Asteroid belt

The asteroid belt is the circumstellar disc in the Solar System located roughly between the orbits of the planets Mars and Jupiter. It is occupied by numerous irregularly shaped bodies called asteroids or minor planets, the asteroid belt is termed the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System such as near-Earth asteroids and trojan asteroids. About half the mass of the belt is contained in the four largest asteroids, Vesta, the total mass of the asteroid belt is approximately 4% that of the Moon, or 22% that of Pluto, and roughly twice that of Plutos moon Charon. Ceres, the belts only dwarf planet, is about 950 km in diameter, whereas Vesta, Pallas. The remaining bodies range down to the size of a dust particle, the asteroid material is so thinly distributed that numerous unmanned spacecraft have traversed it without incident. Nonetheless, collisions between large asteroids do occur, and these can form a family whose members have similar orbital characteristics.

Individual asteroids within the belt are categorized by their spectra. The asteroid belt formed from the solar nebula as a group of planetesimals. Planetesimals are the precursors of the protoplanets. Between Mars and Jupiter, gravitational perturbations from Jupiter imbued the protoplanets with too much energy for them to accrete into a planet. Collisions became too violent, and instead of fusing together, the planetesimals, as a result,99. 9% of the asteroid belts original mass was lost in the first 100 million years of the Solar Systems history. Some fragments eventually found their way into the inner Solar System, Asteroid orbits continue to be appreciably perturbed whenever their period of revolution about the Sun forms an orbital resonance with Jupiter. At these orbital distances, a Kirkwood gap occurs as they are swept into other orbits. Classes of small Solar System bodies in other regions are the objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids.

On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on Ceres, the detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding was unexpected because comets, not asteroids, are considered to sprout jets. According to one of the scientists, The lines are becoming more and more blurred between comets and asteroids. This pattern, now known as the Titius–Bode law, predicted the semi-major axes of the six planets of the provided one allowed for a gap between the orbits of Mars and Jupiter

Orbital inclination

Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, Earths inclination is, by definition, zero.

Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet.

An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky

Sun

The Sun is the star at the center of the Solar System. It is a perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. It is by far the most important source of energy for life on Earth. Its diameter is about 109 times that of Earth, and its mass is about 330,000 times that of Earth, accounting for about 99. 86% of the total mass of the Solar System. About three quarters of the Suns mass consists of hydrogen, the rest is mostly helium, with smaller quantities of heavier elements, including oxygen, neon. The Sun is a G-type main-sequence star based on its spectral class and it formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the center, whereas the rest flattened into a disk that became the Solar System. The central mass became so hot and dense that it eventually initiated nuclear fusion in its core and it is thought that almost all stars form by this process.

The Sun is roughly middle-aged, it has not changed dramatically for more than four billion years and it is calculated that the Sun will become sufficiently large enough to engulf the current orbits of Mercury and probably Earth. The enormous effect of the Sun on Earth has been recognized since prehistoric times, the synodic rotation of Earth and its orbit around the Sun are the basis of the solar calendar, which is the predominant calendar in use today. The English proper name Sun developed from Old English sunne and may be related to south, all Germanic terms for the Sun stem from Proto-Germanic *sunnōn. The English weekday name Sunday stems from Old English and is ultimately a result of a Germanic interpretation of Latin dies solis, the Latin name for the Sun, Sol, is not common in general English language use, the adjectival form is the related word solar. The term sol is used by planetary astronomers to refer to the duration of a solar day on another planet. A mean Earth solar day is approximately 24 hours, whereas a mean Martian sol is 24 hours,39 minutes, and 35.244 seconds.

From at least the 4th Dynasty of Ancient Egypt, the Sun was worshipped as the god Ra, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the New Empire period, the Sun became identified with the dung beetle, in the form of the Sun disc Aten, the Sun had a brief resurgence during the Amarna Period when it again became the preeminent, if not only, divinity for the Pharaoh Akhenaton. The Sun is viewed as a goddess in Germanic paganism, Sól/Sunna, in ancient Roman culture, Sunday was the day of the Sun god. It was adopted as the Sabbath day by Christians who did not have a Jewish background, the symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions

Minor planet

A minor planet is an astronomical object in direct orbit around the Sun that is neither a planet nor exclusively classified as a comet. Minor planets can be dwarf planets, trojans, Kuiper belt objects, as of 2016, the orbits of 709,706 minor planets were archived at the Minor Planet Center,469,275 of which had received permanent numbers. The first minor planet to be discovered was Ceres in 1801, the term minor planet has been used since the 19th century to describe these objects. The term planetoid has used, especially for larger objects such as those the International Astronomical Union has called dwarf planets since 2006. Historically, the asteroid, minor planet, and planetoid have been more or less synonymous. This terminology has become complicated by the discovery of numerous minor planets beyond the orbit of Jupiter. A Minor planet seen releasing gas may be classified as a comet. Before 2006, the IAU had officially used the term minor planet, during its 2006 meeting, the IAU reclassified minor planets and comets into dwarf planets and small Solar System bodies.

Objects are called dwarf planets if their self-gravity is sufficient to achieve hydrostatic equilibrium, all other minor planets and comets are called small Solar System bodies. The IAU stated that the minor planet may still be used. However, for purposes of numbering and naming, the distinction between minor planet and comet is still used. Hundreds of thousands of planets have been discovered within the Solar System. The Minor Planet Center has documented over 167 million observations and 729,626 minor planets, of these,20,570 have official names. As of March 2017, the lowest-numbered unnamed minor planet is 1974 FV1, as of March 2017, the highest-numbered named minor planet is 458063 Gustavomuler. There are various broad minor-planet populations, traditionally, most have been bodies in the inner Solar System. Near-Earth asteroids, those whose orbits take them inside the orbit of Mars. Further subclassification of these, based on distance, is used, Apohele asteroids orbit inside of Earths perihelion distance.

Aten asteroids, those that have semi-major axes of less than Earths, Apollo asteroids are those asteroids with a semimajor axis greater than Earths, while having a perihelion distance of 1.017 AU or less. Like Aten asteroids, Apollo asteroids are Earth-crossers, amor asteroids are those near-Earth asteroids that approach the orbit of Earth from beyond, but do not cross it

Orders of magnitude (length)

The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake.

2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres.

13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe

Astronomical unit

The astronomical unit is a unit of length, roughly the distance from Earth to the Sun. However, that varies as Earth orbits the Sun, from a maximum to a minimum. Originally conceived as the average of Earths aphelion and perihelion, it is now defined as exactly 149597870700 metres, the astronomical unit is used primarily as a convenient yardstick for measuring distances within the Solar System or around other stars. However, it is a component in the definition of another unit of astronomical length. A variety of symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A for the astronomical unit, in 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In 2012, the IAU, noting that various symbols are presently in use for the astronomical unit, in the 2014 revision of the SI Brochure, the BIPM used the unit symbol au. In ISO 80000-3, the symbol of the unit is ua.

Earths orbit around the Sun is an ellipse, the semi-major axis of this ellipse is defined to be half of the straight line segment that joins the aphelion and perihelion. The centre of the sun lies on this line segment. In addition, it mapped out exactly the largest straight-line distance that Earth traverses over the course of a year, knowing Earths shift and a stars shift enabled the stars distance to be calculated. But all measurements are subject to some degree of error or uncertainty, improvements in precision have always been a key to improving astronomical understanding. Improving measurements were continually checked and cross-checked by means of our understanding of the laws of celestial mechanics, the expected positions and distances of objects at an established time are calculated from these laws, and assembled into a collection of data called an ephemeris. NASAs Jet Propulsion Laboratory provides one of several ephemeris computation services, in 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition.

Equivalently, by definition, one AU is the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass. As with all measurements, these rely on measuring the time taken for photons to be reflected from an object. However, for precision the calculations require adjustment for such as the motions of the probe. In addition, the measurement of the time itself must be translated to a scale that accounts for relativistic time dilation

Degree (angle)

A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically.

Timocharis, Aristillus and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is called DMS notation.

These subdivisions, called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today

Kelvin

The kelvin is a unit of measure for temperature based upon an absolute scale. It is one of the seven units in the International System of Units and is assigned the unit symbol K. The kelvin is defined as the fraction 1⁄273.16 of the temperature of the triple point of water. In other words, it is defined such that the point of water is exactly 273.16 K. The Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Lord Kelvin, unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or typeset as a degree. The kelvin is the unit of temperature measurement in the physical sciences, but is often used in conjunction with the Celsius degree. The definition implies that absolute zero is equivalent to −273.15 °C, Kelvin calculated that absolute zero was equivalent to −273 °C on the air thermometers of the time. This absolute scale is known today as the Kelvin thermodynamic temperature scale, when spelled out or spoken, the unit is pluralised using the same grammatical rules as for other SI units such as the volt or ohm.

When reference is made to the Kelvin scale, the word kelvin—which is normally a noun—functions adjectivally to modify the noun scale and is capitalized, as with most other SI unit symbols there is a space between the numeric value and the kelvin symbol. Before the 13th CGPM in 1967–1968, the unit kelvin was called a degree and it was distinguished from the other scales with either the adjective suffix Kelvin or with absolute and its symbol was °K. The latter term, which was the official name from 1948 until 1954, was ambiguous since it could be interpreted as referring to the Rankine scale. Before the 13th CGPM, the form was degrees absolute. The 13th CGPM changed the name to simply kelvin. Its measured value was 7002273160280000000♠0.01028 °C with an uncertainty of 60 µK, the use of SI prefixed forms of the degree Celsius to express a temperature interval has not been widely adopted. In 2005 the CIPM embarked on a program to redefine the kelvin using a more experimentally rigorous methodology, the current definition as of 2016 is unsatisfactory for temperatures below 20 K and above 7003130000000000000♠1300 K.

In particular, the committee proposed redefining the kelvin such that Boltzmanns constant takes the exact value 6977138065049999999♠1. 3806505×10−23 J/K, from a scientific point of view, this will link temperature to the rest of SI and result in a stable definition that is independent of any particular substance. From a practical point of view, the redefinition will pass unnoticed, the kelvin is often used in the measure of the colour temperature of light sources. Colour temperature is based upon the principle that a black body radiator emits light whose colour depends on the temperature of the radiator, black bodies with temperatures below about 7003400000000000000♠4000 K appear reddish, whereas those above about 7003750000000000000♠7500 K appear bluish

Mean anomaly

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. Define T as the time required for a body to complete one orbit. In time T, the radius vector sweeps out 2π radians or 360°. The average rate of sweep, n, is n =2 π T or n =360 ∘ T, define τ as the time at which the body is at the pericenter. From the above definitions, a new quantity, M, the mean anomaly can be defined M = n, because the rate of increase, n, is a constant average, the mean anomaly increases uniformly from 0 to 2π radians or 0° to 360° during each orbit. It is equal to 0 when the body is at the pericenter, π radians at the apocenter, if the mean anomaly is known at any given instant, it can be calculated at any instant by simply adding n δt where δt represents the time difference. Mean anomaly does not measure an angle between any physical objects and it is simply a convenient uniform measure of how far around its orbit a body has progressed since pericenter.

The mean anomaly is one of three parameters that define a position along an orbit, the other two being the eccentric anomaly and the true anomaly. Define l as the longitude, the angular distance of the body from the same reference direction. Thus mean anomaly is M = l − ϖ, mean angular motion can be expressed, n = μ a 3, where μ is a gravitational parameter which varies with the masses of the objects, and a is the semi-major axis of the orbit. Mean anomaly can be expanded, M = μ a 3, and here mean anomaly represents uniform angular motion on a circle of radius a

Escape velocity

The escape velocity from Earth is about 11.186 km/s at the surface. More generally, escape velocity is the speed at which the sum of a kinetic energy. With escape velocity in a direction pointing away from the ground of a massive body, once escape velocity is achieved, no further impulse need be applied for it to continue in its escape. When given a speed V greater than the speed v e. In these equations atmospheric friction is not taken into account, escape velocity is only required to send a ballistic object on a trajectory that will allow the object to escape the gravity well of the mass M. The existence of escape velocity is a consequence of conservation of energy, by adding speed to the object it expands the possible places that can be reached until with enough energy they become infinite. For a given gravitational potential energy at a position, the escape velocity is the minimum speed an object without propulsion needs to be able to escape from the gravity. Escape velocity is actually a speed because it does not specify a direction, no matter what the direction of travel is, the simplest way of deriving the formula for escape velocity is to use conservation of energy.

Imagine that a spaceship of mass m is at a distance r from the center of mass of the planet and its initial speed is equal to its escape velocity, v e. At its final state, it will be a distance away from the planet. The same result is obtained by a calculation, in which case the variable r represents the radial coordinate or reduced circumference of the Schwarzschild metric. All speeds and velocities measured with respect to the field, the escape velocity at a point in space is equal to the speed that an object would have if it started at rest from an infinite distance and was pulled by gravity to that point. In common usage, the point is on the surface of a planet or moon. On the surface of the Earth, the velocity is about 11.2 km/s. However, at 9,000 km altitude in space, it is less than 7.1 km/s. The escape velocity is independent of the mass of the escaping object and it does not matter if the mass is 1 kg or 1,000 kg, what differs is the amount of energy required. For an object of mass m the energy required to escape the Earths gravitational field is GMm / r, a related quantity is the specific orbital energy which is essentially the sum of the kinetic and potential energy divided by the mass.

An object has reached escape velocity when the orbital energy is greater or equal to zero