1.
Chinese numerals
–
Chinese numerals are words and characters used to denote numbers in Chinese. Today speakers of Chinese use three written numeral systems, the system of Arabic numerals used worldwide, and two indigenous systems, the more familiar indigenous system is based on Chinese characters that correspond to numerals in the spoken language. These are shared with languages of the Chinese cultural sphere such as Japanese, Korean. The other indigenous system is the Suzhou numerals, or huama, a positional system and these were once used by Chinese mathematicians, and later in Chinese markets, such as those in Hong Kong before the 1990s, but have been gradually supplanted by Arabic numerals. The Chinese character numeral system consists of the Chinese characters used by the Chinese written language to write spoken numerals, similar to spelling-out numbers in English, it is not an independent system per se. Since it reflects spoken language, it not use the positional system as in Arabic numerals. There are characters representing the numbers zero through nine, and other characters representing larger numbers such as tens, hundreds, thousands, there are two sets of characters for Chinese numerals, one for everyday writing and one for use in commercial or financial contexts known as dàxiě. A forger could easily change the everyday characters 三十 to 五千 just by adding a few strokes and that would not be possible when writing using the financial characters 參拾 and 伍仟. They are also referred to as bankers numerals, anti-fraud numerals, for the same reason, rod numerals were never used in commercial records. T denotes Traditional Chinese characters, S denotes Simplified Chinese characters, in the PLA, some numbers will have altered names when used for clearer radio communications. They are,0, renamed 洞 lit, hole 1, renamed 幺 lit. small 2, renamed 两 lit. Double 7, renamed 拐 lit. cane, kidnap, turn 9, hook For numbers larger than 10,000, similarly to the long and short scales in the West, there have been four systems in ancient and modern usage. The original one, with names for all powers of ten up to the 14th, is ascribed to the Yellow Emperor in the 6th century book by Zhen Luan. To avoid problems arising from the ambiguity, the PRC government never uses this character in official documents, the ROC government in Taiwan uses 兆 to mean 1012 in official documents. Numerals beyond 載 zài come from Buddhist texts in Sanskrit, but are found in ancient texts. Some of the words are still being used today. The following are characters used to denote small order of magnitude in Chinese historically, with the introduction of SI units, some of them have been incorporated as SI prefixes, while the rest have fallen into disuse. In the Peoples Republic of China, the translations for the SI prefixes in 1981 were different from those used today, the Republic of China defined 百萬 as the translation for mega
2.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times
3.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
4.
Addition
–
Addition is one of the four basic operations of arithmetic, with the others being subtraction, multiplication and division. The addition of two numbers is the total amount of those quantities combined. For example, in the picture on the right, there is a combination of three apples and two together, making a total of five apples. This observation is equivalent to the mathematical expression 3 +2 =5 i. e.3 add 2 is equal to 5, besides counting fruits, addition can also represent combining other physical objects. In arithmetic, rules for addition involving fractions and negative numbers have been devised amongst others, in algebra, addition is studied more abstractly. It is commutative, meaning that order does not matter, and it is associative, repeated addition of 1 is the same as counting, addition of 0 does not change a number. Addition also obeys predictable rules concerning related operations such as subtraction and multiplication, performing addition is one of the simplest numerical tasks. Addition of very small numbers is accessible to toddlers, the most basic task,1 +1, can be performed by infants as young as five months and even some members of other animal species. In primary education, students are taught to add numbers in the system, starting with single digits. Mechanical aids range from the ancient abacus to the modern computer, Addition is written using the plus sign + between the terms, that is, in infix notation. The result is expressed with an equals sign, for example, 3½ =3 + ½ =3.5. This notation can cause confusion since in most other contexts juxtaposition denotes multiplication instead, the sum of a series of related numbers can be expressed through capital sigma notation, which compactly denotes iteration. For example, ∑ k =15 k 2 =12 +22 +32 +42 +52 =55. The numbers or the objects to be added in addition are collectively referred to as the terms, the addends or the summands. This is to be distinguished from factors, which are multiplied, some authors call the first addend the augend. In fact, during the Renaissance, many authors did not consider the first addend an addend at all, today, due to the commutative property of addition, augend is rarely used, and both terms are generally called addends. All of the above terminology derives from Latin, using the gerundive suffix -nd results in addend, thing to be added. Likewise from augere to increase, one gets augend, thing to be increased, sum and summand derive from the Latin noun summa the highest, the top and associated verb summare
5.
Square root
–
In mathematics, a square root of a number a is a number y such that y2 = a, in other words, a number y whose square is a. For example,4 and −4 are square roots of 16 because 42 =2 =16, every nonnegative real number a has a unique nonnegative square root, called the principal square root, which is denoted by √a, where √ is called the radical sign or radix. For example, the square root of 9 is 3, denoted √9 =3. The term whose root is being considered is known as the radicand, the radicand is the number or expression underneath the radical sign, in this example 9. Every positive number a has two roots, √a, which is positive, and −√a, which is negative. Together, these two roots are denoted ± √a, although the principal square root of a positive number is only one of its two square roots, the designation the square root is often used to refer to the principal square root. For positive a, the square root can also be written in exponent notation. Square roots of numbers can be discussed within the framework of complex numbers. In Ancient India, the knowledge of theoretical and applied aspects of square and square root was at least as old as the Sulba Sutras, a method for finding very good approximations to the square roots of 2 and 3 are given in the Baudhayana Sulba Sutra. Aryabhata in the Aryabhatiya, has given a method for finding the root of numbers having many digits. It was known to the ancient Greeks that square roots of positive numbers that are not perfect squares are always irrational numbers, numbers not expressible as a ratio of two integers. This is the theorem Euclid X,9 almost certainly due to Theaetetus dating back to circa 380 BC, the particular case √2 is assumed to date back earlier to the Pythagoreans and is traditionally attributed to Hippasus. Mahāvīra, a 9th-century Indian mathematician, was the first to state that square roots of negative numbers do not exist, a symbol for square roots, written as an elaborate R, was invented by Regiomontanus. An R was also used for Radix to indicate square roots in Gerolamo Cardanos Ars Magna, according to historian of mathematics D. E. Smith, Aryabhatas method for finding the root was first introduced in Europe by Cataneo in 1546. According to Jeffrey A. Oaks, Arabs used the letter jīm/ĝīm, the letter jīm resembles the present square root shape. Its usage goes as far as the end of the century in the works of the Moroccan mathematician Ibn al-Yasamin. The symbol √ for the root was first used in print in 1525 in Christoph Rudolffs Coss