1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Infinite series
–
In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a sequence has defined first and last terms. To emphasize that there are a number of terms, a series is often called an infinite series. In order to make the notion of an infinite sum mathematically rigorous, given an infinite sequence, the associated series is the expression obtained by adding all those terms together, a 1 + a 2 + a 3 + ⋯. These can be written compactly as ∑ i =1 ∞ a i, by using the summation symbol ∑. The sequence can be composed of any kind of object for which addition is defined. A series is evaluated by examining the finite sums of the first n terms of a sequence, called the nth partial sum of the sequence, and taking the limit as n approaches infinity. If this limit does not exist, the infinite sum cannot be assigned a value, and, in this case, the series is said to be divergent. On the other hand, if the partial sums tend to a limit when the number of terms increases indefinitely, then the series is said to be convergent, and the limit is called the sum of the series. An example is the series from Zenos dichotomy and its mathematical representation, ∑ n =1 ∞12 n =12 +14 +18 + ⋯. The study of series is a part of mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures, in addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance. For any sequence of numbers, real numbers, complex numbers, functions thereof. By definition the series ∑ n =0 ∞ a n converges to a limit L if and this definition is usually written as L = ∑ n =0 ∞ a n ⇔ L = lim k → ∞ s k. When the index set is the natural numbers I = N, a series indexed on the natural numbers is an ordered formal sum and so we rewrite ∑ n ∈ N as ∑ n =0 ∞ in order to emphasize the ordering induced by the natural numbers. Thus, we obtain the common notation for a series indexed by the natural numbers ∑ n =0 ∞ a n = a 0 + a 1 + a 2 + ⋯. When the semigroup G is also a space, then the series ∑ n =0 ∞ a n converges to an element L ∈ G if. This definition is usually written as L = ∑ n =0 ∞ a n ⇔ L = lim k → ∞ s k, a series ∑an is said to converge or to be convergent when the sequence SN of partial sums has a finite limit

3.
Geometric series
–
In mathematics, a geometric series is a series with a constant ratio between successive terms. For example, the series 12 +14 +18 +116 + ⋯ is geometric, Geometric series are among the simplest examples of infinite series with finite sums, although not all of them have this property. Historically, geometric series played an important role in the development of calculus. Geometric series are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queueing theory, the terms of a geometric series form a geometric progression, meaning that the ratio of successive terms in the series is constant. This relationship allows for the representation of a series using only two terms, r and a. The term r is the ratio, and a is the first term of the series. In the case above, where r is one half, the series has the sum one, if r is greater than one or less than minus one the terms of the series become larger and larger in magnitude. The sum of the terms also gets larger and larger, if r is equal to one, all of the terms of the series are the same. If r is one the terms take two values alternately. The sum of the oscillates between two values. This is a different type of divergence and again the series has no sum, see for example Grandis series,1 −1 +1 −1 + ···. The sum can be computed using the self-similarity of the series, consider the sum of the following geometric series, s =1 +23 +49 +827 + ⋯. This series has common ratio 2/3, if we multiply through by this common ratio, then the initial 1 becomes a 2/3, the 2/3 becomes a 4/9, and so on,23 s =23 +49 +827 +1681 + ⋯. This new series is the same as the original, except that the first term is missing, subtracting the new series s from the original series s cancels every term in the original but the first, s −23 s =1, so s =3. A similar technique can be used to evaluate any self-similar expression, as n goes to infinity, the absolute value of r must be less than one for the series to converge. When a =1, this can be simplified to 1 + r + r 2 + r 3 + ⋯ =11 − r, the formula also holds for complex r, with the corresponding restriction, the modulus of r is strictly less than one. Since = 1−rn+1 and rn+1 →0 for | r | <1, convergence of geometric series can also be demonstrated by rewriting the series as an equivalent telescoping series. Consider the function, g = r K1 − r

4.
Power of two
–
In mathematics, a power of two means a number of the form 2n where n is an integer, i. e. the result of exponentiation with number two as the base and integer n as the exponent. In a context where only integers are considered, n is restricted to values, so we have 1,2. Because two is the base of the numeral system, powers of two are common in computer science. Written in binary, a power of two always has the form 100…000 or 0. 00…001, just like a power of ten in the decimal system, a word, interpreted as an unsigned integer, can represent values from 0 to 2n −1 inclusively. Corresponding signed integer values can be positive, negative and zero, either way, one less than a power of two is often the upper bound of an integer in binary computers. As a consequence, numbers of this show up frequently in computer software. For example, in the original Legend of Zelda the main character was limited to carrying 255 rupees at any time. Powers of two are used to measure computer memory. A byte is now considered eight bits (an octet, resulting in the possibility of 256 values, the prefix kilo, in conjunction with byte, may be, and has traditionally been, used, to mean 1,024. However, in general, the term kilo has been used in the International System of Units to mean 1,000, binary prefixes have been standardized, such as kibi meaning 1,024. Nearly all processor registers have sizes that are powers of two,32 or 64 being most common, powers of two occur in a range of other places as well. For many disk drives, at least one of the size, number of sectors per track. The logical block size is almost always a power of two. Numbers that are not powers of two occur in a number of situations, such as video resolutions, but they are often the sum or product of two or three powers of two, or powers of two minus one. For example,640 =512 +128 =128 ×5, put another way, they have fairly regular bit patterns. A prime number that is one less than a power of two is called a Mersenne prime, for example, the prime number 31 is a Mersenne prime because it is 1 less than 32. Similarly, a number that is one more than a positive power of two is called a Fermat prime—the exponent itself is a power of two. A fraction that has a power of two as its denominator is called a dyadic rational, the numbers that can be represented as sums of consecutive positive integers are called polite numbers, they are exactly the numbers that are not powers of two

5.
Hackenbush
–
Hackenbush is a two-player game invented by mathematician John Horton Conway. It may be played on any configuration of colored line segments connected to one another by their endpoints, any number of segments may meet at a point and thus there may be multiple paths to ground. On his turn, a player cuts any line segment of his choice, every line segment no longer connected to the ground by any path falls. According to the normal play convention of combinatorial game theory, the first player who is unable to move loses, Hackenbush boards can consist of finitely many or infinitely many line segments. Even on an infinite board satisfying this condition, it may or may not be possible for the game to continue forever and this is achieved in one of two ways, Blue-Red Hackenbush, Each line segment is colored either red or blue. One player is allowed to cut blue line segments, while the other player is only allowed to cut red line segments. Blue-Red-Green Hackenbush, Each line segment is colored red, blue, the rules are the same as for Blue-Red Hackenbush, with the additional stipulation that green line segments can be cut by either player. Blue-Red Hackenbush is merely a case of Blue-Red-Green Hackenbush, but it is worth noting separately. This is because Blue-Red Hackenbush is a so-called cold game, which means, essentially, Blue-Red-Green Hackenbush allows for the construction of additional games whose values are not real numbers, such as star and all other nimbers. Further analysis of the game can be made using graph theory by considering the board as a collection of vertices and edges and examining the paths to each vertex that lies on the ground. Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, Winning Ways for your Mathematical Plays, 2nd edition, John H. Conway, On Numbers and Games, 2nd edition, A K Peters,2000. Hackenstrings, and 0.999. vs.1 Hackenbush on Pencil and Paper Games

6.
Surreal number
–
The surreals share many properties with the reals, including the usual arithmetic operations, as such, they form an ordered field. The surreals also contain all transfinite ordinal numbers, the arithmetic on them is given by the natural operations, research on the go endgame by John Horton Conway led to another definition and construction of the surreal numbers. Conways construction was introduced in Donald Knuths 1974 book Surreal Numbers, How Two Ex-Students Turned on to Pure Mathematics, in his book, which takes the form of a dialogue, Knuth coined the term surreal numbers for what Conway had called simply numbers. Conway later adopted Knuths term, and used surreals for analyzing games in his 1976 book On Numbers and Games. In the Conway construction, the numbers are constructed in stages. Different subsets may end up defining the same number, and may define the number even if L ≠ L′. So strictly speaking, the numbers are equivalence classes of representations of form that designate the same number. In the first stage of construction, there are no previously existing numbers so the representation must use the empty set. This representation, where L and R are both empty, is called 0, subsequent stages yield forms like, =1 =2 =3 and = −1 = −2 = −3 The integers are thus contained within the surreal numbers. Similarly, representations arise like, = 1/2 = 1/4 = 3/4 so that the rationals are contained within the surreal numbers. Thus the real numbers are also embedded within the surreals, but there are also representations like = ω = ε where ω is a transfinite number greater than all integers and ε is an infinitesimal greater than 0 but less than any positive real number. The construction consists of three interdependent parts, the rule, the comparison rule and the equivalence rule. A form is a pair of sets of numbers, called its left set. A form with left set L and right set R is written, when L and R are given as lists of elements, the braces around them are omitted. Either or both of the left and right set of a form may be the empty set, the form with both left and right set empty is also written. The numeric forms are placed in classes, each such equivalence class is a surreal number. The elements of the left and right set of a form are drawn from the universe of the surreal numbers, equivalence Rule Two numeric forms x and y are forms of the same number if and only if both x ≤ y and y ≤ x. An ordering relationship must be antisymmetric, i. e. it must have the property that x = y only when x and y are the same object and this is not the case for surreal number forms, but is true by construction for surreal numbers

7.
1 (number)
–
1, is a number, a numeral, and the name of the glyph representing that number. It represents a single entity, the unit of counting or measurement, for example, a line segment of unit length is a line segment of length 1. It is also the first of the series of natural numbers. The word one can be used as a noun, an adjective and it comes from the English word an, which comes from the Proto-Germanic root *ainaz. The Proto-Germanic root *ainaz comes from the Proto-Indo-European root *oi-no-, compare the Proto-Germanic root *ainaz to Old Frisian an, Gothic ains, Danish een, Dutch een, German eins and Old Norse einn. Compare the Proto-Indo-European root *oi-no- to Greek oinos, Latin unus, Old Persian aivam, Old Church Slavonic -inu and ino-, Lithuanian vienas, Old Irish oin, One, sometimes referred to as unity, is the first non-zero natural number. It is thus the integer before two and after zero, and the first positive odd number, any number multiplied by one is that number, as one is the identity for multiplication. As a result,1 is its own factorial, its own square, its own cube, One is also the result of the empty product, as any number multiplied by one is itself. It is also the natural number that is neither composite nor prime with respect to division. The Gupta wrote it as a line, and the Nagari sometimes added a small circle on the left. The Nepali also rotated it to the right but kept the circle small and this eventually became the top serif in the modern numeral, but the occasional short horizontal line at the bottom probably originates from similarity with the Roman numeral I. Where the 1 is written with an upstroke, the number 7 has a horizontal stroke through the vertical line. While the shape of the 1 character has an ascender in most modern typefaces, in typefaces with text figures, many older typewriters do not have a separate symbol for 1 and use the lowercase letter l instead. It is possible to find cases when the uppercase J is used,1 cannot be used as the base of a positional numeral system, as the only digit that would be permitted in such a system would be 0. Since the base 1 exponential function always equals 1, its inverse does not exist, there are two ways to write the real number 1 as a recurring decimal, as 1.000. and as 0.999. There is only one way to represent the real number 1 as a Dedekind cut, in a multiplicative group or monoid, the identity element is sometimes denoted 1, but e is also traditional. However,1 is especially common for the identity of a ring. When such a ring has characteristic n not equal to 0,1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few

8.
Binary expansion
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra

9.
History of mathematics
–
Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. The most ancient mathematical texts available are Plimpton 322, the Rhind Mathematical Papyrus, All of these texts concern the so-called Pythagorean theorem, which seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry. Greek mathematics greatly refined the methods and expanded the subject matter of mathematics, Chinese mathematics made early contributions, including a place value system. Islamic mathematics, in turn, developed and expanded the known to these civilizations. Many Greek and Arabic texts on mathematics were then translated into Latin, from ancient times through the Middle Ages, periods of mathematical discovery were often followed by centuries of stagnation. Beginning in Renaissance Italy in the 16th century, new mathematical developments, the origins of mathematical thought lie in the concepts of number, magnitude, and form. Modern studies of cognition have shown that these concepts are not unique to humans. Such concepts would have part of everyday life in hunter-gatherer societies. The idea of the number concept evolving gradually over time is supported by the existence of languages which preserve the distinction between one, two, and many, but not of numbers larger than two. Prehistoric artifacts discovered in Africa, dated 20,000 years old or more suggest early attempts to quantify time. The Ishango bone, found near the headwaters of the Nile river, may be more than 20,000 years old, common interpretations are that the Ishango bone shows either the earliest known demonstration of sequences of prime numbers or a six-month lunar calendar. He also writes that no attempt has been made to explain why a tally of something should exhibit multiples of two, prime numbers between 10 and 20, and some numbers that are almost multiples of 10, predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. All of the above are disputed however, and the currently oldest undisputed mathematical documents are from Babylonian, Babylonian mathematics refers to any mathematics of the peoples of Mesopotamia from the days of the early Sumerians through the Hellenistic period almost to the dawn of Christianity. The majority of Babylonian mathematical work comes from two widely separated periods, The first few hundred years of the second millennium BC, and it is named Babylonian mathematics due to the central role of Babylon as a place of study. Later under the Arab Empire, Mesopotamia, especially Baghdad, once again became an important center of study for Islamic mathematics, in contrast to the sparsity of sources in Egyptian mathematics, our knowledge of Babylonian mathematics is derived from more than 400 clay tablets unearthed since the 1850s. Written in Cuneiform script, tablets were inscribed whilst the clay was moist, Some of these appear to be graded homework. The earliest evidence of written mathematics dates back to the ancient Sumerians and they developed a complex system of metrology from 3000 BC. From around 2500 BC onwards, the Sumerians wrote multiplication tables on clay tablets and dealt with geometrical exercises, the earliest traces of the Babylonian numerals also date back to this period

10.
Archimedes
–
Archimedes of Syracuse was a Greek mathematician, physicist, engineer, inventor, and astronomer. Although few details of his life are known, he is regarded as one of the scientists in classical antiquity. He was also one of the first to apply mathematics to physical phenomena, founding hydrostatics and statics and he is credited with designing innovative machines, such as his screw pump, compound pulleys, and defensive war machines to protect his native Syracuse from invasion. Archimedes died during the Siege of Syracuse when he was killed by a Roman soldier despite orders that he should not be harmed. Cicero describes visiting the tomb of Archimedes, which was surmounted by a sphere and a cylinder, unlike his inventions, the mathematical writings of Archimedes were little known in antiquity. Archimedes was born c.287 BC in the city of Syracuse, Sicily, at that time a self-governing colony in Magna Graecia. The date of birth is based on a statement by the Byzantine Greek historian John Tzetzes that Archimedes lived for 75 years, in The Sand Reckoner, Archimedes gives his fathers name as Phidias, an astronomer about whom nothing is known. Plutarch wrote in his Parallel Lives that Archimedes was related to King Hiero II, a biography of Archimedes was written by his friend Heracleides but this work has been lost, leaving the details of his life obscure. It is unknown, for instance, whether he married or had children. During his youth, Archimedes may have studied in Alexandria, Egypt and he referred to Conon of Samos as his friend, while two of his works have introductions addressed to Eratosthenes. Archimedes died c.212 BC during the Second Punic War, according to the popular account given by Plutarch, Archimedes was contemplating a mathematical diagram when the city was captured. A Roman soldier commanded him to come and meet General Marcellus but he declined, the soldier was enraged by this, and killed Archimedes with his sword. Plutarch also gives an account of the death of Archimedes which suggests that he may have been killed while attempting to surrender to a Roman soldier. According to this story, Archimedes was carrying mathematical instruments, and was killed because the thought that they were valuable items. General Marcellus was reportedly angered by the death of Archimedes, as he considered him a valuable asset and had ordered that he not be harmed. Marcellus called Archimedes a geometrical Briareus, the last words attributed to Archimedes are Do not disturb my circles, a reference to the circles in the mathematical drawing that he was supposedly studying when disturbed by the Roman soldier. This quote is given in Latin as Noli turbare circulos meos. The phrase is given in Katharevousa Greek as μὴ μου τοὺς κύκλους τάραττε

11.
Elwyn Berlekamp
–
Elwyn Ralph Berlekamp is an American mathematician. He is an emeritus of mathematics and EECS at the University of California. Berlekamp is known for his work in coding theory and combinatorial game theory, Berlekamp was born in Dover, Ohio. His family moved to Northern Kentucky, where Berlekamp graduated from Ft. Thomas Highlands high school in Ft. Thomas, Campbell county, while an undergraduate at the Massachusetts Institute of Technology, he was a Putnam Fellow in 1961. He completed his bachelors and masters degrees in engineering in 1962. Continuing his studies at MIT, he finished his Ph. D. in electrical engineering in 1964, his advisors were Robert G. Gallager, Peter Elias, Claude Shannon, and John Wozencraft. Berlekamp taught electrical engineering at the University of California, Berkeley from 1964 until 1966, in 1971, Berlekamp returned to Berkeley as professor of mathematics and EECS, where he served as the advisor for over twenty doctoral students. He is a member of the National Academy of Engineering and the National Academy of Sciences and he was elected a Fellow of the American Academy of Arts and Sciences in 1996, and became a fellow of the American Mathematical Society in 2012. In 1991, he received the IEEE Richard W. Hamming Medal, and in 1993, in 1998, he received a Golden Jubilee Award for Technological Innovation from the IEEE Information Theory Society. He is on the board of directors of Gathering 4 Gardner, in the mid-1980s, he was president of Cyclotomics, Inc. a corporation that developed error-correcting code technology. With John Horton Conway and Richard K. Guy, he co-authored Winning Ways for your Mathematical Plays and he has studied various games, including dots and boxes, Fox and Geese, and, especially, Go. With David Wolfe, Berlekamp co-authored the book Mathematical Go, which describes methods for analyzing certain classes of Go endgames, outside of mathematics and computer science, Berlekamp has also been active in money management. In 1986, he began studies of commodity and financial futures. In 1989, Berlekamp purchased the largest interest in a company named Axcom Trading Advisors. After the firms futures trading algorithms were rewritten, Axcoms Medallion Fund had a return of 55%, net of all management fees, the fund has subsequently continued to realize annualized returns exceeding 30% under management by James Harris Simons and his Renaissance Technologies Corporation. Berlekamp and his wife Jennifer have two daughters and a son and live in Piedmont, California, thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering,1964. Algebraic Coding Theory, New York, McGraw-Hill,1968, revised ed. Aegean Park Press,1984, ISBN 0-89412-063-8. Winning Ways for your Mathematical Plays, 1st edition, New York, Academic Press,2 vols

12.
John Horton Conway
–
John Horton Conway FRS is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has also contributed to many branches of mathematics, notably the invention of the cellular automaton called the Game of Life. Conway is currently Professor Emeritus of Mathematics at Princeton University in New Jersey, Conway was born in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at an early age, his mother has recalled that he could recite the powers of two when he was four years old. By the age of eleven his ambition was to become a mathematician, after leaving secondary school, Conway entered Gonville and Caius College, Cambridge to study mathematics. Conway, who was a terribly introverted adolescent in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person and he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport. Having solved the problem posed by Davenport on writing numbers as the sums of fifth powers. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos and he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University, Conway is especially known for the invention of the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, and articles. It is a staple of recreational mathematics, there is an extensive wiki devoted to curating and cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, at times Conway has said he hates the game of life–largely because it has come to overshadow some of the other deeper and more important things he has done. Nevertheless, the game did help launch a new branch of mathematics, the Game of Life is now known to be Turing complete. Conways career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner, when Gardner featured Conways Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, for instance, he discussed Conways game of Sprouts, Hackenbush, and his angel and devil problem. In the September 1976 column he reviewed Conways book On Numbers and Games, Conway is widely known for his contributions to combinatorial game theory, a theory of partisan games. This he developed with Elwyn Berlekamp and Richard Guy, and with them also co-authored the book Winning Ways for your Mathematical Plays and he also wrote the book On Numbers and Games which lays out the mathematical foundations of CGT. He is also one of the inventors of sprouts, as well as philosophers football and he developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, and Conways soldiers

13.
Richard K. Guy
–
Richard Kenneth Guy is a British mathematician, professor emeritus in the Department of Mathematics at the University of Calgary. He is known for his work in theory, geometry, recreational mathematics, combinatorics. He is best known for co-authorship of Winning Ways for your Mathematical Plays and he has also published over 300 papers. For this paper he received the MAA Lester R. Ford Award, Guy was born 30 Sept 1916 in Nuneaton, Warwickshire, England, to Adeline Augusta Tanner and William Alexander Charles Guy. Both of his parents were teachers, rising to the rank of headmistress and headmaster and he attended Warwick School for Boys, the third oldest school in Britain, but was not enthusiastic about most of the curriculum. He was good at sports, however, and excelled in mathematics, at the age of 17 he read Dicksons History of the Theory of Numbers. He said it was better than the works of Shakespeare. By then he had developed a passion for mountain climbing. In 1935 Guy entered Gonville and Caius College, at the University of Cambridge as a result of winning several scholarships, to win the most important of these he had to travel to Cambridge and write exams for two days. His interest in games began while at Cambridge where he became a composer of chess problems. In 1938, he graduated with an honours degree, he himself thinks that his failure to get a first may have been related to his obsession with chess. Although his parents advised against it, Guy decided to become a teacher. He met his future wife Nancy Louise Thirian through her brother Michael who was a fellow scholarship winner at Gonville and he and Louise shared loves of mountains and dancing. He wooed her through correspondence, and they married in December 1940, in November 1942, Guy received an emergency commission in the Meteorological Branch of the Royal Air Force, with the rank of flight lieutenant. He was posted to Reykjavik, and later to Bermuda, as a meteorologist and he tried to get permission for Louise to join him but was refused. While in Iceland, he did some glacier travel, skiing and mountain climbing, marking the beginning of another love affair. When Guy returned to England after the war, he went back to teaching, this time at Stockport Grammar School, in 1947 the family moved to London, where he got a job teaching math at Goldsmiths College. In 1951 he moved to Singapore, where he taught at the University of Malaya for the next decade and he then spent a few years at the Indian Institute of Technology in Delhi, India

14.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker

15.
Sequence
–
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members, the number of elements is called the length of the sequence. Unlike a set, order matters, and exactly the elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the numbers or the set of the first n natural numbers. The position of an element in a sequence is its rank or index and it depends on the context or of a specific convention, if the first element has index 0 or 1. For example, is a sequence of letters with the letter M first, also, the sequence, which contains the number 1 at two different positions, is a valid sequence. Sequences can be finite, as in these examples, or infinite, the empty sequence is included in most notions of sequence, but may be excluded depending on the context. A sequence can be thought of as a list of elements with a particular order, Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations, Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers. There are a number of ways to denote a sequence, some of which are useful for specific types of sequences. One way to specify a sequence is to list the elements, for example, the first four odd numbers form the sequence. This notation can be used for sequences as well. For instance, the sequence of positive odd integers can be written. Listing is most useful for sequences with a pattern that can be easily discerned from the first few elements. Other ways to denote a sequence are discussed after the examples, the prime numbers are the natural numbers bigger than 1, that have no divisors but 1 and themselves. Taking these in their natural order gives the sequence, the prime numbers are widely used in mathematics and specifically in number theory. The Fibonacci numbers are the integer sequence whose elements are the sum of the two elements. The first two elements are either 0 and 1 or 1 and 1 so that the sequence is, for a large list of examples of integer sequences, see On-Line Encyclopedia of Integer Sequences

16.
Series (mathematics)
–
In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a sequence has defined first and last terms. To emphasize that there are a number of terms, a series is often called an infinite series. In order to make the notion of an infinite sum mathematically rigorous, given an infinite sequence, the associated series is the expression obtained by adding all those terms together, a 1 + a 2 + a 3 + ⋯. These can be written compactly as ∑ i =1 ∞ a i, by using the summation symbol ∑. The sequence can be composed of any kind of object for which addition is defined. A series is evaluated by examining the finite sums of the first n terms of a sequence, called the nth partial sum of the sequence, and taking the limit as n approaches infinity. If this limit does not exist, the infinite sum cannot be assigned a value, and, in this case, the series is said to be divergent. On the other hand, if the partial sums tend to a limit when the number of terms increases indefinitely, then the series is said to be convergent, and the limit is called the sum of the series. An example is the series from Zenos dichotomy and its mathematical representation, ∑ n =1 ∞12 n =12 +14 +18 + ⋯. The study of series is a part of mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures, in addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance. For any sequence of numbers, real numbers, complex numbers, functions thereof. By definition the series ∑ n =0 ∞ a n converges to a limit L if and this definition is usually written as L = ∑ n =0 ∞ a n ⇔ L = lim k → ∞ s k. When the index set is the natural numbers I = N, a series indexed on the natural numbers is an ordered formal sum and so we rewrite ∑ n ∈ N as ∑ n =0 ∞ in order to emphasize the ordering induced by the natural numbers. Thus, we obtain the common notation for a series indexed by the natural numbers ∑ n =0 ∞ a n = a 0 + a 1 + a 2 + ⋯. When the semigroup G is also a space, then the series ∑ n =0 ∞ a n converges to an element L ∈ G if. This definition is usually written as L = ∑ n =0 ∞ a n ⇔ L = lim k → ∞ s k, a series ∑an is said to converge or to be convergent when the sequence SN of partial sums has a finite limit

17.
Geometric progression
–
For example, the sequence 2,6,18,54. is a geometric progression with common ratio 3. Similarly 10,5,2.5,1.25. is a sequence with common ratio 1/2. Examples of a sequence are powers rk of a fixed number r, such as 2k. The general form of a sequence is a, a r, a r 2, a r 3, a r 4, … where r ≠0 is the common ratio. The n-th term of a sequence with initial value a. Such a geometric sequence also follows the relation a n = r a n −1 for every integer n ≥1. Generally, to whether a given sequence is geometric, one simply checks whether successive entries in the sequence all have the same ratio. The common ratio of a sequence may be negative, resulting in an alternating sequence, with numbers switching from positive to negative. For instance 1, −3,9, −27,81, the behaviour of a geometric sequence depends on the value of the common ratio. If the common ratio is, Positive, the terms will all be the sign as the initial term. Negative, the terms will alternate between positive and negative, greater than 1, there will be exponential growth towards positive or negative infinity. 1, the progression is a constant sequence, between −1 and 1 but not zero, there will be exponential decay towards zero. −1, the progression is an alternating sequence Less than −1, for the absolute values there is exponential growth towards infinity, due to the alternating sign. Geometric sequences show exponential growth or exponential decay, as opposed to the growth of an arithmetic progression such as 4,15,26,37,48. This result was taken by T. R. Malthus as the foundation of his Principle of Population. A geometric series is the sum of the numbers in a geometric progression, for example,2 +10 +50 +250 =2 +2 ×5 +2 ×52 +2 ×53. The formula works for any real numbers a and r. For example, −2 π +4 π2 −8 π3 = −2 π +2 +3 = −2 π1 − = −2 π1 +2 π ≈ −214.855

18.
Square number
–
In mathematics, a square number or perfect square is an integer that is the square of an integer, in other words, it is the product of some integer with itself. For example,9 is a number, since it can be written as 3 × 3. The usual notation for the square of a n is not the product n × n. The name square number comes from the name of the shape, another way of saying that a integer is a square number, is that its square root is again an integer. For example, √9 =3, so 9 is a square number, a positive integer that has no perfect square divisors except 1 is called square-free. For a non-negative integer n, the nth square number is n2, the concept of square can be extended to some other number systems. If rational numbers are included, then a square is the ratio of two integers, and, conversely, the ratio of two square integers is a square, e. g.49 =2. Starting with 1, there are ⌊√m⌋ square numbers up to and including m, the squares smaller than 602 =3600 are, The difference between any perfect square and its predecessor is given by the identity n2 −2 = 2n −1. Equivalently, it is possible to count up square numbers by adding together the last square, the last squares root, and the current root, that is, n2 =2 + + n. The number m is a number if and only if one can compose a square of m equal squares. Hence, a square with side length n has area n2, the expression for the nth square number is n2. This is also equal to the sum of the first n odd numbers as can be seen in the above pictures, the formula follows, n 2 = ∑ k =1 n. So for example,52 =25 =1 +3 +5 +7 +9, there are several recursive methods for computing square numbers. For example, the nth square number can be computed from the square by n2 =2 + + n =2 +. Alternatively, the nth square number can be calculated from the two by doubling the th square, subtracting the th square number, and adding 2. For example, 2 × 52 −42 +2 = 2 × 25 −16 +2 =50 −16 +2 =36 =62, a square number is also the sum of two consecutive triangular numbers. The sum of two square numbers is a centered square number. Every odd square is also an octagonal number

19.
Cube (algebra)
–
In arithmetic and algebra, the cube of a number n is its third power, the result of the number multiplied by itself twice, n3 = n × n × n. It is also the number multiplied by its square, n3 = n × n2 and this is also the volume formula for a geometric cube with sides of length n, giving rise to the name. The inverse operation of finding a number whose cube is n is called extracting the cube root of n and it determines the side of the cube of a given volume. It is also n raised to the one-third power, both cube and cube root are odd functions,3 = −. The cube of a number or any other mathematical expression is denoted by a superscript 3, a cube number, or a perfect cube, or sometimes just a cube, is a number which is the cube of an integer. The perfect cubes up to 603 are, Geometrically speaking, an integer m is a perfect cube if and only if one can arrange m solid unit cubes into a larger. For example,27 small cubes can be arranged into one larger one with the appearance of a Rubiks Cube, the difference between the cubes of consecutive integers can be expressed as follows, n3 −3 = 3n +1. There is no minimum perfect cube, since the cube of an integer is negative. For example, −4 × −4 × −4 = −64, unlike perfect squares, perfect cubes do not have a small number of possibilities for the last two digits. Except for cubes divisible by 5, where only 25,75 and 00 can be the last two digits, any pair of digits with the last digit odd can be a perfect cube. With even cubes, there is considerable restriction, for only 00, o2, e4, o6, some cube numbers are also square numbers, for example,64 is a square number and a cube number. This happens if and only if the number is a perfect sixth power, the last digits of each 3rd power are, It is, however, easy to show that most numbers are not perfect cubes because all perfect cubes must have digital root 1,8 or 9. That is their values modulo 9 may be only −1,1 and 0, every positive integer can be written as the sum of nine positive cubes. The equation x3 + y3 = z3 has no solutions in integers. In fact, it has none in Eisenstein integers, both of these statements are also true for the equation x3 + y3 = 3z3. The sum of the first n cubes is the nth triangle number squared,13 +23 + ⋯ + n 3 =2 =2. Proofs Charles Wheatstone gives a simple derivation, by expanding each cube in the sum into a set of consecutive odd numbers. Indeed, he begins by giving the identity n 3 = + + + ⋯ + ⏟ n consecutive odd numbers, kanim provides a purely visual proof, Benjamin & Orrison provide two additional proofs, and Nelsen gives seven geometric proofs

20.
Factorial
–
In mathematics, the factorial of a non-negative integer n, denoted by n. is the product of all positive integers less than or equal to n. =5 ×4 ×3 ×2 ×1 =120, the value of 0. is 1, according to the convention for an empty product. The factorial operation is encountered in areas of mathematics, notably in combinatorics, algebra. Its most basic occurrence is the fact there are n. ways to arrange n distinct objects into a sequence. This fact was known at least as early as the 12th century, fabian Stedman, in 1677, described factorials as applied to change ringing. After describing a recursive approach, Stedman gives a statement of a factorial, Now the nature of these methods is such, the factorial function is formally defined by the product n. = ∏ k =1 n k, or by the relation n. = {1 if n =0. The factorial function can also be defined by using the rule as n. All of the above definitions incorporate the instance 0, =1, in the first case by the convention that the product of no numbers at all is 1. This is convenient because, There is exactly one permutation of zero objects, = n. ×, valid for n >0, extends to n =0. It allows for the expression of many formulae, such as the function, as a power series. It makes many identities in combinatorics valid for all applicable sizes, the number of ways to choose 0 elements from the empty set is =0. More generally, the number of ways to choose n elements among a set of n is = n. n, the factorial function can also be defined for non-integer values using more advanced mathematics, detailed in the section below. This more generalized definition is used by advanced calculators and mathematical software such as Maple or Mathematica, although the factorial function has its roots in combinatorics, formulas involving factorials occur in many areas of mathematics. There are n. different ways of arranging n distinct objects into a sequence, often factorials appear in the denominator of a formula to account for the fact that ordering is to be ignored. A classical example is counting k-combinations from a set with n elements, one can obtain such a combination by choosing a k-permutation, successively selecting and removing an element of the set, k times, for a total of n k _ = n ⋯ possibilities. This however produces the k-combinations in an order that one wishes to ignore, since each k-combination is obtained in k. different ways. This number is known as the coefficient, because it is also the coefficient of Xk in n

21.
Power of 10
–
In mathematics, a power of 10 is any of the integer powers of the number ten, in other words, ten multiplied by itself a certain number of times. By definition, the one is a power of ten. The first few powers of ten are,1,10,100,1000,10000,100000,1000000,10000000. In decimal notation the nth power of ten is written as 1 followed by n zeroes and it can also be written as 10n or as 1En in E notation. See order of magnitude and orders of magnitude for named powers of ten, there are two conventions for naming positive powers of ten, called the long and short scales. Where a power of ten has different names in the two conventions, the long scale namme is shown in brackets, googolplex, a much larger power of ten, was also introduced in that book. Scientific notation is a way of writing numbers of very large, a number written in scientific notation has a significand multiplied by a power of ten. Sometimes written in the form, m × 10n Or more compactly as, where n is positive, this indicates the number zeros after the number, and where the n is negative, this indicates the number of decimal places before the number. As an example,105 =100,000 10−5 =0.00001 The notation of mEn, known as E notation, is used in programming, spreadsheets and databases. Power of two SI prefix Cosmic View, inspiration for the film Powers of Ten Video Powers of Ten, US Public Broadcasting Service, made by Charles and Ray Eames. Starting at a picnic by the lakeside in Chicago, this film transports the viewer to the edges of the universe. Every ten seconds we view the point from ten times farther out until our own galaxy is visible only as a speck of light among many others. Returning to Earth with breathtaking speed, we move inward - into the hand of the sleeping picnicker - with ten times more magnification every ten seconds and our journey ends inside a proton of a carbon atom within a DNA molecule in a white blood cell

22.
Fibonacci number
–
The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, known as Fibonacci. His 1202 book Liber Abaci introduced the sequence to Western European mathematics, the sequence described in Liber Abaci began with F1 =1. Fibonacci numbers are related to Lucas numbers L n in that they form a complementary pair of Lucas sequences U n = F n and V n = L n. They are intimately connected with the ratio, for example. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is a journal dedicated to their study. The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody, in the Sanskrit tradition of prosody, there was interest in enumerating all patterns of long syllables that are 2 units of duration, and short syllables that are 1 unit of duration. Counting the different patterns of L and S of a given duration results in the Fibonacci numbers, susantha Goonatilake writes that the development of the Fibonacci sequence is attributed in part to Pingala, later being associated with Virahanka, Gopāla, and Hemachandra. He dates Pingala before 450 BC, however, the clearest exposition of the sequence arises in the work of Virahanka, whose own work is lost, but is available in a quotation by Gopala, Variations of two earlier meters. For example, for four, variations of meters of two three being mixed, five happens, in this way, the process should be followed in all mātrā-vṛttas. The sequence is also discussed by Gopala and by the Jain scholar Hemachandra, outside India, the Fibonacci sequence first appears in the book Liber Abaci by Fibonacci. The puzzle that Fibonacci posed was, how many pairs will there be in one year, at the end of the first month, they mate, but there is still only 1 pair. At the end of the month the female produces a new pair. At the end of the month, the original female produces a second pair. At the end of the month, the original female has produced yet another new pair. At the end of the nth month, the number of pairs of rabbits is equal to the number of new pairs plus the number of pairs alive last month and this is the nth Fibonacci number. The name Fibonacci sequence was first used by the 19th-century number theorist Édouard Lucas, the most common such problem is that of counting the number of compositions of 1s and 2s that sum to a given total n, there are Fn+1 ways to do this. For example, if n =5, then Fn+1 = F6 =8 counts the eight compositions, 1+1+1+1+1 = 1+1+1+2 = 1+1+2+1 = 1+2+1+1 = 2+1+1+1 = 2+2+1 = 2+1+2 = 1+2+2, all of which sum to 5. The Fibonacci numbers can be found in different ways among the set of strings, or equivalently

23.
Heptagonal number
–
A heptagonal number is a figurate number that represents a heptagon. The n-th heptagonal number is given by the formula 5 n 2 −3 n 2, like square numbers, the digital root in base 10 of a heptagonal number can only be 1,4,7 or 9. Five times a number, plus 1 equals a triangular number. A generalized heptagonal number is obtained by the formula T n + T ⌊ n 2 ⌋, where Tn is the nth triangular number. The first few generalized heptagonal numbers are,1,4,7,13,18,27,34,46,55,70,81,99,112, besides 1 and 70, no generalized heptagonal numbers are also Pell numbers. The heptagonal root of x is given by the formula n =40 x +9 +310

24.
Hexagonal number
–
A hexagonal number is a figurate number. The formula for the nth hexagonal number h n =2 n 2 − n = n =2 n ×2. The first few numbers are,1,6,15,28,45,66,91,120,153,190,231,276,325,378,435,496,561,630,703,780,861,946. Every hexagonal number is a number, but only every other triangular number is a hexagonal number. Like a triangular number, the root in base 10 of a hexagonal number can only be 1,3,6. The digital root pattern, repeating every nine terms, is 166193139. Every even perfect number is hexagonal, given by the formula M p 2 p −1 = M p /2 = h /2 = h 2 p −1 where Mp is a Mersenne prime. No odd perfect numbers are known, hence all known perfect numbers are hexagonal, for example, the 2nd hexagonal number is 2×3 =6, the 4th is 4×7 =28, the 16th is 16×31 =496, and the 64th is 64×127 =8128. The largest number that cannot be written as a sum of at most four hexagonal numbers is 130, adrien-Marie Legendre proved in 1830 that any integer greater than 1791 can be expressed in this way. Hexagonal numbers can be rearranged into rectangular numbers of n by. Hexagonal numbers should not be confused with centered hexagonal numbers, which model the standard packaging of Vienna sausages, to avoid ambiguity, hexagonal numbers are sometimes called cornered hexagonal numbers. One can efficiently test whether a positive x is an hexagonal number by computing n =8 x +1 +14. If n is an integer, then x is the nth hexagonal number, if n is not an integer, then x is not hexagonal. The nth number of the sequence can also be expressed by using Sigma notation as h n = ∑ i =0 n −1 where the empty sum is taken to be 0. Centered hexagonal number Mathworld entry on Hexagonal Number

25.
Pell number
–
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1,2,5,12, and 29. The numerators of the sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers, these numbers form a second infinite sequence that begins with 2,6,14,34. As with Pells equation, the name of the Pell numbers stems from Leonhard Eulers mistaken attribution of the equation, the Pell–Lucas numbers are also named after Édouard Lucas, who studied sequences defined by recurrences of this type, the Pell and companion Pell numbers are Lucas sequences. The Pell numbers are defined by the recurrence relation P n = {0 if n =0,1 if n =1,2 P n −1 + P n −2 otherwise. In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number and the Pell number before that. The first few terms of the sequence are 0,1,2,5,12,29,70,169,408,985,2378,5741,13860, …. The Pell numbers can also be expressed by the closed form formula P n = n − n 22, a third definition is possible, from the matrix formula = n. Pell numbers arise historically and most notably in the rational approximation to √2. If two large integers x and y form a solution to the Pell equation x 2 −2 y 2 = ±1 and that is, the solutions have the form P n −1 + P n P n. The approximation 2 ≈577408 of this type was known to Indian mathematicians in the third or fourth century B. C, the Greek mathematicians of the fifth century B. C. also knew of this sequence of approximations, Plato refers to the numerators as rational diameters. In the 2nd century CE Theon of Smyrna used the term the side and these approximations can be derived from the continued fraction expansion of 2,2 =1 +12 +12 +12 +12 +12 + ⋱. As Knuth describes, the fact that Pell numbers approximate √2 allows them to be used for accurate rational approximations to an octagon with vertex coordinates. All vertices are equally distant from the origin, and form uniform angles around the origin. Alternatively, the points, and form approximate octagons in which the vertices are equally distant from the origin. A Pell prime is a Pell number that is prime, the first few Pell primes are 2,5,29,5741, …. The indices of these primes within the sequence of all Pell numbers are 2,3,5,11,13,29,41,53,59,89,97,101,167,181,191, … These indices are all themselves prime. As with the Fibonacci numbers, a Pell number Pn can only be prime if n itself is prime, the only Pell numbers that are squares, cubes, or any higher power of an integer are 0,1, and 169 =132. However, despite having so few squares or other powers, Pell numbers have a connection to square triangular numbers

26.
Triangular number
–
A triangular number or triangle number counts the objects that can form an equilateral triangle, as in the diagram on the right. The nth triangular number is the number of dots composing a triangle with n dots on a side and it represents the number of distinct pairs that can be selected from n +1 objects, and it is read aloud as n plus one choose two. Carl Friedrich Gauss is said to have found this relationship in his early youth, however, regardless of the truth of this story, Gauss was not the first to discover this formula, and some find it likely that its origin goes back to the Pythagoreans 5th century BC. The two formulae were described by the Irish monk Dicuil in about 816 in his Computus, the triangular number Tn solves the handshake problem of counting the number of handshakes if each person in a room with n +1 people shakes hands once with each person. In other words, the solution to the problem of n people is Tn−1. The function T is the analog of the factorial function. In the limit, the ratio between the two numbers, dots and line segments is lim n → ∞ T n L n =13, Triangular numbers have a wide variety of relations to other figurate numbers. Most simply, the sum of two triangular numbers is a square number, with the sum being the square of the difference between the two. Algebraically, T n + T n −1 = + = + = n 2 =2, alternatively, the same fact can be demonstrated graphically, There are infinitely many triangular numbers that are also square numbers, e. g.1,36,1225. Some of them can be generated by a recursive formula. All square triangular numbers are found from the recursion S n =34 S n −1 − S n −2 +2 with S0 =0 and S1 =1. Also, the square of the nth triangular number is the same as the sum of the cubes of the integers 1 to n and this can also be expressed as ∑ k =1 n k 3 =2. The sum of the all triangular numbers up to the nth triangular number is the nth tetrahedral number, more generally, the difference between the nth m-gonal number and the nth -gonal number is the th triangular number. For example, the sixth heptagonal number minus the sixth hexagonal number equals the triangular number,15. Every other triangular number is a hexagonal number, knowing the triangular numbers, one can reckon any centered polygonal number, the nth centered k-gonal number is obtained by the formula C k n = k T n −1 +1 where T is a triangular number. The positive difference of two numbers is a trapezoidal number. Triangular numbers correspond to the case of Faulhabers formula. Alternating triangular numbers are also hexagonal numbers, every even perfect number is triangular, given by the formula M p 2 p −1 = M p 2 = T M p where Mp is a Mersenne prime

27.
Cauchy sequence
–
In mathematics, a Cauchy sequence, named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a number of elements of the sequence are less than that given distance from each other. It is not sufficient for each term to become close to the preceding term. For instance, in the harmonic series ∑1 n a difference between consecutive terms decreases as 1 n, however the series does not converge, rather, it is required that all terms get arbitrarily close to each other, starting from some point. More formally, for any given ε >0 there exists an N such that for any m, n > N. The notions above are not as unfamiliar as they might at first appear, the customary acceptance of the fact that any real number x has a decimal expansion is an implicit acknowledgment that a particular Cauchy sequence of rational numbers has the real limit x. In some cases it may be difficult to describe x independently of such a process involving rational numbers. Generalizations of Cauchy sequences in more abstract uniform spaces exist in the form of Cauchy filters, in a similar way one can define Cauchy sequences of rational or complex numbers. Cauchy formulated such a condition by requiring x m − x n to be infinitesimal for every pair of infinite m, n, to define Cauchy sequences in any metric space X, the absolute value |xm - xn| is replaced by the distance d between xm and xn. A metric space X in which every Cauchy sequence converges to an element of X is called complete, the real numbers are complete under the metric induced by the usual absolute value, and one of the standard constructions of the real numbers involves Cauchy sequences of rational numbers. A rather different type of example is afforded by a metric space X which has the discrete metric, any Cauchy sequence of elements of X must be constant beyond some fixed point, and converges to the eventually repeating term. The rational numbers Q are not complete, There are sequences of rationals that converge to irrational numbers, if one considers this as a sequence of real numbers, however, it converges to the real number φ = /2, the Golden ratio, which is irrational. Every Cauchy sequence of numbers is bounded. Every Cauchy sequence of numbers is bounded, hence by Bolzano-Weierstrass has a convergent subsequence, hence is itself convergent. It should be noted, though, that proof of the completeness of the real numbers implicitly makes use of the least upper bound axiom. The alternative approach, mentioned above, of constructing the real numbers as the completion of the rational numbers, makes the completeness of the real numbers tautological. Such a series ∑ n =1 ∞ x n is considered to be convergent if and only if the sequence of sums is convergent. It is a matter to determine whether the sequence of partial sums is Cauchy or not

28.
Monotone sequence
–
In mathematics, a monotonic function is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was generalized to the more abstract setting of order theory. In calculus, a function f defined on a subset of the numbers with real values is called monotonic if. That is, as per Fig.1, a function that increases monotonically does not exclusively have to increase, a function is called monotonically increasing, if for all x and y such that x ≤ y one has f ≤ f, so f preserves the order. Likewise, a function is called monotonically decreasing if, whenever x ≤ y, then f ≥ f, if the order ≤ in the definition of monotonicity is replaced by the strict order <, then one obtains a stronger requirement. A function with this property is called strictly increasing, again, by inverting the order symbol, one finds a corresponding concept called strictly decreasing. The terms non-decreasing and non-increasing should not be confused with the negative qualifications not decreasing, for example, the function of figure 3 first falls, then rises, then falls again. It is therefore not decreasing and not increasing, but it is neither non-decreasing nor non-increasing, the term monotonic transformation can also possibly cause some confusion because it refers to a transformation by a strictly increasing function. Notably, this is the case in economics with respect to the properties of a utility function being preserved across a monotonic transform. A function f is said to be absolutely monotonic over an interval if the derivatives of all orders of f are nonnegative or all nonpositive at all points on the interval, F can only have jump discontinuities, f can only have countably many discontinuities in its domain. The discontinuities, however, do not necessarily consist of isolated points and these properties are the reason why monotonic functions are useful in technical work in analysis. In addition, this result cannot be improved to countable, see Cantor function, if f is a monotonic function defined on an interval, then f is Riemann integrable. An important application of functions is in probability theory. If X is a variable, its cumulative distribution function F X = Prob is a monotonically increasing function. A function is unimodal if it is monotonically increasing up to some point, when f is a strictly monotonic function, then f is injective on its domain, and if T is the range of f, then there is an inverse function on T for f. A map f, X → Y is said to be if each of its fibers is connected i. e. for each element y in Y the set f−1 is connected. A subset G of X × X∗ is said to be a set if for every pair. G is said to be monotone if it is maximal among all monotone sets in the sense of set inclusion

29.
Convergent series
–
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. Given an infinite sequence, the nth partial sum S n is the sum of the first n terms of the sequence, that is, S n = ∑ k =1 n a k. A series is convergent if the sequence of its partial sums tends to a limit, that means that the partial sums become closer and closer to a given number when the number of their terms increases. More precisely, a series converges, if exists a number ℓ such that for any arbitrarily small positive number ε. If the series is convergent, the number ℓ is called the sum of the series, any series that is not convergent is said to be divergent. The reciprocals of the positive integers produce a divergent series,11 +12 +13 +14 +15 +16 + ⋯ → ∞. The reciprocals of triangular numbers produce a convergent series,11 +13 +16 +110 +115 +121 + ⋯ =2. The reciprocals of factorials produce a convergent series,11 +11 +12 +16 +124 +1120 + ⋯ = e. The reciprocals of square numbers produce a convergent series,11 +14 +19 +116 +125 +136 + ⋯ = π26. The reciprocals of powers of 2 produce a convergent series,11 +12 +14 +18 +116 +132 + ⋯ =2. Alternating the signs of reciprocals of powers of 2 also produces a convergent series,11 −12 +14 −18 +116 −132 + ⋯ =23. The reciprocals of Fibonacci numbers produce a convergent series,11 +11 +12 +13 +15 +18 + ⋯ = ψ, there are a number of methods of determining whether a series converges or diverges. The terms of the sequence are compared to those of another sequence, if, for all n,0 ≤ a n ≤ b n, and ∑ n =1 ∞ b n converges, then so does ∑ n =1 ∞ a n. However, if, for all n,0 ≤ b n ≤ a n, assume that for all n, a n >0. Suppose that there exists r such that lim n → ∞ | a n +1 a n | = r, if r <1, then the series converges. If r >1, then the series diverges, if r =1, the ratio test is inconclusive, and the series may converge or diverge. Root test or nth root test, suppose that the terms of the sequence in question are non-negative. Define r as follows, r = lim sup n → ∞ | a n | n, if r <1, then the series converges

30.
Uniform convergence
–
In the mathematical field of analysis, uniform convergence is a type of convergence stronger than pointwise convergence. Loosely speaking, this means that f n converges to f at a speed on its entire domain. In contrast, we say that f n converges to f pointwise, if exists a N. It is clear from these definitions that uniform convergence of f n to f on E implies pointwise convergence for every x ∈ E, frequently, no special symbol is used, and authors simply write f n → f u n i f o r m l y. The difference between the two types of convergence was not fully appreciated early in the history of calculus, leading to instances of faulty reasoning, Uniform convergence to a function on a given interval can be defined in terms of the uniform norm. Completely standard notions of convergence did not exist at the time, when put into the modern language, what Cauchy proved is that a uniformly convergent sequence of continuous functions has a continuous limit. While he thought it a fact when a series converged in this way, he did not give a formal definition. Independently, similar concepts were articulated by Philipp Ludwig von Seidel, suppose E is a set and f n, E → R are real-valued functions. This is the Cauchy criterion for uniform convergence, in another equivalent formulation, if we define a n = sup x ∈ E | f n − f |, then f n converges to f uniformly if and only if a n →0 as n → ∞. The sequence n ∈ N is said to be uniformly convergent with limit f if E is a metric space and for every x in E. It is easy to see that local uniform convergence implies pointwise convergence and it is also clear that uniform convergence implies local uniform convergence. Note that interchanging the order of there exists N and for all x in the definition above results in a statement equivalent to the convergence of the sequence. In explicit terms, in the case of convergence, N can only depend on ϵ, while in the case of pointwise convergence. It is therefore plain that uniform convergence implies pointwise convergence, the converse is not true, as the example in the section below illustrates. One may straightforwardly extend the concept to functions S → M, the most general setting is the uniform convergence of nets of functions S → X, where X is a uniform space. The above-mentioned theorem, stating that the limit of continuous functions is continuous. Uniform convergence admits a simplified definition in a hyperreal setting, thus, a sequence f n converges to f uniformly if for all x in the domain of f* and all infinite n, f n ∗ is infinitely close to f ∗. Then uniform convergence simply means convergence in the norm topology

31.
Riemann zeta function
–
More general representations of ζ for all s are given below. The Riemann zeta function plays a role in analytic number theory and has applications in physics, probability theory. As a function of a variable, Leonhard Euler first introduced and studied it in the first half of the eighteenth century without using complex analysis. The values of the Riemann zeta function at even positive integers were computed by Euler, the first of them, ζ, provides a solution to the Basel problem. In 1979 Apéry proved the irrationality of ζ, the values at negative integer points, also found by Euler, are rational numbers and play an important role in the theory of modular forms. Many generalizations of the Riemann zeta function, such as Dirichlet series, the Riemann zeta function ζ is a function of a complex variable s = σ + it. It can also be defined by the integral ζ =1 Γ ∫0 ∞ x s −1 e x −1 d x where Γ is the gamma function. The Riemann zeta function is defined as the continuation of the function defined for σ >1 by the sum of the preceding series. Leonhard Euler considered the series in 1740 for positive integer values of s. The above series is a prototypical Dirichlet series that converges absolutely to a function for s such that σ >1. Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex values s ≠1, for s =1 the series is the harmonic series which diverges to +∞, and lim s →1 ζ =1. Thus the Riemann zeta function is a function on the whole complex s-plane. For any positive even integer 2n, ζ = n +1 B2 n 2 n 2, where B2n is the 2nth Bernoulli number. For odd positive integers, no simple expression is known, although these values are thought to be related to the algebraic K-theory of the integers. For nonpositive integers, one has ζ = B n +1 n +1 for n ≥0 In particular, ζ = −12, Similarly to the above, this assigns a finite result to the series 1 +1 +1 +1 + ⋯. ζ ≈ −1.4603545 This is employed in calculating of kinetic boundary layer problems of linear kinetic equations, ζ =1 +12 +13 + ⋯ = ∞, if we approach from numbers larger than 1. Then this is the harmonic series, but its Cauchy principal value lim ε →0 ζ + ζ2 exists which is the Euler–Mascheroni constant γ =0. 5772…. ζ ≈2.612, This is employed in calculating the critical temperature for a Bose–Einstein condensate in a box with periodic boundary conditions, and for spin wave physics in magnetic systems