10,000,000

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
10000000
CardinalTen million
Ordinal10000000th
(ten millionth)
Factorization27 · 57
Greek numeral
Roman numeralX
Greek prefixhebdo-
Binary1001100010010110100000002
Ternary2002110011021013
Quaternary2120211220004
Quinary100300000005
Senary5542001446
Octal461132008
Duodecimal342305412
Hexadecimal98968016
Vigesimal32A00020
Base 365YC1S36

10,000,000 (ten million) is the natural number following 9,999,999 and preceding 10,000,001.

In scientific notation, it is written as 107.

In South Asia, it is known as the crore.

In Cyrillic numerals, it is known as the vran (вран - raven).

Selected 8-digit numbers (10,000,001–99,999,999)[edit]

10,000,001 to 19,999,999[edit]

  • 10,000,019 – smallest 8-digit prime number
  • 10,077,696 = 69
  • 10,609,137Leyland number
  • 11,111,111repunit
  • 11,390,625 = 156
  • 11,436,171Keith number[1]
  • 11,485,154Markov number
  • 11,881,376 = 265
  • 12,252,240 = highly composite number, smallest number divisible by all the numbers 1 through 18
  • 12,960,000 = 604, (3·4·5)4, Plato's "nuptial number" (Republic VIII; see regular number)
  • 12,648,430 – hexadecimal C0FFEE, resembling the word "coffee"; used as a placeholder in computer programming, see hexspeak.
  • 12,988,816 = the number of different ways of covering an 8-by-8 square with 32 1-by-2 dominoes
  • 13,782,649 – Markov number
  • 14,348,907 = 315
  • 14,352,282 – Leyland number
  • 14,930,352Fibonacci number[2]
  • 15,485,863 – 1,000,000th prime number
  • 15,994,428Pell number[3]
  • 16,609,837 – Markov number
  • 16,769,023Carol prime[4] and an emirp
  • 16,777,216 = 224hexadecimal "million" (0x1000000), number of possible colors in 24/32-bit Truecolor computer graphics
  • 16,777,792 – Leyland number
  • 16,785,407Kynea number[5]
  • 16,797,952 – Leyland number
  • 16,964,653 – Markov number
  • 17,210,368 = 285
  • 17,650,828 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88
  • 18,199,284Motzkin number[6]
  • 19,487,171 = 117
  • 19,680,277Wedderburn-Etherington number[7]
  • 19,987,816 – palindromic in 3 consecutive bases: 41AAA1413, 292429214, 1B4C4B115

20,000,000 to 29,999,999[edit]

30,000,000 to 39,999,999[edit]

40,000,000 to 49,999,999[edit]

  • 40,353,607 = 79
  • 43,046,721 = 316
  • 43,050,817 – Leyland number
  • 43,112,609Mersenne prime exponent
  • 43,443,858 – palindromic in 3 consecutive bases: 3C323C315, 296E69216, 1DA2AD117
  • 43,484,701 – Markov number
  • 44,121,607 – Keith number[1]
  • 44,444,444 – repdigit
  • 45,136,576 – Leyland number
  • 45,435,424 = 345
  • 46,026,618 – Wedderburn-Etherington number[7]
  • 46,656,000 = 3603
  • 47,045,881 = 196
  • 48,828,125 = 511
  • 48,928,105 – Markov number
  • 48,989,176 – Leyland number

50,000,000 to 59,999,999[edit]

  • 50,852,019 – Motzkin number[6]
  • 52,521,875 = 355
  • 55,555,555 – repdigit

60,000,000 to 69,999,999[edit]

  • 60,466,176 – 610
  • 61,466,176 – Leyland number
  • 62,748,517 = 137
  • 63,245,986 – Fibonacci number, Markov number
  • 64,000,000 = 206vigesimal "million" (1 alau in Mayan, 1 poaltzonxiquipilli in Nahuatl)
  • 66,600,049 - Largest minimal prime in base 10
  • 66,666,666 – repdigit
  • 67,092,479 – Carol number[14]
  • 67,108,864 = 226
  • 67,109,540 – Leyland number
  • 67,125,247 – Kynea number[5]
  • 67,137,425 – Leyland number
  • 69,343,957 = 375

70,000,000 to 79,999,999[edit]

  • 73,939,133 – the largest prime number that can be 'tailed' again and again by removing its last digit to produce only primes
  • 77,777,777 – repdigit
  • 78,442,645 – Markov number
  • 79,235,168 = 385

80,000,000 to 89,999,999[edit]

90,000,000 to 99,999,999[edit]

  • 90,224,199 = 395
  • 93,222,358 – Pell number[3]
  • 94,418,953 – Markov number
  • 99,999,989 - Greatest prime number with 8 digits[16]
  • 99,999,999 – repdigit, Friedman number, believed to be smallest number to be both repdigit and Friedman

See also[edit]

References[edit]

  1. ^ a b c "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  2. ^ a b c "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  3. ^ a b c "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  4. ^ "Sloane's A091516 : Primes of the form 4^n - 2^(n+1) - 1". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  5. ^ a b "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  6. ^ a b "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  7. ^ a b "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  8. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  9. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  10. ^ "Sloane's A000110 : Bell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  11. ^ "Sloane's A000396 : Perfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  12. ^ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  13. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  14. ^ "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  15. ^ "Sloane's A011541 : Taxicab, taxi-cab or Hardy-Ramanujan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  16. ^ "greatest prime number with 8 digits". Wolfram Alpha. Retrieved June 4, 2014.