1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
History of mathematics
–
Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. The most ancient mathematical texts available are Plimpton 322, the Rhind Mathematical Papyrus, All of these texts concern the so-called Pythagorean theorem, which seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry. Greek mathematics greatly refined the methods and expanded the subject matter of mathematics, Chinese mathematics made early contributions, including a place value system. Islamic mathematics, in turn, developed and expanded the known to these civilizations. Many Greek and Arabic texts on mathematics were then translated into Latin, from ancient times through the Middle Ages, periods of mathematical discovery were often followed by centuries of stagnation. Beginning in Renaissance Italy in the 16th century, new mathematical developments, the origins of mathematical thought lie in the concepts of number, magnitude, and form. Modern studies of cognition have shown that these concepts are not unique to humans. Such concepts would have part of everyday life in hunter-gatherer societies. The idea of the number concept evolving gradually over time is supported by the existence of languages which preserve the distinction between one, two, and many, but not of numbers larger than two. Prehistoric artifacts discovered in Africa, dated 20,000 years old or more suggest early attempts to quantify time. The Ishango bone, found near the headwaters of the Nile river, may be more than 20,000 years old, common interpretations are that the Ishango bone shows either the earliest known demonstration of sequences of prime numbers or a six-month lunar calendar. He also writes that no attempt has been made to explain why a tally of something should exhibit multiples of two, prime numbers between 10 and 20, and some numbers that are almost multiples of 10, predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. All of the above are disputed however, and the currently oldest undisputed mathematical documents are from Babylonian, Babylonian mathematics refers to any mathematics of the peoples of Mesopotamia from the days of the early Sumerians through the Hellenistic period almost to the dawn of Christianity. The majority of Babylonian mathematical work comes from two widely separated periods, The first few hundred years of the second millennium BC, and it is named Babylonian mathematics due to the central role of Babylon as a place of study. Later under the Arab Empire, Mesopotamia, especially Baghdad, once again became an important center of study for Islamic mathematics, in contrast to the sparsity of sources in Egyptian mathematics, our knowledge of Babylonian mathematics is derived from more than 400 clay tablets unearthed since the 1850s. Written in Cuneiform script, tablets were inscribed whilst the clay was moist, Some of these appear to be graded homework. The earliest evidence of written mathematics dates back to the ancient Sumerians and they developed a complex system of metrology from 3000 BC. From around 2500 BC onwards, the Sumerians wrote multiplication tables on clay tablets and dealt with geometrical exercises, the earliest traces of the Babylonian numerals also date back to this period

3.
Archimedes
–
Archimedes of Syracuse was a Greek mathematician, physicist, engineer, inventor, and astronomer. Although few details of his life are known, he is regarded as one of the scientists in classical antiquity. He was also one of the first to apply mathematics to physical phenomena, founding hydrostatics and statics and he is credited with designing innovative machines, such as his screw pump, compound pulleys, and defensive war machines to protect his native Syracuse from invasion. Archimedes died during the Siege of Syracuse when he was killed by a Roman soldier despite orders that he should not be harmed. Cicero describes visiting the tomb of Archimedes, which was surmounted by a sphere and a cylinder, unlike his inventions, the mathematical writings of Archimedes were little known in antiquity. Archimedes was born c.287 BC in the city of Syracuse, Sicily, at that time a self-governing colony in Magna Graecia. The date of birth is based on a statement by the Byzantine Greek historian John Tzetzes that Archimedes lived for 75 years, in The Sand Reckoner, Archimedes gives his fathers name as Phidias, an astronomer about whom nothing is known. Plutarch wrote in his Parallel Lives that Archimedes was related to King Hiero II, a biography of Archimedes was written by his friend Heracleides but this work has been lost, leaving the details of his life obscure. It is unknown, for instance, whether he married or had children. During his youth, Archimedes may have studied in Alexandria, Egypt and he referred to Conon of Samos as his friend, while two of his works have introductions addressed to Eratosthenes. Archimedes died c.212 BC during the Second Punic War, according to the popular account given by Plutarch, Archimedes was contemplating a mathematical diagram when the city was captured. A Roman soldier commanded him to come and meet General Marcellus but he declined, the soldier was enraged by this, and killed Archimedes with his sword. Plutarch also gives an account of the death of Archimedes which suggests that he may have been killed while attempting to surrender to a Roman soldier. According to this story, Archimedes was carrying mathematical instruments, and was killed because the thought that they were valuable items. General Marcellus was reportedly angered by the death of Archimedes, as he considered him a valuable asset and had ordered that he not be harmed. Marcellus called Archimedes a geometrical Briareus, the last words attributed to Archimedes are Do not disturb my circles, a reference to the circles in the mathematical drawing that he was supposedly studying when disturbed by the Roman soldier. This quote is given in Latin as Noli turbare circulos meos. The phrase is given in Katharevousa Greek as μὴ μου τοὺς κύκλους τάραττε

4.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra

5.
Fibonacci number
–
The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, known as Fibonacci. His 1202 book Liber Abaci introduced the sequence to Western European mathematics, the sequence described in Liber Abaci began with F1 =1. Fibonacci numbers are related to Lucas numbers L n in that they form a complementary pair of Lucas sequences U n = F n and V n = L n. They are intimately connected with the ratio, for example. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is a journal dedicated to their study. The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody, in the Sanskrit tradition of prosody, there was interest in enumerating all patterns of long syllables that are 2 units of duration, and short syllables that are 1 unit of duration. Counting the different patterns of L and S of a given duration results in the Fibonacci numbers, susantha Goonatilake writes that the development of the Fibonacci sequence is attributed in part to Pingala, later being associated with Virahanka, Gopāla, and Hemachandra. He dates Pingala before 450 BC, however, the clearest exposition of the sequence arises in the work of Virahanka, whose own work is lost, but is available in a quotation by Gopala, Variations of two earlier meters. For example, for four, variations of meters of two three being mixed, five happens, in this way, the process should be followed in all mātrā-vṛttas. The sequence is also discussed by Gopala and by the Jain scholar Hemachandra, outside India, the Fibonacci sequence first appears in the book Liber Abaci by Fibonacci. The puzzle that Fibonacci posed was, how many pairs will there be in one year, at the end of the first month, they mate, but there is still only 1 pair. At the end of the month the female produces a new pair. At the end of the month, the original female produces a second pair. At the end of the month, the original female has produced yet another new pair. At the end of the nth month, the number of pairs of rabbits is equal to the number of new pairs plus the number of pairs alive last month and this is the nth Fibonacci number. The name Fibonacci sequence was first used by the 19th-century number theorist Édouard Lucas, the most common such problem is that of counting the number of compositions of 1s and 2s that sum to a given total n, there are Fn+1 ways to do this. For example, if n =5, then Fn+1 = F6 =8 counts the eight compositions, 1+1+1+1+1 = 1+1+1+2 = 1+1+2+1 = 1+2+1+1 = 2+1+1+1 = 2+2+1 = 2+1+2 = 1+2+2, all of which sum to 5. The Fibonacci numbers can be found in different ways among the set of strings, or equivalently

6.
Riemann zeta function
–
More general representations of ζ for all s are given below. The Riemann zeta function plays a role in analytic number theory and has applications in physics, probability theory. As a function of a variable, Leonhard Euler first introduced and studied it in the first half of the eighteenth century without using complex analysis. The values of the Riemann zeta function at even positive integers were computed by Euler, the first of them, ζ, provides a solution to the Basel problem. In 1979 Apéry proved the irrationality of ζ, the values at negative integer points, also found by Euler, are rational numbers and play an important role in the theory of modular forms. Many generalizations of the Riemann zeta function, such as Dirichlet series, the Riemann zeta function ζ is a function of a complex variable s = σ + it. It can also be defined by the integral ζ =1 Γ ∫0 ∞ x s −1 e x −1 d x where Γ is the gamma function. The Riemann zeta function is defined as the continuation of the function defined for σ >1 by the sum of the preceding series. Leonhard Euler considered the series in 1740 for positive integer values of s. The above series is a prototypical Dirichlet series that converges absolutely to a function for s such that σ >1. Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex values s ≠1, for s =1 the series is the harmonic series which diverges to +∞, and lim s →1 ζ =1. Thus the Riemann zeta function is a function on the whole complex s-plane. For any positive even integer 2n, ζ = n +1 B2 n 2 n 2, where B2n is the 2nth Bernoulli number. For odd positive integers, no simple expression is known, although these values are thought to be related to the algebraic K-theory of the integers. For nonpositive integers, one has ζ = B n +1 n +1 for n ≥0 In particular, ζ = −12, Similarly to the above, this assigns a finite result to the series 1 +1 +1 +1 + ⋯. ζ ≈ −1.4603545 This is employed in calculating of kinetic boundary layer problems of linear kinetic equations, ζ =1 +12 +13 + ⋯ = ∞, if we approach from numbers larger than 1. Then this is the harmonic series, but its Cauchy principal value lim ε →0 ζ + ζ2 exists which is the Euler–Mascheroni constant γ =0. 5772…. ζ ≈2.612, This is employed in calculating the critical temperature for a Bose–Einstein condensate in a box with periodic boundary conditions, and for spin wave physics in magnetic systems