1.
Decimal
–
This article aims to be an accessible introduction. For the mathematical definition, see Decimal representation, the decimal numeral system has ten as its base, which, in decimal, is written 10, as is the base in every positional numeral system. It is the base most widely used by modern civilizations. Decimal fractions have terminating decimal representations and other fractions have repeating decimal representations, Decimal notation is the writing of numbers in a base-ten numeral system. Examples are Brahmi numerals, Greek numerals, Hebrew numerals, Roman numerals, Roman numerals have symbols for the decimal powers and secondary symbols for half these values. Brahmi numerals have symbols for the nine numbers 1–9, the nine decades 10–90, plus a symbol for 100, Chinese numerals have symbols for 1–9, and additional symbols for powers of ten, which in modern usage reach 1072. Positional decimal systems include a zero and use symbols for the ten values to represent any number, positional notation uses positions for each power of ten, units, tens, hundreds, thousands, etc. The position of each digit within a number denotes the multiplier multiplied with that position has a value ten times that of the position to its right. There were at least two independent sources of positional decimal systems in ancient civilization, the Chinese counting rod system. Ten is the number which is the count of fingers and thumbs on both hands, the English word digit as well as its translation in many languages is also the anatomical term for fingers and toes. In English, decimal means tenth, decimate means reduce by a tenth, however, the symbols used in different areas are not identical, for instance, Western Arabic numerals differ from the forms used by other Arab cultures. A decimal fraction is a fraction the denominator of which is a power of ten. g, Decimal fractions 8/10, 1489/100, 24/100000, and 58900/10000 are expressed in decimal notation as 0.8,14.89,0.00024,5.8900 respectively. In English-speaking, some Latin American and many Asian countries, a period or raised period is used as the separator, in many other countries, particularly in Europe. The integer part, or integral part of a number is the part to the left of the decimal separator. The part from the separator to the right is the fractional part. It is usual for a number that consists only of a fractional part to have a leading zero in its notation. Any rational number with a denominator whose only prime factors are 2 and/or 5 may be expressed as a decimal fraction and has a finite decimal expansion. 1/2 =0.5 1/20 =0.05 1/5 =0.2 1/50 =0.02 1/4 =0.25 1/40 =0.025 1/25 =0.04 1/8 =0.125 1/125 =0.008 1/10 =0
2.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
3.
Tamil numerals
–
Traditionally Vattezhuttu characters were used, but now Arabic numerals have become commonplace. Old Tamil possesses a special character for zero and it is read as andru. But yet Modern Tamil renounces the use of its native character, Modern Tamil words for zero include சுழியம் or பூச்சியம். Tamil has a prefix for each number from 1 to 9. For instance, the word for fifty, ஐம்பது is a combination of ஐ, the prefix for nine changes with respect to the succeeding base 10. தொ+ the unvoiced consonant of the succeeding base 10 forms the prefix for nine, for instance,90 is தொ+ண், hence, தொண்ணூறு). These are typically void in the Tamil language except for some Hindu and Christian religious references, example அட்ட இலட்சுமிகள் in a Hindu context, unlike other Indian languages, Tamil has distinct digits for 10,100, and 1000. It also has characters for other number-based aspects of day-to-day life. − − − − − − − − − − − − There are two systems that can be used in the Tamil language, the Tamil system which is as follows. The following are the numbers of the Ancient Tamil Country. Sanskrit based multiples like lakhs are also followed just like other Indian languages and you can transcribe any fraction, by affixing -இல் after the denominator followed by the numerator. For instance, 1/41 can be said as நாற்பத்து ஒன்றில் ஒன்று, the suffixing of the -இல் requires you to change the last consonant of the number to its இ form. For example, மூன்று+இல் becomes மூன்றில், note the உ has been omitted, common fractions have names already allocated to them, hence, these names are often used rather than the above method. Other fractions are, Anu was considered as lowest fraction by ancient Tamils as size of smallest physical object, later, this term went to Sanskrit to refer directly atom. Decimal point is called புள்ளி in Tamil, for example,1.1 would be read as ஒன்று புள்ளி ஒன்று. Percentage is known as விழுக்காடு in Tamil or சதவீதம் and these words are simply added after a number to form percentages. For instance, four percent is நான்கு சதவீதம் or நான்கு விழுக்காடு, percentage symbol is also recognised and used. Ordinal numbers are formed by adding the suffix -ஆம் after the number, as always, when blending two words into one, an unvoiced form of the consonant as the one that the second starts with, is placed in between to blend
4.
Devanagari
–
Devanagari, also called Nagari, is an abugida alphabet of India and Nepal. It is written left to right, has a strong preference for symmetrical rounded shapes within squared outlines. The Nagari script has roots in the ancient Brāhmī script family, the Nagari script was in regular use by the 7th century CE and it was fully developed by about the end of first millennium. Nagari has been the primus inter pares of the Indic scripts, the Devanagari script is also used for classical Sanskrit texts. The Devanagari script is closely related to the Nandinagari script commonly found in ancient manuscripts of South India. Devanagari script has forty-seven primary characters, of which fourteen are vowels, the ancient Nagari script for Sanskrit had two additional consonantal characters. The script has no distinction similar to the capital and small letters of the Latin alphabet, generally the orthography of the script reflects the pronunciation of the language. Devanagari is part of the Brahmic family of scripts of India, Nepal, Tibet and it is a descendant of the Gupta script, along with Siddham and Sharada. Medieval inscriptions suggest widespread diffusion of the Nagari-related scripts, with biscripts presenting local script along with the adoption of Nagari scripts, the 7th-century Tibetan king Srong-tsan-gambo ordered that all foreign books be transcribed into the Tibetan language. Other closely related scripts such as Siddham Matrka was in use in Indonesia, Vietnam, Japan, Sharada remained in parallel use in Kashmir. Nāgarī is the Sanskrit feminine of Nāgara relating or belonging to a town or city and it is a phrasing with lipi as nāgarī lipi script relating to a city, or spoken in city. The use of the name devanāgarī is relatively recent, and the older term nāgarī is still common, the rapid spread of the term devanāgarī may be related to the almost exclusive use of this script to publish Sanskrit texts in print since the 1870s. As a Brahmic abugida, the principle of Devanagari is that each letter represents a consonant. This is usually written in Latin as a, though it is represented as in the International Phonetic Alphabet, the letter क is read ka, the two letters कन are kana, the three कनय are kanaya, etc. This cancels the inherent vowel, so that from क्नय knaya is derived क्नय् knay, the halant is often used for consonant clusters when typesetting conjunct ligatures is not feasible. Consonant clusters are written with ligatures, for example, the three consonants क्, न्, and य्, when written consecutively without virāma form कनय, as shown above. Alternatively, they may be joined as clusters to form क्नय knaya, कन्य kanya and this system was originally created for use with the Middle Indo-Aryan languages, which have a very limited number of clusters. When applied to Sanskrit, however, it added a deal of complexity to the script
5.
Chinese numerals
–
Chinese numerals are words and characters used to denote numbers in Chinese. Today speakers of Chinese use three written numeral systems, the system of Arabic numerals used worldwide, and two indigenous systems, the more familiar indigenous system is based on Chinese characters that correspond to numerals in the spoken language. These are shared with languages of the Chinese cultural sphere such as Japanese, Korean. The other indigenous system is the Suzhou numerals, or huama, a positional system and these were once used by Chinese mathematicians, and later in Chinese markets, such as those in Hong Kong before the 1990s, but have been gradually supplanted by Arabic numerals. The Chinese character numeral system consists of the Chinese characters used by the Chinese written language to write spoken numerals, similar to spelling-out numbers in English, it is not an independent system per se. Since it reflects spoken language, it not use the positional system as in Arabic numerals. There are characters representing the numbers zero through nine, and other characters representing larger numbers such as tens, hundreds, thousands, there are two sets of characters for Chinese numerals, one for everyday writing and one for use in commercial or financial contexts known as dàxiě. A forger could easily change the everyday characters 三十 to 五千 just by adding a few strokes and that would not be possible when writing using the financial characters 參拾 and 伍仟. They are also referred to as bankers numerals, anti-fraud numerals, for the same reason, rod numerals were never used in commercial records. T denotes Traditional Chinese characters, S denotes Simplified Chinese characters, in the PLA, some numbers will have altered names when used for clearer radio communications. They are,0, renamed 洞 lit, hole 1, renamed 幺 lit. small 2, renamed 两 lit. Double 7, renamed 拐 lit. cane, kidnap, turn 9, hook For numbers larger than 10,000, similarly to the long and short scales in the West, there have been four systems in ancient and modern usage. The original one, with names for all powers of ten up to the 14th, is ascribed to the Yellow Emperor in the 6th century book by Zhen Luan. To avoid problems arising from the ambiguity, the PRC government never uses this character in official documents, the ROC government in Taiwan uses 兆 to mean 1012 in official documents. Numerals beyond 載 zài come from Buddhist texts in Sanskrit, but are found in ancient texts. Some of the words are still being used today. The following are characters used to denote small order of magnitude in Chinese historically, with the introduction of SI units, some of them have been incorporated as SI prefixes, while the rest have fallen into disuse. In the Peoples Republic of China, the translations for the SI prefixes in 1981 were different from those used today, the Republic of China defined 百萬 as the translation for mega
6.
Hebrew numerals
–
The system of Hebrew numerals is a quasi-decimal alphabetic numeral system using the letters of the Hebrew alphabet. The system was adapted from that of the Greek numerals in the late 2nd century BC, the current numeral system is also known as the Hebrew alphabetic numerals to contrast with earlier systems of writing numerals used in classical antiquity. The Greek system was adopted in Hellenistic Judaism and had been in use in Greece since about the 5th century BC, in this system, there is no notation for zero, and the numeric values for individual letters are added together. Each unit is assigned a letter, each tens a separate letter. The later hundreds are represented by the sum of two or three letters representing the first four hundreds, to represent numbers from 1,000 to 999,999, the same letters are reused to serve as thousands, tens of thousands, and hundreds of thousands. In Israel today, the system of Arabic numerals is used in almost all cases. The Hebrew numerals are used only in cases, such as when using the Hebrew calendar, or numbering a list. Numbers in Hebrew from zero to one million, Hebrew alphabet are used to a limited extent to represent numbers, widely used on calendars. In other situations Arabic numerals are used, cardinal and ordinal numbers must agree in gender with the noun they are describing. If there is no such noun, the form is used. For ordinal numbers greater than ten the cardinal is used and numbers above the value 20 have no gender, note, For ordinal numbers greater than 10, cardinal numbers are used instead. Note, For numbers greater than 20, gender does not apply, cardinal and ordinal numbers must agree in gender with the noun they are describing. If there is no such noun, the form is used. Ordinal numbers must also agree in number and definite status like other adjectives, the cardinal number precedes the noun, except for the number one which succeeds it. The number two is special - shnayim and shtayim become shney and shtey when followed by the noun they count, for ordinal numbers greater than ten the cardinal is used. The Hebrew numeric system operates on the principle in which the numeric values of the letters are added together to form the total. For example,177 is represented as קעז which corresponds to 100 +70 +7 =177, mathematically, this type of system requires 27 letters. In practice the last letter, tav is used in combination with itself and/or other letters from kof onwards, to numbers from 500
7.
Arabic
–
Arabic is a Central Semitic language that was first spoken in Iron Age northwestern Arabia and is now the lingua franca of the Arab world. Arabic is also the language of 1.7 billion Muslims. It is one of six languages of the United Nations. The modern written language is derived from the language of the Quran and it is widely taught in schools and universities, and is used to varying degrees in workplaces, government, and the media. The two formal varieties are grouped together as Literary Arabic, which is the language of 26 states. Modern Standard Arabic largely follows the standards of Quranic Arabic. Much of the new vocabulary is used to denote concepts that have arisen in the post-Quranic era, Arabic has influenced many languages around the globe throughout its history. During the Middle Ages, Literary Arabic was a vehicle of culture in Europe, especially in science, mathematics. As a result, many European languages have borrowed many words from it. Many words of Arabic origin are found in ancient languages like Latin. Balkan languages, including Greek, have acquired a significant number of Arabic words through contact with Ottoman Turkish. Arabic has also borrowed words from languages including Greek and Persian in medieval times. Arabic is a Central Semitic language, closely related to the Northwest Semitic languages, the Ancient South Arabian languages, the Semitic languages changed a great deal between Proto-Semitic and the establishment of the Central Semitic languages, particularly in grammar. Innovations of the Central Semitic languages—all maintained in Arabic—include, The conversion of the suffix-conjugated stative formation into a past tense, the conversion of the prefix-conjugated preterite-tense formation into a present tense. The elimination of other prefix-conjugated mood/aspect forms in favor of new moods formed by endings attached to the prefix-conjugation forms, the development of an internal passive. These features are evidence of descent from a hypothetical ancestor. In the southwest, various Central Semitic languages both belonging to and outside of the Ancient South Arabian family were spoken and it is also believed that the ancestors of the Modern South Arabian languages were also spoken in southern Arabia at this time. To the north, in the oases of northern Hijaz, Dadanitic and Taymanitic held some prestige as inscriptional languages, in Najd and parts of western Arabia, a language known to scholars as Thamudic C is attested
8.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
9.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
10.
60 (number)
–
60 is the natural number following 59 and preceding 61. Being three times 20, it is called three score in older literature. It is a number, with divisors 1,2,3,4,5,6,10,12,15,20,30. Because it is the sum of its divisors, it is a unitary perfect number. Being ten times a number, it is a semiperfect number. It is the smallest number divisible by the numbers 1 to 6 and it is the smallest number with exactly 12 divisors. It is the sum of a pair of twin primes and the sum of four consecutive primes and it is adjacent to two primes. It is the smallest number that is the sum of two odd primes in six ways, the smallest non-solvable group has order 60. There are four Archimedean solids with 60 vertices, the icosahedron, the rhombicosidodecahedron, the snub dodecahedron. The skeletons of these polyhedra form 60-node vertex-transitive graphs, there are also two Archimedean solids with 60 edges, the snub cube and the icosidodecahedron. The skeleton of the forms a 60-edge symmetric graph. There are 60 one-sided hexominoes, the polyominoes made from six squares, in geometry, it is the number of seconds in a minute, and the number of minutes in a degree. In normal space, the three angles of an equilateral triangle each measure 60 degrees, adding up to 180 degrees. Because it is divisible by the sum of its digits in base 10, a number system with base 60 is called sexagesimal. It is the smallest positive integer that is written only the smallest. The first fullerene to be discovered was buckminsterfullerene C60, an allotrope of carbon with 60 atoms in each molecule and this ball is known as a buckyball, and looks like a soccer ball. The atomic number of neodymium is 60, and cobalt-60 is an isotope of cobalt. The electrical utility frequency in western Japan, South Korea, Taiwan, the Philippines, Saudi Arabia, the United States, and several other countries in the Americas is 60 Hz
11.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made