# 10,000,000

This article
needs additional citations for verification. (September 2014) (Learn how and when to remove this template message) |

10000000 | |
---|---|

Cardinal | Ten million |

Ordinal | 10000000th (ten millionth) |

Factorization | 2^{7} · 5^{7} |

Greek numeral | |

Roman numeral | X |

Greek prefix | hebdo- |

Binary | 100110001001011010000000_{2} |

Ternary | 200211001102101_{3} |

Quaternary | 212021122000_{4} |

Quinary | 10030000000_{5} |

Senary | 554200144_{6} |

Octal | 46113200_{8} |

Duodecimal | 3423054_{12} |

Hexadecimal | 989680_{16} |

Vigesimal | 32A000_{20} |

Base 36 | 5YC1S_{36} |

**10,000,000** (**ten million**) is the natural number following 9,999,999 and preceding 10,000,001.

In scientific notation, it is written as 10^{7}.

In South Asia, it is known as the crore.

In Cyrillic numerals, it is known as the vran (*вран* - raven).

## Selected 8-digit numbers (10,000,001–99,999,999)[edit]

### 10,000,001 to 19,999,999[edit]

**10,000,019**– smallest 8-digit prime number**10,077,696**= 6^{9}**10,609,137**– Leyland number**11,111,111**– repunit**11,390,625**= 15^{6}**11,436,171**– Keith number^{[1]}**11,485,154**– Markov number**11,881,376**= 26^{5}**12,960,000**= 60^{4}, (3·4·5)^{4}, Plato's "nuptial number" (Republic VIII; see regular number)**12,648,430**– hexadecimal C0FFEE, resembling the word "coffee"; used as a placeholder in computer programming, see hexspeak.**12,988,816**= the number of different ways of covering an 8-by-8 square with 32 1-by-2 dominoes**13,782,649**– Markov number**14,348,907**= 3^{15}**14,352,282**– Leyland number**14,930,352**– Fibonacci number^{[2]}**15,485,863**– 1,000,000th prime number**15,994,428**– Pell number^{[3]}**16,609,837**– Markov number**16,769,023**– Carol prime^{[4]}and an emirp**16,777,216**= 2^{24}– hexadecimal "million" (0x1000000), number of possible colors in 24/32-bit Truecolor computer graphics**16,777,792**– Leyland number**16,785,407**– Kynea number^{[5]}**16,797,952**– Leyland number**16,964,653**– Markov number**17,210,368**= 28^{5}**17,650,828**= 1^{1}+ 2^{2}+ 3^{3}+ 4^{4}+ 5^{5}+ 6^{6}+ 7^{7}+ 8^{8}**18,199,284**– Motzkin number^{[6]}**19,487,171**= 11^{7}**19,680,277**– Wedderburn-Etherington number^{[7]}**19,987,816**– palindromic in 3 consecutive bases: 41AAA14_{13}, 2924292_{14}, 1B4C4B1_{15}

### 20,000,000 to 29,999,999[edit]

**20,031,170**– Markov number**20,511,149**= 29^{5}**21,531,778**– Markov number**21,621,600**– colossally abundant number,^{[8]}superior highly composite number^{[9]}**22,222,222**– repdigit**24,137,569**= 17^{6}**24,157,817**– Fibonacci number,^{[2]}Markov number**24,300,000**= 30^{5}**24,678,050**– equal to the sum of the eighth powers of its digits**27,644,437**– Bell number^{[10]}**28,629,151**= 31^{5}

### 30,000,000 to 39,999,999[edit]

**31,536,000**– standard number of seconds in a non-leap year (omitting leap seconds)**31,622,400**– standard number of seconds in a leap year (omitting leap seconds)**33,333,333**– repdigit**33,445,755**– Keith number^{[1]}**33,550,336**– fifth perfect number^{[11]}**33,554,432**= 2^{25}– Leyland number**33,555,057**– Leyland number**34,012,224**= 18^{6}**35,831,808**= 12^{7}**36,614,981**– alternating factorial^{[12]}**38,613,965**– Pell number,^{[3]}Markov number**39,088,169**– Fibonacci number^{[2]}**39,135,393**= 33^{5}**39,916,800**= 11!**39,916,801**– factorial prime^{[13]}

### 40,000,000 to 49,999,999[edit]

**40,353,607**= 7^{9}**43,046,721**= 3^{16}**43,050,817**– Leyland number**43,112,609**– Mersenne prime exponent**43,443,858**– palindromic in 3 consecutive bases: 3C323C3_{15}, 296E692_{16}, 1DA2AD1_{17}**43,484,701**– Markov number**44,121,607**– Keith number^{[1]}**44,444,444**– repdigit**45,136,576**– Leyland number**45,435,424**= 34^{5}**46,026,618**– Wedderburn-Etherington number^{[7]}**46,656,000**= 360^{3}**47,045,881**= 19^{6}**48,828,125**= 5^{11}**48,928,105**– Markov number**48,989,176**– Leyland number

### 50,000,000 to 59,999,999[edit]

**50,852,019**– Motzkin number^{[6]}**52,521,875**= 35^{5}**55,555,555**– repdigit

### 60,000,000 to 69,999,999[edit]

**60,466,176**– 6^{10}**61,466,176**– Leyland number**62,748,517**= 13^{7}**63,245,986**– Fibonacci number, Markov number**64,000,000**= 20^{6}– vigesimal "million" (1*alau*in Mayan, 1*poaltzonxiquipilli*in Nahuatl)**66,666,666**– repdigit**67,092,479**– Carol number^{[14]}**67,108,864**= 2^{26}**67,109,540**– Leyland number**67,125,247**– Kynea number^{[5]}**67,137,425**– Leyland number**69,343,957**= 37^{5}

### 70,000,000 to 79,999,999[edit]

**73,939,133**– the largest prime number that can be 'tailed' again and again by removing its last digit to produce only primes**77,777,777**– repdigit**78,442,645**– Markov number**79,235,168**= 38^{5}

### 80,000,000 to 89,999,999[edit]

**85,766,121**– 21^{6}**87,539,319**– taxicab number^{[15]}**88,888,888**– repdigit

### 90,000,000 to 99,999,999[edit]

**90,224,199**= 39^{5}**93,222,358**– Pell number^{[3]}**94,418,953**– Markov number**99,999,989**- Greatest prime number with 8 digits^{[16]}**99,999,999**– repdigit, Friedman number, believed to be smallest number to be both repdigit and Friedman

## See also[edit]

## References[edit]

- ^
^{a}^{b}^{c}"Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. - ^
^{a}^{b}^{c}"Sloane's A000045 : Fibonacci numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. - ^
^{a}^{b}^{c}"Sloane's A000129 : Pell numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. **^**"Sloane's A091516 : Primes of the form 4^n - 2^(n+1) - 1".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.- ^
^{a}^{b}"Sloane's A093069 : a(n) = (2^n + 1)^2 - 2".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. - ^
^{a}^{b}"Sloane's A001006 : Motzkin numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. - ^
^{a}^{b}"Sloane's A001190 : Wedderburn-Etherington numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. **^**"Sloane's A004490 : Colossally abundant numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A002201 : Superior highly composite numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A000110 : Bell numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A000396 : Perfect numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A005165 : Alternating factorials".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A088054 : Factorial primes".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A093112 : a(n) = (2^n-1)^2 - 2".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A011541 : Taxicab, taxi-cab or Hardy-Ramanujan numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"greatest prime number with 8 digits". Wolfram Alpha. Retrieved June 4, 2014.