Of the known PHAs,157 are believed to be larger than one kilometer in diameter, a calculated diameter is only a rough estimate, as it is inferred from the objects varying brightness—observed and measured at various times—and the assumed, yet unknown reflectivity of its surface. Most of the discovered PHAs are Apollo asteroids and fewer belong to the group of Aten asteroids, after several astronomical surveys, the number of known PHAs has increased tenfold since the end of the 1990s. These surveys have led to a number of 15,802 discovered near-Earth objects. Most of them are asteroids, with just some 106 near-Earth comets, the Minor Planet Centers website Unusual Minor Planets also publishes detailed statistics for these objects. This is big enough to cause devastation to human settlements unprecedented in human history in the case of a land impact. Such impact events occur on average once per 10,000 years. NEOWISE data estimates that there are 4,700 ±1,500 potentially hazardous asteroids with a greater than 100 meters. As of 2012, an estimated 20 to 30 percent of these objects have been found, Asteroids larger than 35 meters across can pose a threat to a town or city. The diameter of most small asteroids is not well determined and can only be estimated based on their brightness, for this reason NASA and the Jet Propulsion Laboratory use the more practical measure of absolute magnitude. Any asteroid with a magnitude of 22. The NASA near-Earth object program uses an assumed albedo of 0.13 for this purpose, in May 2016, the asteroid size estimates arising from the Wide-field Infrared Survey Explorer and NEOWISE missions have been questioned, but the criticism has yet to undergo peer review. Several astronomical survey projects such as Lincoln Near-Earth Asteroid Research and Catalina Sky Survey continue to search for more PHOs, both professional and amateur astronomers participate in such monitoring. This is a reflection of the character of the Solar System. The two main scales used to categorize the impact hazards of asteroids are the Palermo Technical Impact Hazard Scale, the lowest numbered PHA is 1566 Icarus. The largest known Potentially hazardous asteroid is 1999 JM8 with a diameter of ~7 km, below is listed the largest PHA discovered in a given year. Historical data of the number of discovered PHA since 1999 are displayed in the bar charts—one for the total number
7.
Perihelion and aphelion
–
The perihelion is the point in the orbit of a celestial body where it is nearest to its orbital focus, generally a star. It is the opposite of aphelion, which is the point in the orbit where the body is farthest from its focus. The word perihelion stems from the Ancient Greek words peri, meaning around or surrounding, aphelion derives from the preposition apo, meaning away, off, apart. According to Keplers first law of motion, all planets, comets. Hence, a body has a closest and a farthest point from its parent object, that is, a perihelion. Each extreme is known as an apsis, orbital eccentricity measures the flatness of the orbit. Because of the distance at aphelion, only 93. 55% of the solar radiation from the Sun falls on a given area of land as does at perihelion. However, this fluctuation does not account for the seasons, as it is summer in the northern hemisphere when it is winter in the southern hemisphere and vice versa. Instead, seasons result from the tilt of Earths axis, which is 23.4 degrees away from perpendicular to the plane of Earths orbit around the sun. Winter falls on the hemisphere where sunlight strikes least directly, and summer falls where sunlight strikes most directly, in the northern hemisphere, summer occurs at the same time as aphelion. Despite this, there are larger land masses in the northern hemisphere, consequently, summers are 2.3 °C warmer in the northern hemisphere than in the southern hemisphere under similar conditions. Apsis Ellipse Solstice Dates and times of Earths perihelion and aphelion, 2000–2025 from the United States Naval Observatory
8.
Astronomical unit
–
The astronomical unit is a unit of length, roughly the distance from Earth to the Sun. However, that varies as Earth orbits the Sun, from a maximum to a minimum. Originally conceived as the average of Earths aphelion and perihelion, it is now defined as exactly 149597870700 metres, the astronomical unit is used primarily as a convenient yardstick for measuring distances within the Solar System or around other stars. However, it is also a component in the definition of another unit of astronomical length. A variety of symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A for the astronomical unit, in 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In 2012, the IAU, noting that various symbols are presently in use for the astronomical unit, in the 2014 revision of the SI Brochure, the BIPM used the unit symbol au. In ISO 80000-3, the symbol of the unit is ua. Earths orbit around the Sun is an ellipse, the semi-major axis of this ellipse is defined to be half of the straight line segment that joins the aphelion and perihelion. The centre of the sun lies on this line segment. In addition, it mapped out exactly the largest straight-line distance that Earth traverses over the course of a year, knowing Earths shift and a stars shift enabled the stars distance to be calculated. But all measurements are subject to some degree of error or uncertainty, improvements in precision have always been a key to improving astronomical understanding. Improving measurements were continually checked and cross-checked by means of our understanding of the laws of celestial mechanics, the expected positions and distances of objects at an established time are calculated from these laws, and assembled into a collection of data called an ephemeris. NASAs Jet Propulsion Laboratory provides one of several ephemeris computation services, in 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition. Equivalently, by definition, one AU is the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass. As with all measurements, these rely on measuring the time taken for photons to be reflected from an object. However, for precision the calculations require adjustment for such as the motions of the probe. In addition, the measurement of the time itself must be translated to a scale that accounts for relativistic time dilation
9.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction
10.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit
11.
Mean anomaly
–
In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. Define T as the time required for a body to complete one orbit. In time T, the radius vector sweeps out 2π radians or 360°. The average rate of sweep, n, is then n =2 π T or n =360 ∘ T, define τ as the time at which the body is at the pericenter. From the above definitions, a new quantity, M, the mean anomaly can be defined M = n, because the rate of increase, n, is a constant average, the mean anomaly increases uniformly from 0 to 2π radians or 0° to 360° during each orbit. It is equal to 0 when the body is at the pericenter, π radians at the apocenter, if the mean anomaly is known at any given instant, it can be calculated at any later instant by simply adding n δt where δt represents the time difference. Mean anomaly does not measure an angle between any physical objects and it is simply a convenient uniform measure of how far around its orbit a body has progressed since pericenter. The mean anomaly is one of three parameters that define a position along an orbit, the other two being the eccentric anomaly and the true anomaly. Define l as the longitude, the angular distance of the body from the same reference direction. Thus mean anomaly is also M = l − ϖ, mean angular motion can also be expressed, n = μ a 3, where μ is a gravitational parameter which varies with the masses of the objects, and a is the semi-major axis of the orbit. Mean anomaly can then be expanded, M = μ a 3, and here mean anomaly represents uniform angular motion on a circle of radius a
12.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
13.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky
14.
Longitude of the ascending node
–
The longitude of the ascending node is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a direction, called the origin of longitude, to the direction of the ascending node. The ascending node is the point where the orbit of the passes through the plane of reference. Commonly used reference planes and origins of longitude include, For a geocentric orbit, Earths equatorial plane as the plane. In this case, the longitude is called the right ascension of the ascending node. The angle is measured eastwards from the First Point of Aries to the node, for a heliocentric orbit, the ecliptic as the reference plane, and the First Point of Aries as the origin of longitude. The angle is measured counterclockwise from the First Point of Aries to the node, the angle is measured eastwards from north to the node. pp.40,72,137, chap. In the case of a star known only from visual observations, it is not possible to tell which node is ascending. In this case the orbital parameter which is recorded is the longitude of the node, Ω, here, n=<nx, ny, nz> is a vector pointing towards the ascending node. The reference plane is assumed to be the xy-plane, and the origin of longitude is taken to be the positive x-axis, K is the unit vector, which is the normal vector to the xy reference plane. For non-inclined orbits, Ω is undefined, for computation it is then, by convention, set equal to zero, that is, the ascending node is placed in the reference direction, which is equivalent to letting n point towards the positive x-axis. Kepler orbits Equinox Orbital node perturbation of the plane can cause revolution of the ascending node
15.
Argument of periapsis
–
The argument of periapsis, symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the ascending node to its periapsis. For specific types of orbits, words such as perihelion, perigee, periastron, an argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the body will reach periapsis at its northmost distance from the plane of reference. Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis, however, especially in discussions of binary stars and exoplanets, the terms longitude of periapsis or longitude of periastron are often used synonymously with argument of periapsis. In the case of equatorial orbits, the argument is strictly undefined, where, ex and ey are the x- and y-components of the eccentricity vector e. In the case of circular orbits it is assumed that the periapsis is placed at the ascending node. Kepler orbit Orbital mechanics Orbital node
16.
Minimum orbit intersection distance
–
Minimum orbit intersection distance is a measure used in astronomy to assess potential close approaches and collision risks between astronomical objects. It is defined as the distance between the closest points of the orbits of two bodies. Of greatest interest is the risk of a collision with Earth, Earth MOID is often listed on comet and asteroid databases such as the JPL Small-Body Database. MOID values are defined with respect to other bodies as well, Jupiter MOID, Venus MOID. An object is classified as a hazardous object – that is, posing a possible risk to Earth – if, among other conditions. A low MOID does not mean that a collision is inevitable as the planets frequently perturb the orbit of small bodies. It is also necessary that the two bodies reach that point in their orbits at the time before the smaller body is perturbed into a different orbit with a different MOID value. Two Objects gravitationally locked in orbital resonance may never approach one another, numerical integrations become increasingly divergent as trajectories are projected further forward in time, especially beyond times where the smaller body is repeatedly perturbed by other planets. MOID has the convenience that it is obtained directly from the elements of the body. The only object that has ever been rated at 4 on the Torino Scale and this is not the smallest Earth MOID in the catalogues, many bodies with a small Earth MOID are not classed as PHOs because the objects are less than roughly 140 meters in diameter. Earth MOID values are more practical for asteroids less than 140 meters in diameter as those asteroids are very dim. It is even smaller at the more precise JPL Small Body Database
17.
Lunar distance (astronomy)
–
Lunar distance is as a unit of measure in astronomy. It is the distance from the center of Earth to the center of the Moon. More technically, it is the mean semi-major axis of the lunar orbit. It may also refer to the distance between the centers of the Earth and the Moon, or less commonly, the instantaneous Earth-Moon distance. The lunar distance is approximately a quarter of a million miles, Lunar distance is also called Earth-Moon distance, Earth–Moon characteristic distance, or distance to the Moon, and commonly indicated with LD or Δ ⊕ L. The mean semi-major axis has a value of 384,402 km, the time-averaged distance between Earth and Moon centers is 385,000.6 km. The actual distance varies over the course of the orbit of the Moon, from 356,500 km at the perigee to 406,700 km at apogee, Lunar distance is commonly used to express the distance to near-Earth object encounters. The measurement is useful in characterizing the lunar radius, the mass of the Sun. Millimeter-precision measurements of the distance are made by measuring the time taken for light to travel between LIDAR stations on the Earth and retroreflectors placed on the Moon. The Moon is spiraling away from the Earth at a rate of 3.8 cm per year. By coincidence, the diameter of corner cubes in retroreflectors on the Moon is also 3.8 cm, the instantaneous lunar distance is constantly changing. In fact the distance between the Moon and Earth can change by as much as 75 m/s, or more than 1,000 kilometers in just 6 hours. There are other effects that influence the lunar distance. Some factors are described in this section, the distance to the Moon can be measured to an accuracy of 2 mm over a 1-hour sampling period, which results in an overall uncertainty of 2–3 cm for the average distance. However, due to its orbit with varying eccentricity, the instantaneous distance varies with monthly periodicity. Furthermore, the distance is perturbed by the effects of various astronomical bodies - most significantly the Sun. Other forces responsible for minuscule perturbations are other planets in the system, asteroids, tidal forces. The effect of pressure from the sun contributes an amount of ±3.6 mm to the lunar distance
18.
Albedo
–
Albedo is a measure for reflectance or optical brightness. It is dimensionless and measured on a scale from zero to one, surface albedo is defined as the ratio of radiation reflected to the radiation incident on a surface. The proportion reflected is not only determined by properties of the surface itself and these factors vary with atmospheric composition, geographic location and time. While bi-hemispherical reflectance is calculated for an angle of incidence. The temporal resolution may range from seconds to daily, seasonal or annual averages, unless given for a specific wavelength, albedo refers to the entire spectrum of solar radiation. Due to measurement constraints, it is given for the spectrum in which most solar energy reaches the surface. This spectrum includes visible light, which explains why surfaces with a low albedo appear dark, albedo is an important concept in climatology, astronomy, and environmental management. The term albedo was introduced into optics by Johann Heinrich Lambert in his 1760 work Photometria, any albedo in visible light falls within a range of about 0.9 for fresh snow to about 0.04 for charcoal, one of the darkest substances. Deeply shadowed cavities can achieve an effective albedo approaching the zero of a black body, when seen from a distance, the ocean surface has a low albedo, as do most forests, whereas desert areas have some of the highest albedos among landforms. Most land areas are in a range of 0.1 to 0.4. The average albedo of Earth is about 0.3 and this is far higher than for the ocean primarily because of the contribution of clouds. Earths surface albedo is regularly estimated via Earth observation satellite sensors such as NASAs MODIS instruments on board the Terra, thereby, the BRDF allows to translate observations of reflectance into albedo. Earths average surface temperature due to its albedo and the effect is currently about 15 °C. If Earth were frozen entirely, the temperature of the planet would drop below −40 °C. If only the land masses became covered by glaciers, the mean temperature of the planet would drop to about 0 °C. In contrast, if the entire Earth was covered by water — a so-called aquaplanet — the average temperature on the planet would rise to almost 27 °C, hence, the actual albedo α can then be given as, α = α ¯ + D α ¯ ¯. Directional-hemispherical reflectance is sometimes referred to as black-sky albedo and bi-hemispherical reflectance as white-sky albedo and these terms are important because they allow the albedo to be calculated for any given illumination conditions from a knowledge of the intrinsic properties of the surface. The albedos of planets, satellites and asteroids can be used to infer much about their properties, the study of albedos, their dependence on wavelength, lighting angle, and variation in time comprises a major part of the astronomical field of photometry
19.
Hour
–
An hour is a unit of time conventionally reckoned as 1⁄24 of a day and scientifically reckoned as 3, 599–3,601 seconds, depending on conditions. The seasonal, temporal, or unequal hour was established in the ancient Near East as 1⁄12 of the night or daytime, such hours varied by season, latitude, and weather. It was subsequently divided into 60 minutes, each of 60 seconds, the modern English word hour is a development of the Anglo-Norman houre and Middle English ure, first attested in the 13th century. It displaced the Old English tide and stound, the Anglo-Norman term was a borrowing of Old French ure, a variant of ore, which derived from Latin hōra and Greek hṓrā. Like Old English tīd and stund, hṓrā was originally a word for any span of time, including seasons. Its Proto-Indo-European root has been reconstructed as *yeh₁-, making hour distantly cognate with year, the time of day is typically expressed in English in terms of hours. Whole hours on a 12-hour clock are expressed using the contracted phrase oclock, Hours on a 24-hour clock are expressed as hundred or hundred hours. Fifteen and thirty minutes past the hour is expressed as a quarter past or after and half past, respectively, fifteen minutes before the hour may be expressed as a quarter to, of, till, or before the hour. Sumerian and Babylonian hours divided the day and night into 24 equal hours, the ancient Egyptians began dividing the night into wnwt at some time before the compilation of the Dynasty V Pyramid Texts in the 24th century BC. By 2150 BC, diagrams of stars inside Egyptian coffin lids—variously known as diagonal calendars or star clocks—attest that there were exactly 12 of these. The coffin diagrams show that the Egyptians took note of the risings of 36 stars or constellations. Each night, the rising of eleven of these decans were noted, the original decans used by the Egyptians would have fallen noticeably out of their proper places over a span of several centuries. By the time of Amenhotep III, the priests at Karnak were using water clocks to determine the hours and these were filled to the brim at sunset and the hour determined by comparing the water level against one of its twelve gauges, one for each month of the year. During the New Kingdom, another system of decans was used, the later division of the day into 12 hours was accomplished by sundials marked with ten equal divisions. The morning and evening periods when the failed to note time were observed as the first and last hours. The Egyptian hours were closely connected both with the priesthood of the gods and with their divine services, by the New Kingdom, each hour was conceived as a specific region of the sky or underworld through which Ras solar bark travelled. Protective deities were assigned to each and were used as the names of the hours, as the protectors and resurrectors of the sun, the goddesses of the night hours were considered to hold power over all lifespans and thus became part of Egyptian funerary rituals. The Egyptian for astronomer, used as a synonym for priest, was wnwty, the earliest forms of wnwt include one or three stars, with the later solar hours including the determinative hieroglyph for sun
20.
S-type asteroid
–
S-type asteroids, or silicaceous asteroids, are of a stony composition, hence the name. Approximately 17% of asteroids are of type, making it the second most common after the C-type. S-types are moderately bright and consist mainly of iron- and magnesium-silicates and they are dominant in the inner asteroid belt within 2.2 AU, common in the central belt within about 3 AU, but become rare farther out. The largest is 15 Eunomia, with the next largest members by diameter being 3 Juno,29 Amphitrite,532 Herculina and 7 Iris. Their spectrum has a steep slope at wavelengths shorter than 0.7 µm. The 1 µm absorption is indicative of the presence of silicates, often there is also a broad but shallow absorption feature centered near 0.63 µm. The composition of asteroids is similar to a variety of stony meteorites which share similar spectral characteristics. This whole S assemblage of asteroids is spectrally quite distinct from the carbonaceous C-group, Asteroid spectral types L-type asteroid K-type asteroid X-type asteroid Bus, S. J. Binzel, R. P. Phase II of the Small Main-belt Asteroid Spectroscopy Survey, A feature-based taxonomy
21.
Asteroid
–
Asteroids are minor planets, especially those of the inner Solar System. The larger ones have also been called planetoids and these terms have historically been applied to any astronomical object orbiting the Sun that did not show the disc of a planet and was not observed to have the characteristics of an active comet. As minor planets in the outer Solar System were discovered and found to have volatile-based surfaces that resemble those of comets, in this article, the term asteroid refers to the minor planets of the inner Solar System including those co-orbital with Jupiter. There are millions of asteroids, many thought to be the remnants of planetesimals. The large majority of known asteroids orbit in the belt between the orbits of Mars and Jupiter, or are co-orbital with Jupiter. However, other orbital families exist with significant populations, including the near-Earth objects, individual asteroids are classified by their characteristic spectra, with the majority falling into three main groups, C-type, M-type, and S-type. These were named after and are identified with carbon-rich, metallic. The size of asteroids varies greatly, some reaching as much as 1000 km across, asteroids are differentiated from comets and meteoroids. In the case of comets, the difference is one of composition, while asteroids are composed of mineral and rock, comets are composed of dust. In addition, asteroids formed closer to the sun, preventing the development of the aforementioned cometary ice, the difference between asteroids and meteoroids is mainly one of size, meteoroids have a diameter of less than one meter, whereas asteroids have a diameter of greater than one meter. Finally, meteoroids can be composed of either cometary or asteroidal materials, only one asteroid,4 Vesta, which has a relatively reflective surface, is normally visible to the naked eye, and this only in very dark skies when it is favorably positioned. Rarely, small asteroids passing close to Earth may be visible to the eye for a short time. As of March 2016, the Minor Planet Center had data on more than 1.3 million objects in the inner and outer Solar System, the United Nations declared June 30 as International Asteroid Day to educate the public about asteroids. The date of International Asteroid Day commemorates the anniversary of the Tunguska asteroid impact over Siberia, the first asteroid to be discovered, Ceres, was found in 1801 by Giuseppe Piazzi, and was originally considered to be a new planet. In the early half of the nineteenth century, the terms asteroid. Asteroid discovery methods have improved over the past two centuries. This task required that hand-drawn sky charts be prepared for all stars in the band down to an agreed-upon limit of faintness. On subsequent nights, the sky would be charted again and any moving object would, hopefully, the expected motion of the missing planet was about 30 seconds of arc per hour, readily discernible by observers
22.
Ecliptic
–
The ecliptic is the apparent path of the Sun on the celestial sphere, and is the basis for the ecliptic coordinate system. It also refers to the plane of this path, which is coplanar with the orbit of Earth around the Sun, the motions as described above are simplifications. Due to the movement of Earth around the Earth–Moon center of mass, due to further perturbations by the other planets of the Solar System, the Earth–Moon barycenter wobbles slightly around a mean position in a complex fashion. The ecliptic is actually the apparent path of the Sun throughout the course of a year, because Earth takes one year to orbit the Sun, the apparent position of the Sun also takes the same length of time to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day, again, this is a simplification, based on a hypothetical Earth that orbits at uniform speed around the Sun. The actual speed with which Earth orbits the Sun varies slightly during the year, for example, the Sun is north of the celestial equator for about 185 days of each year, and south of it for about 180 days. The variation of orbital speed accounts for part of the equation of time, if the equator is projected outward to the celestial sphere, forming the celestial equator, it crosses the ecliptic at two points known as the equinoxes. The Sun, in its apparent motion along the ecliptic, crosses the equator at these points, one from south to north. The crossing from south to north is known as the equinox, also known as the first point of Aries. The crossing from north to south is the equinox or descending node. Likewise, the ecliptic itself is not fixed, the gravitational perturbations of the other bodies of the Solar System cause a much smaller motion of the plane of Earths orbit, and hence of the ecliptic, known as planetary precession. The combined action of two motions is called general precession, and changes the position of the equinoxes by about 50 arc seconds per year. Once again, this is a simplification, periodic motions of the Moon and apparent periodic motions of the Sun cause short-term small-amplitude periodic oscillations of Earths axis, and hence the celestial equator, known as nutation. Obliquity of the ecliptic is the used by astronomers for the inclination of Earths equator with respect to the ecliptic. It is about 23. 4° and is currently decreasing 0.013 degrees per hundred years due to planetary perturbations, the angular value of the obliquity is found by observation of the motions of Earth and other planets over many years. From 1984, the Jet Propulsion Laboratorys DE series of computer-generated ephemerides took over as the ephemeris of the Astronomical Almanac. Obliquity based on DE200, which analyzed observations from 1911 to 1979, was calculated, jPLs fundamental ephemerides have been continually updated. J. Laskar computed an expression to order T10 good to 0″. 04/1000 years over 10,000 years, all of these expressions are for the mean obliquity, that is, without the nutation of the equator included
23.
Earth
–
Earth, otherwise known as the World, or the Globe, is the third planet from the Sun and the only object in the Universe known to harbor life. It is the densest planet in the Solar System and the largest of the four terrestrial planets, according to radiometric dating and other sources of evidence, Earth formed about 4.54 billion years ago. Earths gravity interacts with objects in space, especially the Sun. During one orbit around the Sun, Earth rotates about its axis over 365 times, thus, Earths axis of rotation is tilted, producing seasonal variations on the planets surface. The gravitational interaction between the Earth and Moon causes ocean tides, stabilizes the Earths orientation on its axis, Earths lithosphere is divided into several rigid tectonic plates that migrate across the surface over periods of many millions of years. About 71% of Earths surface is covered with water, mostly by its oceans, the remaining 29% is land consisting of continents and islands that together have many lakes, rivers and other sources of water that contribute to the hydrosphere. The majority of Earths polar regions are covered in ice, including the Antarctic ice sheet, Earths interior remains active with a solid iron inner core, a liquid outer core that generates the Earths magnetic field, and a convecting mantle that drives plate tectonics. Within the first billion years of Earths history, life appeared in the oceans and began to affect the Earths atmosphere and surface, some geological evidence indicates that life may have arisen as much as 4.1 billion years ago. Since then, the combination of Earths distance from the Sun, physical properties, in the history of the Earth, biodiversity has gone through long periods of expansion, occasionally punctuated by mass extinction events. Over 99% of all species that lived on Earth are extinct. Estimates of the number of species on Earth today vary widely, over 7.4 billion humans live on Earth and depend on its biosphere and minerals for their survival. Humans have developed diverse societies and cultures, politically, the world has about 200 sovereign states, the modern English word Earth developed from a wide variety of Middle English forms, which derived from an Old English noun most often spelled eorðe. It has cognates in every Germanic language, and their proto-Germanic root has been reconstructed as *erþō, originally, earth was written in lowercase, and from early Middle English, its definite sense as the globe was expressed as the earth. By early Modern English, many nouns were capitalized, and the became the Earth. More recently, the name is simply given as Earth. House styles now vary, Oxford spelling recognizes the lowercase form as the most common, another convention capitalizes Earth when appearing as a name but writes it in lowercase when preceded by the. It almost always appears in lowercase in colloquial expressions such as what on earth are you doing, the oldest material found in the Solar System is dated to 4. 5672±0.0006 billion years ago. By 4. 54±0.04 Gya the primordial Earth had formed, the formation and evolution of Solar System bodies occurred along with the Sun
24.
Lightcurve
–
In astronomy, a light curve is a graph of light intensity of a celestial object or region, as a function of time. The light is usually in a particular frequency interval or band, the study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Light waves can also be used in botany to determine a plants reactions to light intensities, in astronomy, light curves from a supernova are used to determine what type of supernova it is. If the supernovas light curve has a maximum and slopes down gradually. If the supernovas light curve has a sharp maximum, slopes down quickly. In planetary science, a curve can be used to derive the rotation period of a minor planet, moon. Thus, astronomers measure the amount of produced by an object as a function of time. The time separation of peaks in the curve gives an estimate of the rotational period of the object. The difference between the maximum and minimum brightnesses can be due to the shape of the object, or to bright, for example, an asymmetrical asteroids light curve generally has more pronounced peaks, while a more spherical objects light curve will be flatter. The Asteroid Lightcurve Database of the Collaborative Asteroid Lightcurve Link uses a code to assess the quality of a period solution for minor planet light curves. Its quality code parameter U ranges from 0 to 3, U =0 → Result later proven incorrect U =1 → Result based on fragmentary light curve, U =2 → Result based on less than full coverage. Period may be wrong by 30 percent or ambiguous, U =3 → Secure result within the precision given. A trailing plus sign or minus sign is used to indicate a slightly better or worse quality than the unsigned value. In botany, a light curve shows the response of leaf tissue or algal communities to varying light intensities. Since photosynthesis is limited by ambient carbon dioxide levels, light curves are often repeated at several different constant carbon dioxide concentrations. The AAVSO online light curve generator can plot light curves for thousands of variable stars Lightcurves, An Introduction by NASAs Imagine the Universe
25.
Magnitude (astronomy)
–
In astronomy, magnitude is a logarithmic measure of the brightness of an object, measured in a specific wavelength or passband, usually in the visible or near-infrared spectrum. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus, astronomers use two different definitions of magnitude, apparent magnitude and absolute magnitude. This distance is 10 parsecs for stars and 1 astronomical unit for planets, a minor planets size is typically estimated based on its absolute magnitude in combination with its presumed albedo. The brighter an object appears, the lower the value of its magnitude, with the brightest objects reaching negative values. The Sun has an apparent magnitude of −27, the full moon −13, the brightest planet Venus measures −5, and Sirius, an apparent magnitude can also be assigned to man-made objects in Earth orbit. The brightest satellite flares are ranked at −9, and the International Space Station, ISS, the scale is logarithmic, and defined such that each step of one magnitude changes the brightness by a factor of the fifth root of 100, or approximately 2.512. For example, a magnitude 1 star is exactly a hundred times brighter than a magnitude 6 star, the magnitude system dates back roughly 2000 years to the Greek astronomer Hipparchus who classified stars by their apparent brightness, which they saw as size. To the unaided eye, a prominent star such as Sirius or Arcturus appears larger than a less prominent star such as Mizar. For all the other Stars, which are seen by the Help of a Telescope. Note that the brighter the star, the smaller the magnitude, Bright first magnitude stars are 1st-class stars, the system was a simple delineation of stellar brightness into six distinct groups but made no allowance for the variations in brightness within a group. He concluded that first magnitude stars measured 2 arc minutes in apparent diameter, with second through sixth magnitude stars measuring 1 1⁄2′, 1 1⁄12′, 3⁄4′, 1⁄2′, the development of the telescope showed that these large sizes were illusory—stars appeared much smaller through the telescope. However, early telescopes produced a spurious disk-like image of a star that was larger for brighter stars, early photometric measurements demonstrated that first magnitude stars are about 100 times brighter than sixth magnitude stars. Thus in 1856 Norman Pogson of Oxford proposed that a scale of 5√100 ≈2.512 be adopted between magnitudes, so five magnitude steps corresponded precisely to a factor of 100 in brightness. Every interval of one magnitude equates to a variation in brightness of 5√100 or roughly 2.512 times. Consequently, a first magnitude star is about 2.5 times brighter than a second star,2.52 brighter than a third magnitude star,2.53 brighter than a fourth magnitude star. This is the modern system, which measures the brightness, not the apparent size. Using this logarithmic scale, it is possible for a star to be brighter than “first class”, so Arcturus or Vega are magnitude 0, and Sirius is magnitude −1.46. As mentioned above, the scale appears to work in reverse, the larger the negative value, the brighter
26.
Light curve
–
In astronomy, a light curve is a graph of light intensity of a celestial object or region, as a function of time. The light is usually in a particular frequency interval or band, the study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Light waves can also be used in botany to determine a plants reactions to light intensities, in astronomy, light curves from a supernova are used to determine what type of supernova it is. If the supernovas light curve has a maximum and slopes down gradually. If the supernovas light curve has a sharp maximum, slopes down quickly. In planetary science, a curve can be used to derive the rotation period of a minor planet, moon. Thus, astronomers measure the amount of produced by an object as a function of time. The time separation of peaks in the curve gives an estimate of the rotational period of the object. The difference between the maximum and minimum brightnesses can be due to the shape of the object, or to bright, for example, an asymmetrical asteroids light curve generally has more pronounced peaks, while a more spherical objects light curve will be flatter. The Asteroid Lightcurve Database of the Collaborative Asteroid Lightcurve Link uses a code to assess the quality of a period solution for minor planet light curves. Its quality code parameter U ranges from 0 to 3, U =0 → Result later proven incorrect U =1 → Result based on fragmentary light curve, U =2 → Result based on less than full coverage. Period may be wrong by 30 percent or ambiguous, U =3 → Secure result within the precision given. A trailing plus sign or minus sign is used to indicate a slightly better or worse quality than the unsigned value. In botany, a light curve shows the response of leaf tissue or algal communities to varying light intensities. Since photosynthesis is limited by ambient carbon dioxide levels, light curves are often repeated at several different constant carbon dioxide concentrations. The AAVSO online light curve generator can plot light curves for thousands of variable stars Lightcurves, An Introduction by NASAs Imagine the Universe
27.
Jet Propulsion Laboratory
–
The Jet Propulsion Laboratory is a federally funded research and development center and NASA field center in La Cañada Flintridge, California and Pasadena, California, United States. The JPL is managed by the nearby California Institute of Technology for NASA, the laboratorys primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASAs Deep Space Network and they are also responsible for managing the JPL Small-Body Database, and provides physical data and lists of publications for all known small Solar System bodies. The JPLs Space Flight Operations Facility and Twenty-Five-Foot Space Simulator are designated National Historic Landmarks, JPL traces its beginnings to 1936 in the Guggenheim Aeronautical Laboratory at the California Institute of Technology when the first set of rocket experiments were carried out in the Arroyo Seco. Malinas thesis advisor was engineer/aerodynamicist Theodore von Kármán, who arranged for U. S. Army financial support for this GALCIT Rocket Project in 1939. In 1941, Malina, Parsons, Forman, Martin Summerfield, in 1943, von Kármán, Malina, Parsons, and Forman established the Aerojet Corporation to manufacture JATO motors. The project took on the name Jet Propulsion Laboratory in November 1943, during JPLs Army years, the laboratory developed two deployed weapon systems, the MGM-5 Corporal and MGM-29 Sergeant intermediate range ballistic missiles. These missiles were the first US ballistic missiles developed at JPL and it also developed a number of other weapons system prototypes, such as the Loki anti-aircraft missile system, and the forerunner of the Aerobee sounding rocket. At various times, it carried out testing at the White Sands Proving Ground, Edwards Air Force Base. A lunar lander was developed in 1938-39 which influenced design of the Apollo Lunar Module in the 1960s. The team lost that proposal to Project Vanguard, and instead embarked on a project to demonstrate ablative re-entry technology using a Jupiter-C rocket. They carried out three successful flights in 1956 and 1957. Using a spare Juno I, the two organizations then launched the United States first satellite, Explorer 1, on February 1,1958, JPL was transferred to NASA in December 1958, becoming the agencys primary planetary spacecraft center. JPL engineers designed and operated Ranger and Surveyor missions to the Moon that prepared the way for Apollo, JPL also led the way in interplanetary exploration with the Mariner missions to Venus, Mars, and Mercury. In 1998, JPL opened the Near-Earth Object Program Office for NASA, as of 2013, it has found 95% of asteroids that are a kilometer or more in diameter that cross Earths orbit. JPL was early to employ women mathematicians, in the 1940s and 1950s, using mechanical calculators, women in an all-female computations group performed trajectory calculations. In 1961, JPL hired Dana Ulery as their first woman engineer to work alongside male engineers as part of the Ranger and Mariner mission tracking teams, when founded, JPLs site was a rocky flood-plain just outside the city limits of Pasadena. Almost all of the 177 acres of the U. S, the city of La Cañada Flintridge, California was incorporated in 1976, well after JPL attained international recognition with a Pasadena address
28.
International Standard Serial Number
–
An International Standard Serial Number is an eight-digit serial number used to uniquely identify a serial publication. The ISSN is especially helpful in distinguishing between serials with the same title, ISSN are used in ordering, cataloging, interlibrary loans, and other practices in connection with serial literature. The ISSN system was first drafted as an International Organization for Standardization international standard in 1971, ISO subcommittee TC 46/SC9 is responsible for maintaining the standard. When a serial with the content is published in more than one media type. For example, many serials are published both in print and electronic media, the ISSN system refers to these types as print ISSN and electronic ISSN, respectively. The format of the ISSN is an eight digit code, divided by a hyphen into two four-digit numbers, as an integer number, it can be represented by the first seven digits. The last code digit, which may be 0-9 or an X, is a check digit. Formally, the form of the ISSN code can be expressed as follows, NNNN-NNNC where N is in the set, a digit character. The ISSN of the journal Hearing Research, for example, is 0378-5955, where the final 5 is the check digit, for calculations, an upper case X in the check digit position indicates a check digit of 10. To confirm the check digit, calculate the sum of all eight digits of the ISSN multiplied by its position in the number, the modulus 11 of the sum must be 0. There is an online ISSN checker that can validate an ISSN, ISSN codes are assigned by a network of ISSN National Centres, usually located at national libraries and coordinated by the ISSN International Centre based in Paris. The International Centre is an organization created in 1974 through an agreement between UNESCO and the French government. The International Centre maintains a database of all ISSNs assigned worldwide, at the end of 2016, the ISSN Register contained records for 1,943,572 items. ISSN and ISBN codes are similar in concept, where ISBNs are assigned to individual books, an ISBN might be assigned for particular issues of a serial, in addition to the ISSN code for the serial as a whole. An ISSN, unlike the ISBN code, is an identifier associated with a serial title. For this reason a new ISSN is assigned to a serial each time it undergoes a major title change, separate ISSNs are needed for serials in different media. Thus, the print and electronic versions of a serial need separate ISSNs. Also, a CD-ROM version and a web version of a serial require different ISSNs since two different media are involved, however, the same ISSN can be used for different file formats of the same online serial