From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
1,2,4,-Butanetriol molecule
IUPAC name
Other names
Triol 124
3D model (JSmol)
ECHA InfoCard 100.019.385
EC Number 221-323-5
RTECS number EK7176000
Molar mass 106.12 g·mol−1
Density 1.19
Boiling point 190 to 191 °C (374 to 376 °F; 463 to 464 K) 18 torr
GHS pictograms The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word Warning
H315, H319, H335
P261, P264, P271, P280, P302+352, P304+340, P305+351+338, P312, P321, P332+313, P337+313, P362, P403+233, P405, P501
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oilHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroformReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
Flash point 112 °C (234 °F; 385 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
No verify (what is YesYNo ?)
Infobox references

1,2,4-Butanetriol is a clear or slightly yellow, odorless, hygroscopic, flammable, viscous liquid. It is an alcohol with three hydrophilic alcoholic hydroxyl groups. It is similar to glycerol and erythritol, it is chiral, with two possible enantiomers.

1,2,4-Butanetriol is used in the manufacture of butanetriol trinitrate (BTTN), an important military propellant.

1,2,4-Butanetriol is also used as a precursor for two cholesterol-lowering drugs, Crestor and Zetia, which are derived from D-3,4-dihydroxybutanoic acid, by using 3-hydroxy-gamma-butyrolactone as a chiral synthon Niu, W (2003). "Microbial synthesis of the energetic material precursor 1,2,4-butanetriol". Am. Chem. Soc. 125 (43): 12998–12999. doi:10.1021/ja036391+.  "Biosynthetic Pathways". Retrieved 24 November 2010. . It is as one of the monomers for manufacture of some polyesters and as a solvent.

1,2,4-Butanetriol can be prepared synthetically by several different methods such as hydroformylation of glycidol and subsequent reduction of the product, sodium borohydride reduction of esterified malic acid, or catalytic hydrogenation of malic acid.[1] However, of an increasing importance is the biotechnological synthesis using genetically engineered Escherichia coli and Pseudomonas fragi bacteria.[2]


  1. ^ Chemical & Engineering News, May 31, 2004, Volume 82, Number 22, pp. 31-34, "Biomass or Bust" Web version
  2. ^ The State News, Feb. 12, 2004, "Propelling Research" by Meghan Gilbert. = 22196 Web version