1.
3 21 polytope
–
In 7-dimensional geometry, the 321 polytope is a uniform 7-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper and he called it an 7-ic semi-regular figure. Its Coxeter symbol is 321, describing its bifurcating Coxeter-Dynkin diagram, the rectified 321 is constructed by points at the mid-edges of the 321. The birectified 321 is constructed by points at the face centers of the 321. The trirectified 321 is constructed by points at the centers of the 321. In 7-dimensional geometry, the 321 is a uniform polytope and it has 56 vertices, and 702 facets,126311 and 576 6-simplexes. For visualization this 7-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 56 vertices within an 18-gonal regular polygon and its 756 edges are drawn between 3 rings of 18 vertices, and 2 vertices in the center. Specific higher elements can also be extracted and drawn on this projection, the 1-skeleton of the 321 polytope is called a Gosset graph. This polytope, along with the 7-simplex, can tessellate 7-dimensional space, represented by 331 and it is also called the Hess polytope for Edmund Hess who first discovered it. It was enumerated by Thorold Gosset in his 1900 paper and he called it an 7-ic semi-regular figure. E. L. Elte named it V56 in his 1912 listing of semiregular polytopes. Coxeter called it 321 due to its bifurcating Coxeter-Dynkin diagram, having 3 branches of length 3,2, and 1, Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 3-node sequence. The facet information can be extracted from its Coxeter-Dynkin diagram, removing the node on the short branch leaves the 6-simplex. Removing the node on the end of the 2-length branch leaves the 6-orthoplex in its form,311. Every simplex facet touches an 6-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex, the vertex figure is determined by removing the ringed node and ringing the neighboring node. The 321 is fifth in a series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope, Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes. It is in a series of uniform polytopes and honeycombs
2.
2 31 polytope
–
In 7-dimensional geometry,231 is a uniform polytope, constructed from the E7 group. Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, the rectified 231 is constructed by points at the mid-edges of the 231. The 231 is composed of 126 vertices,2016 edges,10080 faces,20160 cells,16128 4-faces,4788 5-faces,632 6-faces and its vertex figure is a 6-demicube. Its 126 vertices represent the vectors of the simple Lie group E7. This polytope is the figure for a uniform tessellation of 7-dimensional space,331. E. L. Elte named it V126 in his 1912 listing of semiregular polytopes and it was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. Pentacontihexa-pentacosiheptacontihexa-exon - 56-576 facetted polyexon It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space, the facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on the branch leaves the 6-simplex. There are 576 of these facets and these facets are centered on the locations of the vertices of the 321 polytope. Removing the node on the end of the 3-length branch leaves the 221, there are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, the vertex figure is determined by removing the ringed node and ringing the neighboring node. The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231, rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram, removing the node on the short branch leaves the rectified 6-simplex. Removing the node on the end of the 2-length branch leaves the, removing the node on the end of the 3-length branch leaves the rectified 221. The vertex figure is determined by removing the ringed node and ringing the neighboring node, list of E7 polytopes Elte, E. L. The Semiregular Polytopes of the Hyperspaces, Groningen, University of Groningen H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Klitzing, Richard. X3o3o3o *c3o3o3o - laq, o3x3o3o *c3o3o3o - rolaq
3.
Rectified 3 21 polytope
–
In 7-dimensional geometry, the 321 polytope is a uniform 7-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper and he called it an 7-ic semi-regular figure. Its Coxeter symbol is 321, describing its bifurcating Coxeter-Dynkin diagram, the rectified 321 is constructed by points at the mid-edges of the 321. The birectified 321 is constructed by points at the face centers of the 321. The trirectified 321 is constructed by points at the centers of the 321. In 7-dimensional geometry, the 321 is a uniform polytope and it has 56 vertices, and 702 facets,126311 and 576 6-simplexes. For visualization this 7-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 56 vertices within an 18-gonal regular polygon and its 756 edges are drawn between 3 rings of 18 vertices, and 2 vertices in the center. Specific higher elements can also be extracted and drawn on this projection, the 1-skeleton of the 321 polytope is called a Gosset graph. This polytope, along with the 7-simplex, can tessellate 7-dimensional space, represented by 331 and it is also called the Hess polytope for Edmund Hess who first discovered it. It was enumerated by Thorold Gosset in his 1900 paper and he called it an 7-ic semi-regular figure. E. L. Elte named it V56 in his 1912 listing of semiregular polytopes. Coxeter called it 321 due to its bifurcating Coxeter-Dynkin diagram, having 3 branches of length 3,2, and 1, Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 3-node sequence. The facet information can be extracted from its Coxeter-Dynkin diagram, removing the node on the short branch leaves the 6-simplex. Removing the node on the end of the 2-length branch leaves the 6-orthoplex in its form,311. Every simplex facet touches an 6-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex, the vertex figure is determined by removing the ringed node and ringing the neighboring node. The 321 is fifth in a series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope, Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes. It is in a series of uniform polytopes and honeycombs
4.
Rectified 2 31 polytope
–
In 7-dimensional geometry,231 is a uniform polytope, constructed from the E7 group. Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, the rectified 231 is constructed by points at the mid-edges of the 231. The 231 is composed of 126 vertices,2016 edges,10080 faces,20160 cells,16128 4-faces,4788 5-faces,632 6-faces and its vertex figure is a 6-demicube. Its 126 vertices represent the vectors of the simple Lie group E7. This polytope is the figure for a uniform tessellation of 7-dimensional space,331. E. L. Elte named it V126 in his 1912 listing of semiregular polytopes and it was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. Pentacontihexa-pentacosiheptacontihexa-exon - 56-576 facetted polyexon It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space, the facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on the branch leaves the 6-simplex. There are 576 of these facets and these facets are centered on the locations of the vertices of the 321 polytope. Removing the node on the end of the 3-length branch leaves the 221, there are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, the vertex figure is determined by removing the ringed node and ringing the neighboring node. The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231, rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram, removing the node on the short branch leaves the rectified 6-simplex. Removing the node on the end of the 2-length branch leaves the, removing the node on the end of the 3-length branch leaves the rectified 221. The vertex figure is determined by removing the ringed node and ringing the neighboring node, list of E7 polytopes Elte, E. L. The Semiregular Polytopes of the Hyperspaces, Groningen, University of Groningen H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Klitzing, Richard. X3o3o3o *c3o3o3o - laq, o3x3o3o *c3o3o3o - rolaq
5.
Rectified 1 32 polytope
–
In 7-dimensional geometry,132 is a uniform polytope, constructed from the E7 group. Its Coxeter symbol is 132, describing its bifurcating Coxeter-Dynkin diagram, the rectified 132 is constructed by points at the mid-edges of the 132. This polytope can tessellate 7-dimensional space, with symbol 133, and it is the Voronoi cell of the dual E7* lattice. Emanuel Lodewijk Elte named it V576 in his 1912 listing of semiregular polytopes, Coxeter called it 132 for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node branch. Pentacontihexa-hecatonicosihexa-exon - 56-126 facetted polyexon It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space and this makes the birectified 6-simplex,032, The 132 is third in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The next figure is the Euclidean honeycomb 133 and the final is a noncompact hyperbolic honeycomb,134, the rectified 132 is a rectification of the 132 polytope, creating new vertices on the center of edge of the 132. Its vertex figure is a prism, the product of a regular tetrahedra and triangle, doubled into a prism. Rectified pentacontihexa-hecatonicosihexa-exon for rectified 56-126 facetted polyexon It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space and these mirrors are represented by its Coxeter-Dynkin diagram, and the ring represents the position of the active mirror. This makes the tetrahedron-triangle duoprism prism, ××, List of E7 polytopes Elte, E. L. The Semiregular Polytopes of the Hyperspaces, Groningen, University of Groningen H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Klitzing, Richard. O3o3o3x *c3o3o3o - lin, o3o3x3o *c3o3o3o - rolin
6.
Projection (linear algebra)
–
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself such that P2 = P. That is, whenever P is applied twice to any value, though abstract, this definition of projection formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on an object by examining the effect of the projection on points in the object. For example, the function maps the point in three-dimensional space R3 to the point is an orthogonal projection onto the x–y plane. This function is represented by the matrix P =, the action of this matrix on an arbitrary vector is P =. To see that P is indeed a projection, i. e. P = P2, a simple example of a non-orthogonal projection is P =. Via matrix multiplication, one sees that P2 = = = P. proving that P is indeed a projection, the projection P is orthogonal if and only if α =0. Let W be a finite dimensional space and P be a projection on W. Suppose the subspaces U and V are the range and kernel of P respectively, then P has the following properties, By definition, P is idempotent. P is the identity operator I on U ∀ x ∈ U, P x = x and we have a direct sum W = U ⊕ V. Every vector x ∈ W may be decomposed uniquely as x = u + v with u = P x and v = x − P x = x, the range and kernel of a projection are complementary, as are P and Q = I − P. The operator Q is also a projection and the range and kernel of P become the kernel and range of Q and we say P is a projection along V onto U and Q is a projection along U onto V. In infinite dimensional spaces, the spectrum of a projection is contained in as −1 =1 λ I +1 λ P. Only 0 or 1 can be an eigenvalue of a projection, the corresponding eigenspaces are the kernel and range of the projection. Decomposition of a space into direct sums is not unique in general. Therefore, given a subspace V, there may be many projections whose range is V, if a projection is nontrivial it has minimal polynomial x 2 − x = x, which factors into distinct roots, and thus P is diagonalizable. The product of projections is not, in general, a projection, if projections commute, then their product is a projection. When the vector space W has a product and is complete the concept of orthogonality can be used
7.
Coxeter element
–
In mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. Note that this assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple classes of Coxeter elements. There are many different ways to define the Coxeter number h of a root system. A Coxeter element is a product of all simple reflections, the product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. The Coxeter number is the number of roots divided by the rank, the number of reflections in the Coxeter group is half the number of roots. The Coxeter number is the order of any Coxeter element, if the highest root is ∑miαi for simple roots αi, then the Coxeter number is 1 + ∑mi The dimension of the corresponding Lie algebra is n, where n is the rank and h is the Coxeter number. The Coxeter number is the highest degree of an invariant of the Coxeter group acting on polynomials. Notice that if m is a degree of a fundamental invariant then so is h +2 − m, the eigenvalues of a Coxeter element are the numbers e2πi/h as m runs through the degrees of the fundamental invariants. Since this starts with m =2, these include the primitive hth root of unity, ζh = e2πi/h, an example, has h=30, so 64*30/g =12 -3 -6 -5 + 4/3 + 4/5 = 2/15, so g = 1920*15/2= 960*15 =14400. Coxeter elements of A n −1 ≅ S n, considered as the group on n elements, are n-cycles, for simple reflections the adjacent transpositions, …. The dihedral group Dihm is generated by two reflections that form an angle of 2 π /2 m, and thus their product is a rotation by 2 π / m. For a given Coxeter element w, there is a unique plane P on which w acts by rotation by 2π/h and this is called the Coxeter plane and is the plane on which P has eigenvalues e2πi/h and e−2πi/h = e2πi/h. This plane was first systematically studied in, and subsequently used in to provide uniform proofs about properties of Coxeter elements, for polytopes, a vertex may map to zero, as depicted below. Projections onto the Coxeter plane are depicted below for the Platonic solids, in three dimensions, the symmetry of a regular polyhedron, with one directed petrie polygon marked, defined as a composite of 3 reflections, has rotoinversion symmetry Sh, order h. Adding a mirror, the symmetry can be doubled to symmetry, Dhd. In orthogonal 2D projection, this becomes dihedral symmetry, Dihh, in four dimension, the symmetry of a regular polychoron, with one directed petrie polygon marked is a double rotation, defined as a composite of 4 reflections, with symmetry +1/h, order h. In five dimension, the symmetry of a regular polyteron, with one directed petrie polygon marked, is represented by the composite of 5 reflections
8.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
9.
Uniform polytope
–
A uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons and this is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures are allowed, which expand the possible solutions. A strict definition requires uniform polytopes to be finite, while a more expansive definition allows uniform honeycombs of Euclidean, nearly every uniform polytope can be generated by a Wythoff construction, and represented by a Coxeter diagram. Notable exceptions include the antiprism in four dimensions. Equivalently, the Wythoffian polytopes can be generated by applying basic operations to the regular polytopes in that dimension and this approach was first used by Johannes Kepler, and is the basis of the Conway polyhedron notation. Regular n-polytopes have n orders of rectification, the zeroth rectification is the original form. The th rectification is the dual, an extended Schläfli symbol can be used for representing rectified forms, with a single subscript, k-th rectification = tk = kr. Truncation operations that can be applied to regular n-polytopes in any combination, the resulting Coxeter diagram has two ringed nodes, and the operation is named for the distance between them. Truncation cuts vertices, cantellation cuts edges, runcination cuts faces, each higher operation also cuts lower ones too, so a cantellation also truncates vertices. T0,1 or t, Truncation - applied to polygons, a truncation removes vertices, and inserts a new facet in place of each former vertex. Faces are truncated, doubling their edges and it can be seen as rectifying its rectification. A cantellation truncates both vertices and edges and replaces them with new facets, cells are replaced by topologically expanded copies of themselves. There are higher cantellations also, bicantellation t1,3 or r2r, tricantellation t2,4 or r3r, quadricantellation t3,5 or r4r, etc. t0,1,2 or tr, Cantitruncation - applied to polyhedra and higher. It can be seen as a truncation of its rectification, a cantitruncation truncates both vertices and edges and replaces them with new facets. Cells are replaced by topologically expanded copies of themselves, runcination truncates vertices, edges, and faces, replacing them each with new facets. 4-faces are replaced by topologically expanded copies of themselves, There are higher runcinations also, biruncination t1,4, triruncination t2,5, etc. t0,4 or 2r2r, Sterication - applied to Uniform 5-polytopes and higher. It can be seen as birectifying its birectification, Sterication truncates vertices, edges, faces, and cells, replacing each with new facets
10.
E7 (mathematics)
–
The E7 algebra is thus one of the five exceptional cases. The fundamental group of the form, compact real form, or any algebraic version of E7 is the cyclic group Z/2Z. The dimension of its representation is 56. There is a unique complex Lie algebra of type E7, corresponding to a group of complex dimension 133. The complex adjoint Lie group E7 of complex dimension 133 can be considered as a simple real Lie group of real dimension 266. This has fundamental group Z/2Z, has maximal compact subgroup the compact form of E7, the split form, EV, which has maximal compact subgroup SU/, fundamental group cyclic of order 4 and outer automorphism group of order 2. EVI, which has maximal compact subgroup SU·SO/, fundamental group non-cyclic of order 4, EVII, which has maximal compact subgroup SO·E6/, infinite cyclic findamental group and outer automorphism group of order 2. For a complete list of forms of simple Lie algebras. The compact real form of E7 is the group of the 64-dimensional exceptional compact Riemannian symmetric space EVI. This can be seen using a construction known as the magic square, due to Hans Freudenthal. The Tits–Koecher construction produces forms of the E7 Lie algebra from Albert algebras, over finite fields, the Lang–Steinberg theorem implies that H1 =0, meaning that E7 has no twisted forms, see below. The Dynkin diagram for E7 is given by, even though the roots span a 7-dimensional space, it is more symmetric and convenient to represent them as vectors lying in a 7-dimensional subspace of an 8-dimensional vector space. The roots are all the 8×7 permutations of and all the permutations of Note that the 7-dimensional subspace is the subspace where the sum of all the eight coordinates is zero. The simple roots are We have ordered them so that their corresponding nodes in the Dynkin diagram are ordered left to right with the side node last. Given the E7 Cartan matrix and a Dynkin diagram node ordering of, the Weyl group of E7 is of order 2903040, it is the direct product of the cyclic group of order 2 and the unique simple group of order 1451520. E7 has an SU subalgebra, as is evident by noting that in the 8-dimensional description of the root system, in addition to the 133-dimensional adjoint representation, there is a 56-dimensional vector representation, to be found in the E8 adjoint representation. The characters of finite dimensional representations of the real and complex Lie algebras, there exist non-isomorphic irreducible representation of dimensions 1903725824,16349520330, etc. The fundamental representations are those with dimensions 133,8645,365750,27664,1539,56 and 912, E7 is the automorphism group of the following pair of polynomials in 56 non-commutative variables
11.
Uniform 7-polytope
–
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets, a uniform 7-polytope is one which is vertex-transitive, and constructed from uniform 6-polytope facets. Regular 7-polytopes are represented by the Schläfli symbol with u 6-polytopes facets around each 4-face, There are exactly three such convex regular 7-polytopes, - 7-simplex - 7-cube - 7-orthoplex There are no nonconvex regular 7-polytopes. The topology of any given 7-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, There are 71 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Norman Johnsons truncation names are given, bowers names and acronym are also given for cross-referencing. See also a list of A7 polytopes for symmetric Coxeter plane graphs of these polytopes, the B7 family has symmetry of order 645120. There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings, see also a list of B7 polytopes for symmetric Coxeter plane graphs of these polytopes. The D7 family has symmetry of order 322560 and this family has 3×32−1=95 Wythoffian uniform polytopes, generated by marking one or more nodes of the D7 Coxeter-Dynkin diagram. Of these,63 are repeated from the B7 family and 32 are unique to this family, bowers names and acronym are given for cross-referencing. See also list of D7 polytopes for Coxeter plane graphs of these polytopes, the E7 Coxeter group has order 2,903,040. There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings, see also a list of E7 polytopes for symmetric Coxeter plane graphs of these polytopes. Coxeter calls the first one a quarter 6-cubic honeycomb, however, there are 3 noncompact hyperbolic Coxeter groups of rank 7, each generating uniform honeycombs in 6-space as permutations of rings of the Coxeter diagrams. The reflective 7-dimensional uniform polytopes are constructed through a Wythoff construction process, and represented by a Coxeter-Dynkin diagram, an active mirror is represented by a ringed node. Each combination of active mirrors generates a unique uniform polytope, Uniform polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may be named in two equally valid ways, here are the primary operators available for constructing and naming the uniform 7-polytopes. The prismatic forms and bifurcating graphs can use the same truncation indexing notation, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 A. S. M
12.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
13.
Uniform 1 k2 polytope
–
In geometry, 1k2 polytope is a uniform polytope in n-dimensions constructed from the En Coxeter group. The family was named by their Coxeter symbol 1k2 by its bifurcating Coxeter-Dynkin diagram and it can be named by an extended Schläfli symbol. The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-demicube in 5-dimensions, each polytope is constructed from 1k-1,2 and -demicube facets. Each has a figure of a polytope is a birectified n-simplex. The sequence ends with k=6, as a tessellation of 9-dimensional hyperbolic space. Geometrical Deduction of Semiregular from Regular Polytopes and Space Fillings, alicia Boole Stott, Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, Vol.11, No. 1, pp. 1–24 plus 3 plates,1910, Geometrical Deduction of Semiregular from Regular Polytopes and Space Fillings. Analytical treatment of the polytopes regularly derived from the regular polytopes, Ver. der Koninklijke Akad. van Wetenschappen te Amsterdam, H. S. M. Coxeter, Regular and Semi-Regular Polytopes, Part I, Mathematische Zeitschrift, Springer, Berlin,1940 N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, dissertation, University of Toronto,1966 H. S. M. Coxeter, Regular and Semi-Regular Polytopes, Part II, Mathematische Zeitschrift, Springer, Coxeter, Regular and Semi-Regular Polytopes, Part III, Mathematische Zeitschrift, Springer, Berlin,1988 PolyGloss v0.05, Gosset figures
14.
1 22 polytope
–
In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Eltes 1912 listing of semiregular polytopes and its Coxeter symbol is 122, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. There are two rectifications of the 122, construcated by positions points on the elements of 122, the rectified 122 is constructed by points at the mid-edges of the 122. The birectified 122 is constructed by points at the face centers of the 122. The 1_22 polytope contains 72 vertices, and 54 5-demicubic facets and it has a birectified 5-simplex vertex figure. Its 72 vertices represent the vectors of the simple Lie group E6. Pentacontatetra-peton - 54-facetted polypeton It is created by a Wythoff construction upon a set of 6 hyperplane mirrors in 6-dimensional space, the facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on either of 2-length branches leaves the 5-demicube,131, the vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 5-simplex,022, the regular complex polyhedron 332, in C2 has a real representation as the 122 polytope in 4-dimensional space. It has 72 vertices,216 3-edges, and 5433 faces and its complex reflection group is 332, order 1296. It has a half-symmetry quasiregular construction as, as a rectification of the Hessian polyhedron, the 122 is related to the 24-cell by a geometric folding E6 → F4 of Coxeter-Dynkin diagrams, E6 corresponding to 122 in 6 dimensions, F4 to the 24-cell in 4 dimensions. This can be seen in the Coxeter plane projections, the 24 vertices of the 24-cell are projected in the same two rings as seen in the 122. This polytope is the figure for a uniform tessellation of 6-dimensional space,222. The rectified 122 polytope can tessellate 6-dimensional space as the Voronoi cell of the E6* honeycomb lattice, removing the ring on the short branch leaves the birectified 5-simplex. Removing the ring on the either 2-length branch leaves the birectified 5-orthoplex in its alternated form, the vertex figure is determined by removing the ringed node and ringing the neighboring ring. This makes 3-3 duoprism prism, ××, Vertices are colored by their multiplicity in this projection, in progressive order, red, orange, yellow. Truncated 122 polytope Its construction is based on the E6 group, Vertices are colored by their multiplicity in this projection, in progressive order, red, orange, yellow. Bicantellated 221 Birectified pentacontitetrapeton Vertices are colored by their multiplicity in this projection, in order, red, orange
15.
6-demicube
–
In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube with alternated vertices truncated. It is part of an infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 131 from its Coxeter diagram, with a ring on one of the 1-length branches. It can named similarly by a 3-dimensional exponential Schläfli symbol or, cartesian coordinates for the vertices of a demihexeract centered at the origin are alternate halves of the hexeract, with an odd number of plus signs. The fifth figure is a Euclidean honeycomb,331, and the final is a noncompact hyperbolic honeycomb,431, each progressive uniform polytope is constructed from the previous as its vertex figure. It is also the second in a series of uniform polytopes and honeycombs. The next figure is the Euclidean honeycomb 133 and the final is a noncompact hyperbolic honeycomb,134. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 6D uniform polytopes x3o3o *b3o3o3o – hax, archived from the original on 4 February 2007
16.
5-demicube
–
In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube with alternated vertices truncated. It was discovered by Thorold Gosset, since it was the only semiregular 5-polytope, he called it a 5-ic semi-regular. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 121 from its Coxeter diagram, which has branches of length 2,1 and 1 with a ringed node on one of the short branches, and Schläfli symbol or. It exists in the k21 polytope family as 121 with the Gosset polytopes,221,321, the graph formed by the vertices and edges of the demipenteract is sometimes called the Clebsch graph, though that name sometimes refers to the folded cube graph of order five instead. Cartesian coordinates for the vertices of a demipenteract centered at the origin and edge length 2√2 are alternate halves of the penteract and it is a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family. There are 23 Uniform 5-polytopes that can be constructed from the D5 symmetry of the demipenteract,8 of which are unique to this family, the 5-demicube is third in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope, Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes. In Coxeters notation the 5-demicube is given the symbol 121, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 5D uniform polytopes x3o3o *b3o3o - hin, archived from the original on 4 February 2007
17.
5-simplex
–
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices,15 edges,20 triangle faces,15 tetrahedral cells and it has a dihedral angle of cos−1, or approximately 78. 46°. It can also be called a hexateron, or hexa-5-tope, as a 6-facetted polytope in 5-dimensions, the name hexateron is derived from hexa- for having six facets and teron for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix, the hexateron can be constructed from a 5-cell by adding a 6th vertex such that it is equidistant from all the other vertices of the 5-cell. These construction can be seen as facets of the 6-orthoplex or rectified 6-cube respectively and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral dihedron and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron, the 5-simplex, as 220 polytope is first in dimensional series 22k. The regular 5-simplex is one of 19 uniform polytera based on the Coxeter group, the 5-simplex can also be considered a 5-cell pyramid, constructed as a 5-cell base in a 4-space hyperplane, and an apex point above the hyperplane. The five sides of the pyramid are made of 5-cell cells, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 5D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary
18.
5-cell
–
In geometry, the 5-cell is a four-dimensional object bounded by 5 tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid and it is a 4-simplex, the simplest possible convex regular 4-polytope, and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The pentachoron is a four dimensional pyramid with a tetrahedral base, the regular 5-cell is bounded by regular tetrahedra, and is one of the six regular convex 4-polytopes, represented by Schläfli symbol. Pentachoron 4-simplex Pentatope Pentahedroid Pen Hyperpyramid, tetrahedral pyramid The 5-cell is self-dual and its maximal intersection with 3-dimensional space is the triangular prism. Its dihedral angle is cos−1, or approximately 75. 52°, the 5-cell can be constructed from a tetrahedron by adding a 5th vertex such that it is equidistant from all the other vertices of the tetrahedron. The simplest set of coordinates is, with edge length 2√2, a 5-cell can be constructed as a Boerdijk–Coxeter helix of five chained tetrahedra, folded into a 4-dimensional ring. The 10 triangle faces can be seen in a 2D net within a triangular tiling, with 6 triangles around every vertex, the purple edges represent the Petrie polygon of the 5-cell. The A4 Coxeter plane projects the 5-cell into a regular pentagon, the four sides of the pyramid are made of tetrahedron cells. Many uniform 5-polytopes have tetrahedral pyramid vertex figures, Other uniform 5-polytopes have irregular 5-cell vertex figures, the symmetry of a vertex figure of a uniform polytope is represented by removing the ringed nodes of the Coxeter diagram. The compound of two 5-cells in dual configurations can be seen in this A5 Coxeter plane projection, with a red and this compound has symmetry, order 240. The intersection of these two 5-cells is a uniform birectified 5-cell, the pentachoron is the simplest of 9 uniform polychora constructed from the Coxeter group. It is in the sequence of regular polychora, the tesseract, 120-cell, of Euclidean 4-space, all of these have a tetrahedral vertex figure. It is similar to three regular polychora, the tesseract, 600-cell of Euclidean 4-space, and the order-6 tetrahedral honeycomb of hyperbolic space, all of these have a tetrahedral cell. T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D
19.
16-cell
–
In four-dimensional geometry, a 16-cell is a regular convex 4-polytope. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century and it is also called C16, hexadecachoron, or hexdecahedroid. It is a part of an family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the tesseract, conways name for a cross-polytope is orthoplex, for orthant complex. The 16-cell has 16 cells as the tesseract has 16 vertices and it is bounded by 16 cells, all of which are regular tetrahedra. It has 32 triangular faces,24 edges, and 8 vertices, the 24 edges bound 6 squares lying in the 6 coordinate planes. The eight vertices of the 16-cell are, all vertices are connected by edges except opposite pairs. The Schläfli symbol of the 16-cell is and its vertex figure is a regular octahedron. There are 8 tetrahedra,12 triangles, and 6 edges meeting at every vertex and its edge figure is a square. There are 4 tetrahedra and 4 triangles meeting at every edge, the 16-cell can be decomposed into two similar disjoint circular chains of eight tetrahedrons each, four edges long. Each chain, when stretched out straight, forms a Boerdijk–Coxeter helix and this decomposition can be seen in a 4-4 duoantiprism construction of the 16-cell, or, Schläfli symbol ⨂ or ss, symmetry, order 64. The 16-cell can be dissected into two octahedral pyramids, which share a new octahedron base through the 16-cell center, one can tessellate 4-dimensional Euclidean space by regular 16-cells. This is called the 16-cell honeycomb and has Schläfli symbol, hence, the 16-cell has a dihedral angle of 120°. The dual tessellation, 24-cell honeycomb, is made of by regular 24-cells, together with the tesseractic honeycomb, these are the only three regular tessellations of R4. Each 16-cell has 16 neighbors with which it shares a tetrahedron,24 neighbors with which it only an edge. Twenty-four 16-cells meet at any vertex in this tessellation. A 16-cell can constructed from two Boerdijk–Coxeter helixes of eight chained tetrahedra, each folded into a 4-dimensional ring, the 16 triangle faces can be seen in a 2D net within a triangular tiling, with 6 triangles around every vertex. The purple edges represent the Petrie polygon of the 16-cell, the cell-first parallel projection of the 16-cell into 3-space has a cubical envelope
20.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
21.
Triangle
–
A triangle is a polygon with three edges and three vertices. It is one of the shapes in geometry. A triangle with vertices A, B, and C is denoted △ A B C, in Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. This article is about triangles in Euclidean geometry except where otherwise noted, triangles can be classified according to the lengths of their sides, An equilateral triangle has all sides the same length. An equilateral triangle is also a polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length, some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides. The latter definition would make all equilateral triangles isosceles triangles, the 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths, equivalently, it has all angles of different measure. Hatch marks, also called tick marks, are used in diagrams of triangles, a side can be marked with a pattern of ticks, short line segments in the form of tally marks, two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is no more than 3 ticks. Similarly, patterns of 1,2, or 3 concentric arcs inside the angles are used to indicate equal angles, triangles can also be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°, the side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti of the triangle, special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 +42 =52, in this situation,3,4, and 5 are a Pythagorean triple. The other one is a triangle that has 2 angles that each measure 45 degrees. Triangles that do not have an angle measuring 90° are called oblique triangles, a triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, a triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, a triangle with an interior angle of 180° is degenerate
22.
Rectified 6-simplexes
–
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex. There are three degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the rectified 6-simplex are located at the edge-centers of the 6-simplex, vertices of the birectified 6-simplex are located in the triangular face centers of the 6-simplex. E. L. Elte identified it in 1912 as a semiregular polytope and it is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as. Rectified heptapeton The vertices of the rectified 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the rectified 7-orthoplex. E. L. Elte identified it in 1912 as a semiregular polytope and it is also called 03,2 for its branching Coxeter-Dynkin diagram, shown as. Birectified heptapeton The vertices of the birectified 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the birectified 7-orthoplex. The rectified 6-simplex polytope is the figure of the 7-demicube. These polytopes are a part of 35 uniform 6-polytopes based on the Coxeter group, Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. O3x3o3o3o3o - ril, o3x3o3o3o3o - bril Olshevsky, George, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary
23.
Petrie polygon
–
In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon such that every consecutive sides belong to one of the facets. The Petrie polygon of a polygon is the regular polygon itself. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the interior to it. The plane in question is the Coxeter plane of the group of the polygon. These polygons and projected graphs are useful in visualizing symmetric structure of the regular polytopes. John Flinders Petrie was the son of Egyptologist Flinders Petrie. He was born in 1907 and as a schoolboy showed remarkable promise of mathematical ability, in periods of intense concentration he could answer questions about complicated four-dimensional objects by visualizing them. He first noted the importance of the skew polygons which appear on the surface of regular polyhedra. When my incredulity had begun to subside, he described them to me, one consisting of squares, six at each vertex, in 1938 Petrie collaborated with Coxeter, Patrick du Val, and H. T. Flather to produce The Fifty-Nine Icosahedra for publication, realizing the geometric facility of the skew polygons used by Petrie, Coxeter named them after his friend when he wrote Regular Polytopes. In 1972, a few months after his retirement, Petrie was killed by a car attempting to cross a motorway near his home in Surrey. The idea of Petrie polygons was later extended to semiregular polytopes, the Petrie polygon of the regular polyhedron has h sides, where h+2=24/. The regular duals, and, are contained within the same projected Petrie polygon, three of the Kepler–Poinsot polyhedra have hexagonal, and decagrammic, petrie polygons. The Petrie polygon projections are most useful for visualization of polytopes of dimension four and this table represents Petrie polygon projections of 3 regular families, and the exceptional Lie group En which generate semiregular and uniform polytopes for dimensions 4 to 8. Coxeter, H. S. M. Regular Polytopes, 3rd ed, Section 4.3 Flags and Orthoschemes, Section 11.3 Petrie polygons Ball, W. W. R. and H. S. M. Coxeter Mathematical Recreations and Essays, 13th ed. The Beauty of Geometry, Twelve Essays, Dover Publications LCCN 99-35678 Peter McMullen, Egon Schulte Abstract Regular Polytopes, ISBN 0-521-81496-0 Steinberg, Robert, ON THE NUMBER OF SIDES OF A PETRIE POLYGON Weisstein, Eric W. Petrie polygon. Weisstein, Eric W. Cross polytope graphs, Weisstein, Eric W. Gosset graph 3_21
24.
Octadecagon
–
An octadecagon or 18-gon is an eighteen-sided polygon. A regular octadecagon has a Schläfli symbol and can be constructed as a truncated enneagon, t. As 18 =2 ×32, a regular octadecagon cannot be constructed using a compass, however, it is constructible using neusis, or an angle trisection with a tomahawk. The following approximate construction is similar to that of the enneagon. It is also feasible with exclusive use of compass and straightedge, the regular octadecagon has Dih18 symmetry, order 36. There are 5 subgroup dihedral symmetries, Dih9, and, and 6 cyclic group symmetries and these 15 symmetries can be seen in 12 distinct symmetries on the octadecagon. John Conway labels these by a letter and group order, full symmetry of the regular form is r36 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices or edges, cyclic symmetries in the middle column are labeled as g for their central gyration orders. Each subgroup symmetry allows one or more degrees of freedom for irregular forms, only the g18 subgroup has no degrees of freedom but can seen as directed edges. A regular triangle, nonagon, and octadecagon can completely surround a point in the plane, one of 17 different combinations of polygons with this property. The regular octadecagon can tessellate the plane with concave hexagonal gaps, and another tiling mixes in nonagons and octagonal gaps. The first tiling is related to a hexagonal tiling. An octadecagram is an 18-sided star polygon, represented by symbol, there are two regular star polygons, and, using the same points, but connecting every fifth or seventh points. Deeper truncations of the regular enneagon and enneagrams can produce isogonal intermediate octadecagram forms with equally spaced vertices, other truncations form double coverings, t==2, t==2, t==2. The regular octadecagon is the Petrie polygon for a number of higher-dimensional polytopes, shown in these orthogonal projections from Coxeter planes, octadecagon Weisstein
25.
Coxeter group
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators
26.
Convex polytope
–
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn. Some authors use the terms polytope and convex polyhedron interchangeably. In addition, some require a polytope to be a bounded set. The terms bounded/unbounded convex polytope will be used whenever the boundedness is critical to the discussed issue. Yet other texts treat a convex n-polytope as a surface or -manifold, Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. A comprehensive and influential book in the subject, called Convex Polytopes, was published in 1967 by Branko Grünbaum, in 2003 the 2nd edition of the book was published, with significant additional material contributed by new writers. In Grünbaums book, and in other texts in discrete geometry. Grünbaum points out that this is solely to avoid the repetition of the word convex. A polytope is called if it is an n-dimensional object in Rn. Many examples of bounded convex polytopes can be found in the article polyhedron, a convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaums definition is in terms of a set of points in space. Other important definitions are, as the intersection of half-spaces and as the hull of a set of points. This is equivalent to defining a bounded convex polytope as the hull of a finite set of points. Such a definition is called a vertex representation, for a compact convex polytope, the minimal V-description is unique and it is given by the set of the vertices of the polytope. A convex polytope may be defined as an intersection of a number of half-spaces. Such definition is called a half-space representation, there exist infinitely many H-descriptions of a convex polytope. However, for a convex polytope, the minimal H-description is in fact unique and is given by the set of the facet-defining halfspaces. A closed half-space can be written as an inequality, a 1 x 1 + a 2 x 2 + ⋯ + a n x n ≤ b where n is the dimension of the space containing the polytope under consideration
27.
Honeycomb (geometry)
–
In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space, honeycombs are usually constructed in ordinary Euclidean space. They may also be constructed in non-Euclidean spaces, such as hyperbolic honeycombs, any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space. There are infinitely many honeycombs, which have only been partially classified, the more regular ones have attracted the most interest, while a rich and varied assortment of others continue to be discovered. The simplest honeycombs to build are formed from stacked layers or slabs of prisms based on some tessellations of the plane, in particular, for every parallelepiped, copies can fill space, with the cubic honeycomb being special because it is the only regular honeycomb in ordinary space. Another interesting family is the Hill tetrahedra and their generalizations, which can tile the space. A 3-dimensional uniform honeycomb is a honeycomb in 3-space composed of polyhedral cells. There are 28 convex examples in Euclidean 3-space, also called the Archimedean honeycombs, a honeycomb is called regular if the group of isometries preserving the tiling acts transitively on flags, where a flag is a vertex lying on an edge lying on a face lying on a cell. Every regular honeycomb is automatically uniform, however, there is just one regular honeycomb in Euclidean 3-space, the cubic honeycomb. An infinite number of unique honeycombs can be created by order of patterns of repeating these slab layers. A honeycomb having all cells identical within its symmetries is said to be cell-transitive or isochoric, in the 3-dimensional euclidean space, a cell of such a honeycomb is said to be a space-filling polyhedron. A necessary condition for a polyhedron to be a space-filling polyhedron is that its Dehn invariant must be zero, five space-filling polyhedra can tessellate 3-dimensional euclidean space using translations only. They are called parallelohedra, Cubic honeycomb Hexagonal prismatic honeycomb Rhombic dodecahedral honeycomb Elongated dodecahedral honeycomb, bitruncated cubic honeycomb Other known examples of space-filling polyhedra include, The Triangular prismatic honeycomb. The gyrated triangular prismatic honeycomb The triakis truncated tetrahedral honeycomb, the Voronoi cells of the carbon atoms in diamond are this shape. The trapezo-rhombic dodecahedral honeycomb Isohedral tilings, sometimes, two or more different polyhedra may be combined to fill space. Two classes can be distinguished, Non-convex cells which pack without overlapping and these include a packing of the small stellated rhombic dodecahedron, as in the Yoshimoto Cube. Overlapping of cells whose positive and negative densities cancel out to form a uniformly dense continuum, in 3-dimensional hyperbolic space, the dihedral angle of a polyhedron depends on its size
28.
Voronoi diagram
–
In mathematics, a Voronoi diagram is a partitioning of a plane into regions based on distance to points in a specific subset of the plane. That set of points is specified beforehand, and for each seed there is a region consisting of all points closer to that seed than to any other. These regions are called Voronoi cells, the Voronoi diagram of a set of points is dual to its Delaunay triangulation. It is named after Georgy Voronoi, and is called a Voronoi tessellation, a Voronoi decomposition. Voronoi diagrams have practical and theoretical applications to a number of fields, mainly in science and technology. They are also known as Thiessen polygons, in the simplest case, shown in the first picture, we are given a finite set of points in the Euclidean plane. Each such cell is obtained from the intersection of half-spaces, the line segments of the Voronoi diagram are all the points in the plane that are equidistant to the two nearest sites. The Voronoi vertices are the points equidistant to three sites, let X be a metric space with distance function d. Let K be a set of indices and let k ∈ K be a tuple of nonempty subsets in the space X. In other words, if d = inf denotes the distance between the point x and the subset A, then R k = The Voronoi diagram is simply the tuple of cells k ∈ K. In principle some of the sites can intersect and even coincide, in addition, infinitely many sites are allowed in the definition, but again, in many cases only finitely many sites are considered. Sometimes the induced combinatorial structure is referred to as the Voronoi diagram, however, in general the Voronoi cells may not be convex or even connected. In the usual Euclidean space, we can rewrite the definition in usual terms. Each Voronoi polygon R k is associated with a generator point P k, let X be the set of all points in the Euclidean space. Let P1 be a point that generates its Voronoi region R1, P2 that generates R2, and P3 that generates R3, and so on. Then, as expressed by Tran et al all locations in the Voronoi polygon are closer to the point of that polygon than any other generator point in the Voronoi diagram in Euclidian plane. As a simple illustration, consider a group of shops in a city, suppose we want to estimate the number of customers of a given shop. With all else being equal, it is reasonable to assume that customers choose their preferred shop simply by distance considerations, they will go to the shop located nearest to them
29.
3 31 honeycomb
–
In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex. It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space, the facet information can be extracted from its Coxeter-Dynkin diagram. The edge figure is determined by removing the ringed node and ringing the neighboring node, the face figure is determined by removing the ringed node and ringing the neighboring node. The cell figure is determined by removing the ringed node of the face figure, each vertex of this tessellation is the center of a 6-sphere in the densest known packing in 7 dimensions, its kissing number is 126, represented by the vertices of its vertex figure 231. The 331 honeycombs vertex arrangement is called the E7 lattice, E ~7 contains A ~7 as a subgroup of index 144. The Voronoi cell of the E7* lattice is the 132 polytope and it is in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 GoogleBook H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, R. T. Worley, The Voronoi Region of E7*. Conway, John H. Sloane, Neil J. A, p124-125,8.2 The 7-dimensinoal lattices, E7 and E7*
30.
Harold Scott MacDonald Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M
31.
Wythoff construction
–
In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoffs kaleidoscopic construction and it is based on the idea of tiling a sphere, with spherical triangles – see Schwarz triangles. This construction arranges three mirrors at the sides of a triangle, like in a kaleidoscope, however, different from a kaleidoscope, the mirrors are not parallel, but intersect at a single point. They therefore enclose a spherical triangle on the surface of any sphere centered on that point, if the angles of the spherical triangle are chosen appropriately, the triangles will tile the sphere, one or more times. If one places a vertex at a point inside the spherical triangle enclosed by the mirrors. For a spherical triangle ABC we have four possibilities which will produce a uniform polyhedron and this produces a polyhedron with Wythoff symbol a|b c, where a equals π divided by the angle of the triangle at A, and similarly for b and c. A vertex is placed at a point on line AB so that it bisects the angle at C and this produces a polyhedron with Wythoff symbol a b|c. A vertex is placed so that it is on the incenter of ABC and this produces a polyhedron with Wythoff symbol a b c|. The vertex is at a point such that, when it is rotated around any of the corners by twice the angle at that point. Only even-numbered reflections of the vertex are used. The polyhedron has the Wythoff symbol |a b c, the process in general also applies for higher-dimensional regular polytopes, including the 4-dimensional uniform 4-polytopes. Uniform polytopes that cannot be created through a Wythoff mirror construction are called non-Wythoffian and they generally can be derived from Wythoffian forms either by alternation or by insertion of alternating layers of partial figures. Both of these types of figures will contain rotational symmetry, sometimes snub forms are considered Wythoffian, even though they can only be constructed by the alternation of omnitruncated forms. Wythoff symbol - a symbol for the Wythoff construction of uniform polyhedra, coxeter-Dynkin diagram - a generalized symbol for the Wythoff construction of uniform polytopes and honeycombs. Coxeter Regular Polytopes, Third edition, Dover edition, ISBN 0-486-61480-8 Coxeter The Beauty of Geometry, Twelve Essays, Dover Publications,1999, ISBN 0-486-40919-8 HarEl, Z. W. A. Wythoff, A relation between the polytopes of the C600-family, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings of the Section of Sciences,20 966–970, archived from the original on 4 February 2007. Displays Uniform Polyhedra using Wythoffs construction method Description of Wythoff Constructions Jenn, software that generates views of polyhedra and polychora from symmetry groups
32.
Triangular pyramid
–
In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face and it is a conic solid with polygonal base. A pyramid with a base has n +1 vertices, n +1 faces. A right pyramid has its apex directly above the centroid of its base, nonright pyramids are called oblique pyramids. A regular pyramid has a polygon base and is usually implied to be a right pyramid. When unspecified, a pyramid is usually assumed to be a square pyramid. A triangle-based pyramid is often called a tetrahedron. Among oblique pyramids, like acute and obtuse triangles, a pyramid can be called if its apex is above the interior of the base and obtuse if its apex is above the exterior of the base. A right-angled pyramid has its apex above an edge or vertex of the base, in a tetrahedron these qualifiers change based on which face is considered the base. Pyramids are a subclass of the prismatoids, pyramids can be doubled into bipyramids by adding a second offset point on the other side of the base plane. A right pyramid with a base has isosceles triangle sides, with symmetry is Cnv or. It can be given an extended Schläfli symbol ∨, representing a point, a join operation creates a new edge between all pairs of vertices of the two joined figures. The trigonal or triangular pyramid with all equilateral triangles faces becomes the regular tetrahedron, a lower symmetry case of the triangular pyramid is C3v, which has an equilateral triangle base, and 3 identical isosceles triangle sides. The square and pentagonal pyramids can also be composed of convex polygons. Right pyramids with regular star polygon bases are called star pyramids, for example, the pentagrammic pyramid has a pentagram base and 5 intersecting triangle sides. A right pyramid can be named as ∨P, where is the point, ∨ is a join operator. It has C1v symmetry from two different base-apex orientations, and C2v in its full symmetry, a rectangular right pyramid, written as ∨, and a rhombic pyramid, as ∨, both have symmetry C2v. The volume of a pyramid is V =13 b h and this works for any polygon, regular or non-regular, and any location of the apex, provided that h is measured as the perpendicular distance from the plane containing the base
33.
Phyllic disphenoid
–
In geometry, a disphenoid is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which two edges that are opposite each other have equal lengths. Other names for the shape are sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron. All the solid angles and vertex figures of a disphenoid are the same, however, a disphenoid is not a regular polyhedron, because, in general, its faces are not regular polygons, and its edges have three different lengths. If the faces of a disphenoid are equilateral triangles, it is a tetrahedron with Td tetrahedral symmetry. When the faces of a disphenoid are isosceles triangles, it is called a tetragonal disphenoid, in this case it has D2d dihedral symmetry. A sphenoid with scalene triangles as its faces is called a rhombic disphenoid, unlike the tetragonal disphenoid, the rhombic disphenoid has no reflection symmetry, so it is chiral. Both tetragonal disphenoids and rhombic disphenoids are isohedra, as well as being congruent to each other and it is not possible to construct a disphenoid with right triangle or obtuse triangle faces. When right triangles are glued together in the pattern of a disphenoid, two more types of tetrahedron generalize the disphenoid and have similar names. The digonal disphenoid has faces with two different shapes, both triangles, with two faces of each shape. The phyllic disphenoid similarly has faces with two shapes of scalene triangles, disphenoids can also be seen as digonal antiprisms or as alternated quadrilateral prisms. A tetrahedron is a if and only if its circumscribed parallelepiped is right-angled. We also have that a tetrahedron is a if and only if the center in the circumscribed sphere. The disphenoids are the polyhedra having infinitely many non-self-intersecting closed geodesics. On a disphenoid, all closed geodesics are non-self-intersecting and they are the polyhedra having a net in the shape of an acute triangle, divided into four similar triangles by segments connecting the edge midpoints. The volume of a disphenoid with opposite edges of length l, m and n is given by V =72. There is also the following interesting relation connecting the volume and the circumradius,16 T2 R2 = l 2 m 2 n 2 +9 V2, the squares of the lengths of the bimedians are 12,12,12. If the four faces of a tetrahedron have the same perimeter, if the four faces of a tetrahedron have the same area, then it is a disphenoid
34.
Isosceles triangle
–
In geometry, an isosceles triangle is a triangle that has two sides of equal length. By the isosceles triangle theorem, the two angles opposite the sides are themselves equal, while if the third side is different then the third angle is different. By the Steiner–Lehmus theorem, every triangle with two angle bisectors of equal length is isosceles, in an isosceles triangle that has exactly two equal sides, the equal sides are called legs and the third side is called the base. The angle included by the legs is called the vertex angle, the vertex opposite the base is called the apex. In the equilateral triangle case, since all sides are equal, any side can be called the base, if needed, and the term leg is not generally used. A triangle with two equal sides has exactly one axis of symmetry, which goes through the vertex angle. Thus the axis of symmetry coincides with the bisector of the vertex angle, the median drawn to the base, the altitude drawn from the vertex angle. Whether the isosceles triangle is acute, right or obtuse depends on the vertex angle, in Euclidean geometry, the base angles cannot be obtuse or right because their measures would sum to at least 180°, the total of all angles in any Euclidean triangle. The Euler line of any triangle goes through the orthocenter, its centroid. In an isosceles triangle with two equal sides, the Euler line coincides with the axis of symmetry. This can be seen as follows, if the vertex angle is acute, then the orthocenter, the centroid, and the circumcenter all fall inside the triangle. In an isosceles triangle the incenter lies on the Euler line, the Steiner inellipse of any triangle is the unique ellipse that is internally tangent to the triangles three sides at their midpoints. For any isosceles triangle with area T and perimeter p, we have 2 p b 3 − p 2 b 2 +16 T2 =0. By substituting the height, the formula for the area of a triangle can be derived from the general formula one-half the base times the height. This is what Herons formula reduces to in the isosceles case, if the apex angle and leg lengths of an isosceles triangle are known, then the area of that triangle is, T =2 = a 2 sin cos . This is derived by drawing a line from the base of the triangle. The bases of two right triangles are both equal to the hypotenuse times the sine of the bisected angle by definition of the term sine. For the same reason, the heights of these triangles are equal to the times the cosine of the bisected angle