Vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter.
For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron.
Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
Norman Johnson (mathematician)
Norman Woodason Johnson is a mathematician, previously at Wheaton College, Massachusetts. He earned his Ph. D. from the University of Toronto in 1966 with a title of The Theory of Uniform Polytopes. In 1966 he enumerated 92 convex non-uniform polyhedra with regular faces, victor Zalgaller proved that Johnsons list was complete, and the set is now known as the Johnson solids. The theory of polytopes and honeycombs, Ph. D. Dissertation,1966 Hyperbolic Coxeter Groups, convex polyhedra with regular faces, paper containing the original enumeration of the 92 Johnson solids and the conjecture that there are no others. Norman W. Johnson at the Mathematics Genealogy Project Norman W. Johnson Endowed Fund in Mathematics and Computer Science at Wheaton College
John Horton Conway
John Horton Conway FRS is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has contributed to many branches of mathematics, notably the invention of the cellular automaton called the Game of Life. Conway is currently Professor Emeritus of Mathematics at Princeton University in New Jersey, Conway was born in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at an early age, his mother has recalled that he could recite the powers of two when he was four years old. By the age of eleven his ambition was to become a mathematician, after leaving secondary school, Conway entered Gonville and Caius College, Cambridge to study mathematics. Conway, who was a terribly introverted adolescent in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person and he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport.
Having solved the problem posed by Davenport on writing numbers as the sums of fifth powers. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos and he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University, Conway is especially known for the invention of the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, and articles. It is a staple of recreational mathematics, there is an extensive wiki devoted to curating and cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, at times Conway has said he hates the game of life–largely because it has come to overshadow some of the other deeper and more important things he has done.
Nevertheless, the game did help launch a new branch of mathematics, the Game of Life is now known to be Turing complete. Conways career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner, when Gardner featured Conways Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, for instance, he discussed Conways game of Sprouts and his angel and devil problem. In the September 1976 column he reviewed Conways book On Numbers and Games, Conway is widely known for his contributions to combinatorial game theory, a theory of partisan games. This he developed with Elwyn Berlekamp and Richard Guy, and with them co-authored the book Winning Ways for your Mathematical Plays and he wrote the book On Numbers and Games which lays out the mathematical foundations of CGT. He is one of the inventors of sprouts, as well as philosophers football and he developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, and Conways soldiers
Complete bipartite graph
Graph theory itself is typically dated as beginning with Leonhard Eulers 1736 work on the Seven Bridges of Königsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, Llull himself had made similar drawings of complete graphs three centuries earlier. That is, it is a graph such that for every two vertices v1 ∈ V1 and v2 ∈ V2, v1v2 is an edge in E. A complete bipartite graph with partitions of size |V1|=m and |V2|=n, is denoted Km, n, for any k, K1, k is called a star. All complete bipartite graphs which are trees are stars, the graph K1,3 is called a claw, and is used to define the claw-free graphs. The graph K3,3 is called the utility graph and this usage comes from a standard mathematical puzzle in which three utilities must each be connected to three buildings, it is impossible to solve without crossings due to the nonplanarity of K3,3. Given a bipartite graph, testing whether it contains a complete bipartite subgraph Ki, a planar graph cannot contain K3,3 as a minor, an outerplanar graph cannot contain K3,2 as a minor.
Conversely, every nonplanar graph contains either K3,3 or the complete graph K5 as a minor, Kn, n is a Moore graph and a -cage. The complete bipartite graphs Kn, n and Kn, n+1 have the possible number of edges among all triangle-free graphs with the same number of vertices. The complete bipartite graph Km, n has a vertex covering number of min, the complete bipartite graph Km, n has a maximum independent set of size max. The adjacency matrix of a bipartite graph Km, n has eigenvalues √, −√ and 0, with multiplicity 1,1. The Laplacian matrix of a bipartite graph Km, n has eigenvalues n+m, n, m. A complete bipartite graph Km, n has mn−1 nm−1 spanning trees, a complete bipartite graph Km, n has a maximum matching of size min. A complete bipartite graph Kn, n has a proper n-edge-coloring corresponding to a Latin square, every complete bipartite graph is a modular graph, every triple of vertices has a median that belongs to shortest paths between each pair of vertices
Schlegel diagram
In geometry, a Schlegel diagram is a projection of a polytope from R d into R d −1 through a point beyond one of its facets or faces. The resulting entity is a subdivision of the facet in R d −1 that is combinatorially equivalent to the original polytope. Named for Victor Schlegel, who in 1886 introduced this tool for studying combinatorial and topological properties of polytopes, in dimensions 3 and 4, a Schlegel diagram is a projection of a polyhedron into a plane figure and a projection of a 4-polytope to 3-space, respectively. As such, Schlegel diagrams are used as a means of visualizing four-dimensional polytopes. The most elementary Schlegel diagram, that of a polyhedron, was described by Duncan Sommerville as follows, if it is projected from any external point, since each ray cuts it twice, it will be represented by a polygonal area divided twice over into polygons. It is always possible by suitable choice of the centre of projection to make the projection of one face completely contain the projections of all the other faces and this is called a Schlegel diagram of the polyhedron.
The Schlegel diagram completely represents the morphology of the polyhedron, Sommerville considers the case of a simplex in four dimensions, The Schlegel diagram of simplex in S4 is a tetrahedron divided into four tetrahedra. More generally, a polytope in n-dimensions has a Schegel diagram constructed by a perspective projection viewed from a point outside of the polytope, all vertices and edges of the polytope are projected onto a hyperplane of that facet. If the polytope is convex, a point near the facet will exist which maps the facet outside, and all other facets inside, so no edges need to cross in the projection. Net – A different approach for visualization by lowering the dimension of a polytope is to build a net, disconnecting facets and this maintains the geometric scale and shape, but makes the topological connections harder to see. Victor Schlegel Theorie der homogen zusammengesetzten Raumgebilde, Nova Acta, deutsche Akademie der Naturforscher, Band XLIV, Nr. 4, Druck von E. Blochmann & Sohn in Dresden, Victor Schlegel Ueber Projectionsmodelle der regelmässigen vier-dimensionalen Körper, Waren.
Regular Polytopes, Dover edition, ISBN 0-486-61480-8 Grünbaum, Kaibel, Klee, convex polytopes, New York & London, Springer-Verlag, ISBN 0-387-00424-6. George W. Hart, 4D Polytope Projection Models by 3D Printing Nrich maths – for the teenager
Cartesian product
In Set theory, a Cartesian product is a mathematical operation that returns a set from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs where a ∈ A and b ∈ B, products can be specified using set-builder notation, e. g. A table can be created by taking the Cartesian product of a set of rows, If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form. More generally, a Cartesian product of n sets, known as an n-fold Cartesian product, can be represented by an array of n dimensions, an ordered pair is a 2-tuple or couple. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, an illustrative example is the standard 52-card deck. The standard playing card ranks form a 13-element set, the card suits form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, Ranks × Suits returns a set of the form.
Suits × Ranks returns a set of the form, both sets are distinct, even disjoint. The main historical example is the Cartesian plane in analytic geometry, such a pairs first and second components are called its x and y coordinates, respectively, cf. picture. The set of all such pairs is thus assigned to the set of all points in the plane, a formal definition of the Cartesian product from set-theoretical principles follows from a definition of ordered pair. The most common definition of ordered pairs, the Kuratowski definition, is =, note that, under this definition, X × Y ⊆ P, where P represents the power set. Therefore, the existence of the Cartesian product of any two sets in ZFC follows from the axioms of pairing, power set, let A, B, C, and D be sets. × C ≠ A × If for example A =, × A = ≠ = A ×, the Cartesian product behaves nicely with respect to intersections, cf. left picture. × = ∩ In most cases the above statement is not true if we replace intersection with union, cf. middle picture. Other properties related with subsets are, if A ⊆ B A × C ⊆ B × C, the cardinality of a set is the number of elements of the set.
For example, defining two sets, A = and B =, both set A and set B consist of two elements each. Their Cartesian product, written as A × B, results in a new set which has the following elements, each element of A is paired with each element of B. Each pair makes up one element of the output set, the number of values in each element of the resulting set is equal to the number of sets whose cartesian product is being taken,2 in this case
Isogonal figure
In geometry, a polytope is isogonal or vertex-transitive if, loosely speaking, all its vertices are equivalent. That implies that each vertex is surrounded by the kinds of face in the same or reverse order. Technically, we say that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope is transitive on its vertices, all vertices of a finite n-dimensional isogonal figure exist on an -sphere. The term isogonal has long used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups, all regular polygons and regular star polygons are isogonal. The dual of a polygon is an isotoxal polygon. Some even-sided polygons and apeirogons which alternate two edge lengths, for example a rectangle, are isogonal, all planar isogonal 2n-gons have dihedral symmetry with reflection lines across the mid-edge points. An isogonal polyhedron and 2D tiling has a kind of vertex.
An isogonal polyhedron with all faces is a uniform polyhedron. Geometrically distorted variations of uniform polyhedra and tilings can be given the vertex configuration, isogonal polyhedra and 2D tilings may be further classified, Regular if it is isohedral and isotoxal, this implies that every face is the same kind of regular polygon. Quasi-regular if it is isotoxal but not isohedral, semi-regular if every face is a regular polygon but it is not isohedral or isotoxal. Uniform if every face is a polygon, i. e. it is regular, quasiregular or semi-regular. Noble if it is isohedral and these definitions can be extended to higher-dimensional polytopes and tessellations. Most generally, all uniform polytopes are isogonal, for example, the dual of an isogonal polytope is called an isotope which is transitive on its facets. A polytope or tiling may be called if its vertices form k transitivity classes. A more restrictive term, k-uniform is defined as a figure constructed only from regular polygons.
They can be represented visually with colors by different uniform colorings, edge-transitive Face-transitive Peter R. Cromwell, Cambridge University Press 1997, ISBN 0-521-55432-2, p.369 Transitivity Grünbaum, Shephard, G. C
4-polytope
In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements, edges, each face is shared by exactly two cells. The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron, topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space, similarly the 3D cube is related to the infinite 2D square tiling. Convex 4-polytopes can be cut and unfolded as nets in 3-space, a 4-polytope is a closed four-dimensional figure. It comprises vertices, edges and cells, a cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are 4-polytopes, i. e. it is not a compound, the most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. 4-polytopes cannot be seen in space due to their extra dimension.
Several techniques are used to help visualise them, Orthogonal projection Orthogonal projections can be used to show various symmetry orientations of a 4-polytope. They can be drawn in 2D as vertex-edge graphs, and can be shown in 3D with solid faces as visible projective envelopes. Perspective projection Just as a 3D shape can be projected onto a flat sheet, sectioning Just as a slice through a polyhedron reveals a cut surface, so a slice through a 4-polytope reveals a cut hypersurface in three dimensions. A sequence of sections can be used to build up an understanding of the overall shape. The extra dimension can be equated with time to produce an animation of these cross sections. The topology of any given 4-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 4-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.
Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal 4-polytopes, like all polytopes, 4-polytopes may be classified based on properties like convexity and symmetry. Self-intersecting 4-polytopes are known as star 4-polytopes, from analogy with the shapes of the non-convex star polygons. A 4-polytope is regular if it is transitive on its flags and this means that its cells are all congruent regular polyhedra, and similarly its vertex figures are congruent and of another kind of regular polyhedron
Vertex arrangement
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes, for example, a square vertex arrangement is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same vertex arrangement if they share the same 0-skeleton, the same set of vertices can be connected by edges in different ways. For example, the pentagon and pentagram have the same vertex arrangement, a vertex arrangement is often described by the convex hull polytope which contains it. For example, the regular pentagram can be said to have a vertex arrangement. Infinite tilings can share common vertex arrangements, for example, this triangular lattice of points can be connected to form either isosceles triangles or rhombic faces. Polyhedra can share an edge arrangement while differing in their faces, for example, of the ten nonconvex regular Schläfli-Hess polychora, there are only 7 unique face arrangements.
Synonyms for special cases include company for a 2-regiment and army for a 0-regiment, n-skeleton - a set of elements of dimension n and lower in a higher polytope. Vertex figure - A local arrangement of faces in a polyhedron around a single vertex, archived from the original on 4 February 2007. Archived from the original on 4 February 2007, archived from the original on 4 February 2007
Coxeter notation
The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups defined by pure reflections, there is a correspondence between the bracket notation and Coxeter-Dynkin diagram. The numbers in the notation represent the mirror reflection orders in the branches of the Coxeter diagram. It uses the same simplification, suppressing 2s between orthogonal mirrors, the Coxeter notation is simplified with exponents to represent the number of branches in a row for linear diagram. So the An group is represented by, to imply n nodes connected by n-1 order-3 branches, example A2 = = or represents diagrams or. Coxeter initially represented bifurcating diagrams with vertical positioning of numbers, but abbreviated with an exponent notation, Coxeter allowed for zeros as special cases to fit the An family, like A3 = = = =, like = =. Coxeter groups formed by cyclic diagrams are represented by parenthesese inside of brackets, if the branch orders are equal, they can be grouped as an exponent as the length the cycle in brackets, like =, representing Coxeter diagram or.
More complicated looping diagrams can be expressed with care, the paracompact complete graph diagram or, is represented as with the superscript as the symmetry of its regular tetrahedron coxeter diagram. The Coxeter diagram usually leaves order-2 branches undrawn, but the bracket notation includes an explicit 2 to connect the subgraphs, so the Coxeter diagram = A2×A2 = 2A2 can be represented by × =2 =. For the affine and hyperbolic groups, the subscript is one less than the number of nodes in each case, Coxeters notation represents rotational/translational symmetry by adding a + superscript operator outside the brackets which cuts the order of the group in half. This is called a direct subgroup because what remains are only direct isometries without reflective symmetry, + operators can be applied inside of the brackets, and creates semidirect subgroups that include both reflective and nonreflective generators. Semidirect subgroups can only apply to Coxeter group subgroups that have even order branches next to it, the subgroup index is 2n for n + operators.
So the snub cube, has symmetry +, and the tetrahedron, has symmetry. Johnson extends the + operator to work with a placeholder 1 nodes, in general this operation only applies to mirrors bounded by all even-order branches. The 1 represents a mirror so can be seen as, or, like diagram or, the effect of a mirror removal is to duplicate connecting nodes, which can be seen in the Coxeter diagrams, =, or in bracket notation, = =. Each of these mirrors can be removed so h = = = and this can be shown in a Coxeter diagram by adding a + symbol above the node, = =. If both mirrors are removed, a subgroup is generated, with the branch order becoming a gyration point of half the order, q = = +. For example, = = = ×, order 4. = +, the opposite to halving is doubling which adds a mirror, bisecting a fundamental domain, and doubling the group order
Geometry
Geometry is a branch of mathematics concerned with questions of shape, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry.
These include the concepts of points, planes, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, planes, triangles, similarity, solid figures, Euclidean geometry has applications in computer science and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques.
It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space