1.
Petrie polygon
–
In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon such that every consecutive sides belong to one of the facets. The Petrie polygon of a polygon is the regular polygon itself. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the interior to it. The plane in question is the Coxeter plane of the group of the polygon. These polygons and projected graphs are useful in visualizing symmetric structure of the regular polytopes. John Flinders Petrie was the son of Egyptologist Flinders Petrie. He was born in 1907 and as a schoolboy showed remarkable promise of mathematical ability, in periods of intense concentration he could answer questions about complicated four-dimensional objects by visualizing them. He first noted the importance of the skew polygons which appear on the surface of regular polyhedra. When my incredulity had begun to subside, he described them to me, one consisting of squares, six at each vertex, in 1938 Petrie collaborated with Coxeter, Patrick du Val, and H. T. Flather to produce The Fifty-Nine Icosahedra for publication, realizing the geometric facility of the skew polygons used by Petrie, Coxeter named them after his friend when he wrote Regular Polytopes. In 1972, a few months after his retirement, Petrie was killed by a car attempting to cross a motorway near his home in Surrey. The idea of Petrie polygons was later extended to semiregular polytopes, the Petrie polygon of the regular polyhedron has h sides, where h+2=24/. The regular duals, and, are contained within the same projected Petrie polygon, three of the Kepler–Poinsot polyhedra have hexagonal, and decagrammic, petrie polygons. The Petrie polygon projections are most useful for visualization of polytopes of dimension four and this table represents Petrie polygon projections of 3 regular families, and the exceptional Lie group En which generate semiregular and uniform polytopes for dimensions 4 to 8. Coxeter, H. S. M. Regular Polytopes, 3rd ed, Section 4.3 Flags and Orthoschemes, Section 11.3 Petrie polygons Ball, W. W. R. and H. S. M. Coxeter Mathematical Recreations and Essays, 13th ed. The Beauty of Geometry, Twelve Essays, Dover Publications LCCN 99-35678 Peter McMullen, Egon Schulte Abstract Regular Polytopes, ISBN 0-521-81496-0 Steinberg, Robert, ON THE NUMBER OF SIDES OF A PETRIE POLYGON Weisstein, Eric W. Petrie polygon. Weisstein, Eric W. Cross polytope graphs, Weisstein, Eric W. Gosset graph 3_21
2.
10-polytope
–
In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge. A uniform 10-polytope is one which is vertex-transitive, and constructed from uniform facets, Regular 10-polytopes can be represented by the Schläfli symbol, with x 9-polytope facets around each peak. There are exactly three convex regular 10-polytopes, - 10-simplex - 10-cube - 10-orthoplex There are no nonconvex regular 10-polytopes. The topology of any given 10-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 10-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, There are 512+16-1=527 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. 31 are shown below, all one and two ringed forms, and the final omnitruncated form, bowers-style acronym names are given in parentheses for cross-referencing. There are 1023 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings, twelve cases are shown below, ten single-ring forms, and two truncations. Bowers-style acronym names are given in parentheses for cross-referencing, the D10 family has symmetry of order 1,857,945,600. This family has 3×256−1=767 Wythoffian uniform polytopes, generated by marking one or more nodes of the D10 Coxeter-Dynkin diagram, of these,511 are repeated from the B10 family and 256 are unique to this family, with 2 listed below. Bowers-style acronym names are given in parentheses for cross-referencing, however, there are 3 noncompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 9-space as permutations of rings of the Coxeter diagrams. Miller, Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, N. W, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. Dissertation, University of Toronto,1966 Klitzing, Richard, polytope names Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary Glossary for hyperspace, George Olshevsky
3.
Demihypercube
–
In geometry, demihypercubes are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as hγn for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed, the 2n facets become 2n -demicubes, and 2n -simplex facets are formed in place of the deleted vertices. They have been named with a prefix to each hypercube name, demicube, demitesseract. The demicube is identical to the tetrahedron, and the demitesseract is identical to the regular 16-cell. The demipenteract is considered semiregular for having regular facets. Higher forms dont have all regular facets but are all uniform polytopes, the vertices and edges of a demihypercube form two copies of the halved cube graph. Thorold Gosset described the demipenteract in his 1900 publication listing all of the regular and semiregular figures in n-dimensions above 3 and he called it a 5-ic semi-regular. It also exists within the semiregular k21 polytope family, the demihypercubes can be represented by extended Schläfli symbols of the form h as half the vertices of. The vertex figures of demihypercubes are rectified n-simplexes and they are represented by Coxeter-Dynkin diagrams of three constructive forms. Coxeter also labeled the third bifurcating diagrams as 1k1 representing the lengths of the 3 branches, an n-demicube, n greater than 2, has n*/2 edges meeting at each vertex. The graphs below show less edges at each vertex due to overlapping edges in the symmetry projection. Facets, Dn, n-1 = n + 2n The symmetry group of the demihypercube is the Coxeter group D n, has order 2 n −1 n. and is an index 2 subgroup of the hyperoctahedral group. It is generated by permutations of the axes and reflections along pairs of coordinate axes. Constructions as alternated orthotopes have the topology, but can be stretched with different lengths in n-axes of symmetry. The rhombic disphenoid is the example as alternated cuboid. It has three sets of edge lengths, and scalene triangle faces, Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Olshevsky, George. Archived from the original on 4 February 2007
4.
Coxeter symbol
–
They can be seen as one-end-ringed Coxeter–Dynkin diagrams. The vertex figure of ki, j is i, j, rectified simplices are included in the list as limiting cases with k=0. Similarly 0i, j, k represents a graph with a central node ringed. This included the rectified 5-cell 021 in 4-space, demipenteract 121 in 5-space,221 in 6-space,321 in 7-space,421 in 8-space, E. L. Elte independently enumerated a different semiregular list in his 1912 book, The Semiregular Polytopes of the Hyperspaces. He called them semiregular polytopes of the first kind, limiting his search to one or two types of regular or semiregular k-faces, eltes enumeration included all the kij polytopes except for the 142 which has 3 types of 6-faces. The set of figures extend into honeycombs of, and families in 6,7,8 dimensional Euclidean spaces respectively, gossets list included the 521 honeycomb as the only semiregular one in his definition. The polytopes and honeycombs in this family can be seen within ADE classification, a finite polytope kij exists if 1 i +1 +1 j +1 +1 k +1 >1 or equal for Euclidean honeycombs, and less for hyperbolic honeycombs. The Coxeter group can generate up to 3 unique uniform Gosset–Elte figures with Coxeter–Dynkin diagrams with one end node ringed, by Coxeters notation, each figure is represented by kij to mean the end-node on the k-length sequence is ringed. The simplex family can be seen as a case with k=0. The family of n-simplices contain Gosset–Elte figures of the form 0ij as all rectified forms of the n-simplex and they are listed below, along with their Coxeter–Dynkin diagram, with each dimensional family drawn as a graphic orthogonal projection in the plane of the Petrie polygon of the regular simplex. Each Dn group has two Gosset–Elte figures, the n-demihypercube as 1k1, and a form of the n-orthoplex, k11. Rectified n-demihypercubes, a lower form of a birectified n-cube. Each En group from 4 to 8 has two or three Gosset–Elte figures, represented by one of the ringed, k21, 1k2, 2k1. A rectified 1k2 series can also be represented as 0k21, the 5-dimensional hyperbolic Coxeter group, L ¯4, has five order-3 branches, and can express one honeycomb,11111, and its rectification as 011111. On the regular and semi-regular figures in space of n dimensions, the Semiregular Polytopes of the Hyperspaces, Groningen, University of Groningen, ISBN 1-4181-7968-X Coxeter, H. S. M. Regular Polytopes, Dover edition, ISBN 0-486-61480-8 Norman Johnson Uniform Polytopes, Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D
5.
Coxeter diagram
–
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction, each node represents a mirror. An unlabeled branch implicitly represents order-3, each diagram represents a Coxeter group, and Coxeter groups are classified by their associated diagrams. Dynkin diagrams correspond to and are used to root systems. Branches of a Coxeter–Dynkin diagram are labeled with a number p. When p =2 the angle is 90° and the mirrors have no interaction, if a branch is unlabeled, it is assumed to have p =3, representing an angle of 60°. Two parallel mirrors have a branch marked with ∞, in principle, n mirrors can be represented by a complete graph in which all n /2 branches are drawn. In practice, nearly all interesting configurations of mirrors include a number of right angles, diagrams can be labeled by their graph structure. The first forms studied by Ludwig Schläfli are the orthoschemes which have linear graphs that generate regular polytopes, plagioschemes are simplices represented by branching graphs, and cycloschemes are simplices represented by cyclic graphs. Every Coxeter diagram has a corresponding Schläfli matrix with matrix elements ai, j = aj, as a matrix of cosines, it is also called a Gramian matrix after Jørgen Pedersen Gram. All Coxeter group Schläfli matrices are symmetric because their root vectors are normalized. It is related closely to the Cartan matrix, used in the similar but directed graph Dynkin diagrams in the cases of p =2,3,4, and 6. The determinant of the Schläfli matrix, called the Schläflian, and its sign determines whether the group is finite, affine and this rule is called Schläflis Criterion. The eigenvalues of the Schläfli matrix determines whether a Coxeter group is of type, affine type. The indefinite type is further subdivided, e. g. into hyperbolic. However, there are multiple non-equivalent definitions for hyperbolic Coxeter groups and we use the following definition, A Coxeter group with connected diagram is hyperbolic if it is neither of finite nor affine type, but every proper connected subdiagram is of finite or affine type. A hyperbolic Coxeter group is compact if all subgroups are finite, Finite and affine groups are also called elliptical and parabolic respectively. Hyperbolic groups are also called Lannér, after F. Lannér who enumerated the compact groups in 1950
6.
Demienneract
–
In geometry, a demienneract or 9-demicube is a uniform 9-polytope, constructed from the 9-cube, with alternated vertices truncated. It is part of an infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 161 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or. Cartesian coordinates for the vertices of a demienneract centered at the origin are alternate halves of the enneract, with an odd number of plus signs. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 9D uniform polytopes x3o3o *b3o3o3o3o3o3o - henne, archived from the original on 4 February 2007
7.
9-simplex
–
In geometry, a 9-simplex is a self-dual regular 9-polytope. It has 10 vertices,45 edges,120 triangle faces,210 tetrahedral cells,252 5-cell 4-faces,210 5-simplex 5-faces,120 6-simplex 6-faces,45 7-simplex 7-faces and its dihedral angle is cos−1, or approximately 83. 62°. It can also be called a decayotton, or deca-9-tope, as a 10-facetted polytope in 9-dimensions, the name decayotton is derived from deca for ten facets in Greek and -yott, having 8-dimensional facets, and -on. This construction is based on facets of the 10-orthoplex, Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 9D uniform polytopes x3o3o3o3o3o3o3o3o - day, Polytopes of Various Dimensions Multi-dimensional Glossary
8.
Demiocteract
–
In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices truncated. It is part of an infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 151 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or. Cartesian coordinates for the vertices of an 8-demicube centered at the origin are alternate halves of the 8-cube and this polytope is the vertex figure for the uniform tessellation,251 with Coxeter-Dynkin diagram, H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Olshevsky, George. Archived from the original on 4 February 2007
9.
8-simplex
–
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices,36 edges,84 triangle faces,126 tetrahedral cells,126 5-cell 4-faces,84 5-simplex 5-faces,36 6-simplex 6-faces and its dihedral angle is cos−1, or approximately 82. 82°. It can also be called an enneazetton, or ennea-8-tope, as a 9-facetted polytope in eight-dimensions, the name enneazetton is derived from ennea for nine facets in Greek and -zetta for having seven-dimensional facets, and -on. This construction is based on facets of the 9-orthoplex and this polytope is a facet in the uniform tessellations,251, and 521 with respective Coxeter-Dynkin diagrams, This polytope is one of 135 uniform 8-polytopes with A8 symmetry. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 8D uniform polytopes x3o3o3o3o3o3o3o - ene, Polytopes of Various Dimensions Multi-dimensional Glossary
10.
Demihepteract
–
In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube with alternated vertices truncated. It is part of an infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 141 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or. Cartesian coordinates for the vertices of a demihepteract centered at the origin are alternate halves of the hepteract, there are 95 uniform polytopes with D6 symmetry,63 are shared by the B6 symmetry, and 32 are unique, H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 7D uniform polytopes x3o3o *b3o3o3o3o - hesa, archived from the original on 4 February 2007
11.
7-simplex
–
In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices,28 edges,56 triangle faces,70 tetrahedral cells,56 5-cell 5-faces,28 5-simplex 6-faces and its dihedral angle is cos−1, or approximately 81. 79°. It can also be called an octaexon, or octa-7-tope, as an 8-facetted polytope in 7-dimensions, the name octaexon is derived from octa for eight facets in Greek and -ex for having six-dimensional facets, and -on. Jonathan Bowers gives an octaexon the acronym oca, the Cartesian coordinates of the vertices of an origin-centered regular octaexon having edge length 2 are, More simply, the vertices of the 7-simplex can be positioned in 8-space as permutations of. This construction is based on facets of the 8-orthoplex and this polytope is a facet in the uniform tessellation 331 with Coxeter-Dynkin diagram, This polytope is one of 71 uniform 7-polytopes with A7 symmetry. Polytopes of Various Dimensions Multi-dimensional Glossary
12.
Demihexeract
–
In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube with alternated vertices truncated. It is part of an infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 131 from its Coxeter diagram, with a ring on one of the 1-length branches. It can named similarly by a 3-dimensional exponential Schläfli symbol or, cartesian coordinates for the vertices of a demihexeract centered at the origin are alternate halves of the hexeract, with an odd number of plus signs. The fifth figure is a Euclidean honeycomb,331, and the final is a noncompact hyperbolic honeycomb,431, each progressive uniform polytope is constructed from the previous as its vertex figure. It is also the second in a series of uniform polytopes and honeycombs. The next figure is the Euclidean honeycomb 133 and the final is a noncompact hyperbolic honeycomb,134. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 6D uniform polytopes x3o3o *b3o3o3o – hax, archived from the original on 4 February 2007
13.
6-simplex
–
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices,21 edges,35 triangle faces,35 tetrahedral cells,21 5-cell 4-faces and its dihedral angle is cos−1, or approximately 80. 41°. It can also be called a heptapeton, or hepta-6-tope, as a 7-facetted polytope in 6-dimensions, the name heptapeton is derived from hepta for seven facets in Greek and -peta for having five-dimensional facets, and -on. Jonathan Bowers gives a heptapeton the acronym hop, the regular 6-simplex is one of 35 uniform 6-polytopes based on the Coxeter group, all shown here in A6 Coxeter plane orthographic projections. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 6D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary
14.
Demipenteract
–
In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube with alternated vertices truncated. It was discovered by Thorold Gosset, since it was the only semiregular 5-polytope, he called it a 5-ic semi-regular. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 121 from its Coxeter diagram, which has branches of length 2,1 and 1 with a ringed node on one of the short branches, and Schläfli symbol or. It exists in the k21 polytope family as 121 with the Gosset polytopes,221,321, the graph formed by the vertices and edges of the demipenteract is sometimes called the Clebsch graph, though that name sometimes refers to the folded cube graph of order five instead. Cartesian coordinates for the vertices of a demipenteract centered at the origin and edge length 2√2 are alternate halves of the penteract and it is a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family. There are 23 Uniform 5-polytopes that can be constructed from the D5 symmetry of the demipenteract,8 of which are unique to this family, the 5-demicube is third in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope, Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes. In Coxeters notation the 5-demicube is given the symbol 121, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 5D uniform polytopes x3o3o *b3o3o - hin, archived from the original on 4 February 2007
15.
5-simplex
–
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices,15 edges,20 triangle faces,15 tetrahedral cells and it has a dihedral angle of cos−1, or approximately 78. 46°. It can also be called a hexateron, or hexa-5-tope, as a 6-facetted polytope in 5-dimensions, the name hexateron is derived from hexa- for having six facets and teron for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix, the hexateron can be constructed from a 5-cell by adding a 6th vertex such that it is equidistant from all the other vertices of the 5-cell. These construction can be seen as facets of the 6-orthoplex or rectified 6-cube respectively and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral dihedron and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron, the 5-simplex, as 220 polytope is first in dimensional series 22k. The regular 5-simplex is one of 19 uniform polytera based on the Coxeter group, the 5-simplex can also be considered a 5-cell pyramid, constructed as a 5-cell base in a 4-space hyperplane, and an apex point above the hyperplane. The five sides of the pyramid are made of 5-cell cells, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 5D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary
16.
16-cell
–
In four-dimensional geometry, a 16-cell is a regular convex 4-polytope. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century and it is also called C16, hexadecachoron, or hexdecahedroid. It is a part of an family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the tesseract, conways name for a cross-polytope is orthoplex, for orthant complex. The 16-cell has 16 cells as the tesseract has 16 vertices and it is bounded by 16 cells, all of which are regular tetrahedra. It has 32 triangular faces,24 edges, and 8 vertices, the 24 edges bound 6 squares lying in the 6 coordinate planes. The eight vertices of the 16-cell are, all vertices are connected by edges except opposite pairs. The Schläfli symbol of the 16-cell is and its vertex figure is a regular octahedron. There are 8 tetrahedra,12 triangles, and 6 edges meeting at every vertex and its edge figure is a square. There are 4 tetrahedra and 4 triangles meeting at every edge, the 16-cell can be decomposed into two similar disjoint circular chains of eight tetrahedrons each, four edges long. Each chain, when stretched out straight, forms a Boerdijk–Coxeter helix and this decomposition can be seen in a 4-4 duoantiprism construction of the 16-cell, or, Schläfli symbol ⨂ or ss, symmetry, order 64. The 16-cell can be dissected into two octahedral pyramids, which share a new octahedron base through the 16-cell center, one can tessellate 4-dimensional Euclidean space by regular 16-cells. This is called the 16-cell honeycomb and has Schläfli symbol, hence, the 16-cell has a dihedral angle of 120°. The dual tessellation, 24-cell honeycomb, is made of by regular 24-cells, together with the tesseractic honeycomb, these are the only three regular tessellations of R4. Each 16-cell has 16 neighbors with which it shares a tetrahedron,24 neighbors with which it only an edge. Twenty-four 16-cells meet at any vertex in this tessellation. A 16-cell can constructed from two Boerdijk–Coxeter helixes of eight chained tetrahedra, each folded into a 4-dimensional ring, the 16 triangle faces can be seen in a 2D net within a triangular tiling, with 6 triangles around every vertex. The purple edges represent the Petrie polygon of the 16-cell, the cell-first parallel projection of the 16-cell into 3-space has a cubical envelope
17.
5-cell
–
In geometry, the 5-cell is a four-dimensional object bounded by 5 tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid and it is a 4-simplex, the simplest possible convex regular 4-polytope, and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The pentachoron is a four dimensional pyramid with a tetrahedral base, the regular 5-cell is bounded by regular tetrahedra, and is one of the six regular convex 4-polytopes, represented by Schläfli symbol. Pentachoron 4-simplex Pentatope Pentahedroid Pen Hyperpyramid, tetrahedral pyramid The 5-cell is self-dual and its maximal intersection with 3-dimensional space is the triangular prism. Its dihedral angle is cos−1, or approximately 75. 52°, the 5-cell can be constructed from a tetrahedron by adding a 5th vertex such that it is equidistant from all the other vertices of the tetrahedron. The simplest set of coordinates is, with edge length 2√2, a 5-cell can be constructed as a Boerdijk–Coxeter helix of five chained tetrahedra, folded into a 4-dimensional ring. The 10 triangle faces can be seen in a 2D net within a triangular tiling, with 6 triangles around every vertex, the purple edges represent the Petrie polygon of the 5-cell. The A4 Coxeter plane projects the 5-cell into a regular pentagon, the four sides of the pyramid are made of tetrahedron cells. Many uniform 5-polytopes have tetrahedral pyramid vertex figures, Other uniform 5-polytopes have irregular 5-cell vertex figures, the symmetry of a vertex figure of a uniform polytope is represented by removing the ringed nodes of the Coxeter diagram. The compound of two 5-cells in dual configurations can be seen in this A5 Coxeter plane projection, with a red and this compound has symmetry, order 240. The intersection of these two 5-cells is a uniform birectified 5-cell, the pentachoron is the simplest of 9 uniform polychora constructed from the Coxeter group. It is in the sequence of regular polychora, the tesseract, 120-cell, of Euclidean 4-space, all of these have a tetrahedral vertex figure. It is similar to three regular polychora, the tesseract, 600-cell of Euclidean 4-space, and the order-6 tetrahedral honeycomb of hyperbolic space, all of these have a tetrahedral cell. T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D
18.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
19.
Triangle
–
A triangle is a polygon with three edges and three vertices. It is one of the shapes in geometry. A triangle with vertices A, B, and C is denoted △ A B C, in Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. This article is about triangles in Euclidean geometry except where otherwise noted, triangles can be classified according to the lengths of their sides, An equilateral triangle has all sides the same length. An equilateral triangle is also a polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length, some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides. The latter definition would make all equilateral triangles isosceles triangles, the 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths, equivalently, it has all angles of different measure. Hatch marks, also called tick marks, are used in diagrams of triangles, a side can be marked with a pattern of ticks, short line segments in the form of tally marks, two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is no more than 3 ticks. Similarly, patterns of 1,2, or 3 concentric arcs inside the angles are used to indicate equal angles, triangles can also be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°, the side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti of the triangle, special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 +42 =52, in this situation,3,4, and 5 are a Pythagorean triple. The other one is a triangle that has 2 angles that each measure 45 degrees. Triangles that do not have an angle measuring 90° are called oblique triangles, a triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, a triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, a triangle with an interior angle of 180° is degenerate
20.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
21.
Rectified 9-simplex
–
In nine-dimensional geometry, a rectified 9-simplex is a convex uniform 9-polytope, being a rectification of the regular 9-simplex. These polytopes are part of a family of 271 uniform 9-polytopes with A9 symmetry, there are unique 4 degrees of rectifications. Vertices of the rectified 9-simplex are located at the edge-centers of the 9-simplex, vertices of the birectified 9-simplex are located in the triangular face centers of the 9-simplex. Vertices of the trirectified 9-simplex are located in the cell centers of the 9-simplex. Vertices of the quadrirectified 9-simplex are located in the 5-cell centers of the 9-simplex, the rectified 9-simplex is the vertex figure of the 10-demicube. Rectified decayotton The Cartesian coordinates of the vertices of the rectified 9-simplex can be most simply positioned in 10-space as permutations of and this construction is based on facets of the rectified 10-orthoplex. This polytope is the figure for the 162 honeycomb. Its 120 vertices represent the number of the related hyperbolic 10-dimensional sphere packing. Birectified decayotton The Cartesian coordinates of the vertices of the birectified 9-simplex can be most simply positioned in 10-space as permutations of and this construction is based on facets of the birectified 10-orthoplex. Trirectified decayotton The Cartesian coordinates of the vertices of the trirectified 9-simplex can be most simply positioned in 10-space as permutations of and this construction is based on facets of the trirectified 10-orthoplex. Quadrirectified decayotton Icosayotton The Cartesian coordinates of the vertices of the quadrirectified 9-simplex can be most simply positioned in 10-space as permutations of and this construction is based on facets of the quadrirectified 10-orthoplex. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, o3x3o3o3o3o3o3o3o - reday, o3o3x3o3o3o3o3o3o - breday, o3o3o3x3o3o3o3o3o - treday, o3o3o3o3x3o3o3o3o - icoy Olshevsky, George. Archived from the original on 4 February 2007, Polytopes of Various Dimensions Multi-dimensional Glossary
22.
Coxeter notation
–
The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups defined by pure reflections, there is a correspondence between the bracket notation and Coxeter-Dynkin diagram. The numbers in the notation represent the mirror reflection orders in the branches of the Coxeter diagram. It uses the same simplification, suppressing 2s between orthogonal mirrors, the Coxeter notation is simplified with exponents to represent the number of branches in a row for linear diagram. So the An group is represented by, to imply n nodes connected by n-1 order-3 branches, example A2 = = or represents diagrams or. Coxeter initially represented bifurcating diagrams with vertical positioning of numbers, but later abbreviated with an exponent notation, like, Coxeter allowed for zeros as special cases to fit the An family, like A3 = = = =, like = =. Coxeter groups formed by cyclic diagrams are represented by parenthesese inside of brackets, if the branch orders are equal, they can be grouped as an exponent as the length the cycle in brackets, like =, representing Coxeter diagram or. More complicated looping diagrams can also be expressed with care, the paracompact complete graph diagram or, is represented as with the superscript as the symmetry of its regular tetrahedron coxeter diagram. The Coxeter diagram usually leaves order-2 branches undrawn, but the bracket notation includes an explicit 2 to connect the subgraphs, so the Coxeter diagram = A2×A2 = 2A2 can be represented by × =2 =. For the affine and hyperbolic groups, the subscript is one less than the number of nodes in each case, Coxeters notation represents rotational/translational symmetry by adding a + superscript operator outside the brackets which cuts the order of the group in half. This is called a direct subgroup because what remains are only direct isometries without reflective symmetry, + operators can also be applied inside of the brackets, and creates semidirect subgroups that include both reflective and nonreflective generators. Semidirect subgroups can only apply to Coxeter group subgroups that have even order branches next to it, the subgroup index is 2n for n + operators. So the snub cube, has symmetry +, and the tetrahedron, has symmetry. Johnson extends the + operator to work with a placeholder 1 nodes, in general this operation only applies to mirrors bounded by all even-order branches. The 1 represents a mirror so can be seen as, or, like diagram or, the effect of a mirror removal is to duplicate connecting nodes, which can be seen in the Coxeter diagrams, =, or in bracket notation, = =. Each of these mirrors can be removed so h = = = and this can be shown in a Coxeter diagram by adding a + symbol above the node, = =. If both mirrors are removed, a subgroup is generated, with the branch order becoming a gyration point of half the order, q = = +. For example, = = = ×, order 4. = +, the opposite to halving is doubling which adds a mirror, bisecting a fundamental domain, and doubling the group order
23.
Convex polytope
–
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn. Some authors use the terms polytope and convex polyhedron interchangeably. In addition, some require a polytope to be a bounded set. The terms bounded/unbounded convex polytope will be used whenever the boundedness is critical to the discussed issue. Yet other texts treat a convex n-polytope as a surface or -manifold, Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. A comprehensive and influential book in the subject, called Convex Polytopes, was published in 1967 by Branko Grünbaum, in 2003 the 2nd edition of the book was published, with significant additional material contributed by new writers. In Grünbaums book, and in other texts in discrete geometry. Grünbaum points out that this is solely to avoid the repetition of the word convex. A polytope is called if it is an n-dimensional object in Rn. Many examples of bounded convex polytopes can be found in the article polyhedron, a convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaums definition is in terms of a set of points in space. Other important definitions are, as the intersection of half-spaces and as the hull of a set of points. This is equivalent to defining a bounded convex polytope as the hull of a finite set of points. Such a definition is called a vertex representation, for a compact convex polytope, the minimal V-description is unique and it is given by the set of the vertices of the polytope. A convex polytope may be defined as an intersection of a number of half-spaces. Such definition is called a half-space representation, there exist infinitely many H-descriptions of a convex polytope. However, for a convex polytope, the minimal H-description is in fact unique and is given by the set of the facet-defining halfspaces. A closed half-space can be written as an inequality, a 1 x 1 + a 2 x 2 + ⋯ + a n x n ≤ b where n is the dimension of the space containing the polytope under consideration
24.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
25.
10-cube
–
In geometry, a 10-cube is a ten-dimensional hypercube. It can be named by its Schläfli symbol, being composed of 3 9-cubes around each 8-face and it is a part of an infinite family of polytopes, called hypercubes. The dual of a dekeract can be called a 10-orthoplex or decacross, cartesian coordinates for the vertices of a dekeract centered at the origin and edge length 2 are while the interior of the same consists of all points with −1 < xi <1. Applying an alternation operation, deleting alternating vertices of the dekeract, creates another uniform polytope, called a 10-demicube, which has 20 demienneractic and 512 enneazettonic facets. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, 10D uniform polytopes o3o3o3o3o3o3o3o3o4x - deker. Archived from the original on 4 February 2007, multi-dimensional Glossary, hypercube Garrett Jones Sloanes A135289, Hypercubes, 10-cube. The On-Line Encyclopedia of Integer Sequences
26.
Alternation (geometry)
–
In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices. Coxeter labels an alternation by a prefixed by an h, standing for hemi or half, because alternation reduce all polygon faces to half as many sides, it can only be applied for polytopes with all even-sided faces. An alternated square face becomes a digon, and being degenerate, is reduced to a single edge. More generally any vertex-uniform polyhedron or tiling with a configuration consisting of all even-numbered elements can be alternated. For example, the alternation a vertex figure with 2a. 2b. 2c is a.3. b.3. c.3 where the three is the number of elements in this vertex figure. A special case is square faces whose order divide in half into degenerate digons, a snub can be seen as an alternation of a truncated regular or truncated quasiregular polyhedron. In general a polyhedron can be snubbed if its truncation has only even-sided faces, all truncated rectified polyhedra can be snubbed, not just from regular polyhedra. The snub square antiprism is an example of a general snub and this alternation operation applies to higher-dimensional polytopes and honeycombs as well, but in general most of the results of this operation will not be uniform. The voids created by the vertices will not in general create uniform facets. Examples, Honeycombs An alternated cubic honeycomb is the tetrahedral-octahedral honeycomb, an alternated hexagonal prismatic honeycomb is the gyrated alternated cubic honeycomb. 4-polytope An alternated truncated 24-cell is the snub 24-cell, 4-honeycombs, An alternated truncated 24-cell honeycomb is the snub 24-cell honeycomb. A hypercube can always be alternated into a uniform demihypercube, cube → Tetrahedron → Tesseract → 16-cell → Penteract → demipenteract Hexeract → demihexeract. Coxeter also used the operator a, which contains both halves, so retains the original symmetry, for even-sided regular polyhedra, a represents a compound polyhedron with two opposite copies of h. For odd-sided, greater than 3, regular polyhedra a, becomes a star polyhedron, Norman Johnson extended the use of the altered operator a, b for blended, and c for converted, as, and respectively. The compound polyhedron, stellated octahedron can be represented by a, the star-polyhedron, small ditrigonal icosidodecahedron, can be represented by a, and. Here all the pentagons have been alternated into pentagrams, and triangles have been inserted to take up the free edges. A similar operation can truncate alternate vertices, rather than just removing them, below is a set of polyhedra that can be generated from the Catalan solids. These have two types of vertices which can be alternately truncated, truncating the higher order vertices and both vertex types produce these forms, Conway polyhedral notation Wythoff construction Coxeter, H. S. M
27.
Uniform polytope
–
A uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons and this is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures are allowed, which expand the possible solutions. A strict definition requires uniform polytopes to be finite, while a more expansive definition allows uniform honeycombs of Euclidean, nearly every uniform polytope can be generated by a Wythoff construction, and represented by a Coxeter diagram. Notable exceptions include the antiprism in four dimensions. Equivalently, the Wythoffian polytopes can be generated by applying basic operations to the regular polytopes in that dimension and this approach was first used by Johannes Kepler, and is the basis of the Conway polyhedron notation. Regular n-polytopes have n orders of rectification, the zeroth rectification is the original form. The th rectification is the dual, an extended Schläfli symbol can be used for representing rectified forms, with a single subscript, k-th rectification = tk = kr. Truncation operations that can be applied to regular n-polytopes in any combination, the resulting Coxeter diagram has two ringed nodes, and the operation is named for the distance between them. Truncation cuts vertices, cantellation cuts edges, runcination cuts faces, each higher operation also cuts lower ones too, so a cantellation also truncates vertices. T0,1 or t, Truncation - applied to polygons, a truncation removes vertices, and inserts a new facet in place of each former vertex. Faces are truncated, doubling their edges and it can be seen as rectifying its rectification. A cantellation truncates both vertices and edges and replaces them with new facets, cells are replaced by topologically expanded copies of themselves. There are higher cantellations also, bicantellation t1,3 or r2r, tricantellation t2,4 or r3r, quadricantellation t3,5 or r4r, etc. t0,1,2 or tr, Cantitruncation - applied to polyhedra and higher. It can be seen as a truncation of its rectification, a cantitruncation truncates both vertices and edges and replaces them with new facets. Cells are replaced by topologically expanded copies of themselves, runcination truncates vertices, edges, and faces, replacing them each with new facets. 4-faces are replaced by topologically expanded copies of themselves, There are higher runcinations also, biruncination t1,4, triruncination t2,5, etc. t0,4 or 2r2r, Sterication - applied to Uniform 5-polytopes and higher. It can be seen as birectifying its birectification, Sterication truncates vertices, edges, faces, and cells, replacing each with new facets
28.
Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M
29.
Cartesian coordinates
–
Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair. The coordinates can also be defined as the positions of the projections of the point onto the two axis, expressed as signed distances from the origin. One can use the principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes. In general, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n and these coordinates are equal, up to sign, to distances from the point to n mutually perpendicular hyperplanes. The invention of Cartesian coordinates in the 17th century by René Descartes revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra. Using the Cartesian coordinate system, geometric shapes can be described by Cartesian equations, algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2, centered at the origin of the plane, a familiar example is the concept of the graph of a function. Cartesian coordinates are also tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering. They are the most common system used in computer graphics, computer-aided geometric design. Nicole Oresme, a French cleric and friend of the Dauphin of the 14th Century, used similar to Cartesian coordinates well before the time of Descartes. The adjective Cartesian refers to the French mathematician and philosopher René Descartes who published this idea in 1637 and it was independently discovered by Pierre de Fermat, who also worked in three dimensions, although Fermat did not publish the discovery. Both authors used a single axis in their treatments and have a length measured in reference to this axis. The concept of using a pair of axes was introduced later, after Descartes La Géométrie was translated into Latin in 1649 by Frans van Schooten and these commentators introduced several concepts while trying to clarify the ideas contained in Descartes work. Many other coordinate systems have developed since Descartes, such as the polar coordinates for the plane. The development of the Cartesian coordinate system would play a role in the development of the Calculus by Isaac Newton. The two-coordinate description of the plane was later generalized into the concept of vector spaces. Choosing a Cartesian coordinate system for a one-dimensional space – that is, for a straight line—involves choosing a point O of the line, a unit of length, and an orientation for the line. An orientation chooses which of the two half-lines determined by O is the positive, and which is negative, we say that the line is oriented from the negative half towards the positive half
30.
Dekeract
–
In geometry, a 10-cube is a ten-dimensional hypercube. It can be named by its Schläfli symbol, being composed of 3 9-cubes around each 8-face and it is a part of an infinite family of polytopes, called hypercubes. The dual of a dekeract can be called a 10-orthoplex or decacross, cartesian coordinates for the vertices of a dekeract centered at the origin and edge length 2 are while the interior of the same consists of all points with −1 < xi <1. Applying an alternation operation, deleting alternating vertices of the dekeract, creates another uniform polytope, called a 10-demicube, which has 20 demienneractic and 512 enneazettonic facets. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, 10D uniform polytopes o3o3o3o3o3o3o3o3o4x - deker. Archived from the original on 4 February 2007, multi-dimensional Glossary, hypercube Garrett Jones Sloanes A135289, Hypercubes, 10-cube. The On-Line Encyclopedia of Integer Sequences
31.
Harold Scott MacDonald Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M
32.
Regular Polytopes (book)
–
Regular Polytopes is a mathematical geometry book written by Canadian mathematician Harold Scott MacDonald Coxeter. Originally published in 1947, the book was updated and republished in 1963 and 1973, the book is a comprehensive survey of the geometry of regular polytopes, the generalisation of regular polygons and regular polyhedra to higher dimensions. Originating with an essay entitled Dimensional Analogy written in 1923, the first edition of the book took Coxeter twenty-four years to complete, regular Polytopes is a standard reference work on regular polygons, polyhedra and their higher dimensional analogues. It is unusual in the breadth of its coverage, its combination of mathematical rigour with geometric insight, Coxeter starts by introducing two-dimensional polygons and three-dimensional polyhedra. He then gives a rigorous definition of regularity and uses it to show that there are no other convex regular polyhedra apart from the five Platonic solids. The concept of regularity is extended to non-convex shapes such as star polygons and star polyhedra, to tessellations and honeycombs, Coxeter introduces and uses the groups generated by reflections that became known as Coxeter groups. The book combines algebraic rigour with clear explanations, many of which are illustrated with diagrams, the black and white plates in the book show solid models of three-dimensional polyhedra, and wire-frame models of projections of some higher-dimensional polytopes. At the end of each chapter Coxeter includes an Historical remarks section which provides a perspective of the development of the subject. The first two have been expounded by Sommerville and Neville, and we shall presuppose some familiarity with such treatises. Concerning the third, Poincaré wrote, A man who pursues it, will end up holding on to the fourth dimension. ”The original 1948 edition received a more complete review by M. Goldberg in MR0027148
33.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker
34.
John Horton Conway
–
John Horton Conway FRS is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has also contributed to many branches of mathematics, notably the invention of the cellular automaton called the Game of Life. Conway is currently Professor Emeritus of Mathematics at Princeton University in New Jersey, Conway was born in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at an early age, his mother has recalled that he could recite the powers of two when he was four years old. By the age of eleven his ambition was to become a mathematician, after leaving secondary school, Conway entered Gonville and Caius College, Cambridge to study mathematics. Conway, who was a terribly introverted adolescent in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person and he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport. Having solved the problem posed by Davenport on writing numbers as the sums of fifth powers. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos and he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University, Conway is especially known for the invention of the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, and articles. It is a staple of recreational mathematics, there is an extensive wiki devoted to curating and cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, at times Conway has said he hates the game of life–largely because it has come to overshadow some of the other deeper and more important things he has done. Nevertheless, the game did help launch a new branch of mathematics, the Game of Life is now known to be Turing complete. Conways career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner, when Gardner featured Conways Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, for instance, he discussed Conways game of Sprouts, Hackenbush, and his angel and devil problem. In the September 1976 column he reviewed Conways book On Numbers and Games, Conway is widely known for his contributions to combinatorial game theory, a theory of partisan games. This he developed with Elwyn Berlekamp and Richard Guy, and with them also co-authored the book Winning Ways for your Mathematical Plays and he also wrote the book On Numbers and Games which lays out the mathematical foundations of CGT. He is also one of the inventors of sprouts, as well as philosophers football and he developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, and Conways soldiers
35.
Norman Johnson (mathematician)
–
Norman Woodason Johnson is a mathematician, previously at Wheaton College, Norton, Massachusetts. He earned his Ph. D. from the University of Toronto in 1966 with a title of The Theory of Uniform Polytopes. In 1966 he enumerated 92 convex non-uniform polyhedra with regular faces, victor Zalgaller later proved that Johnsons list was complete, and the set is now known as the Johnson solids. The theory of polytopes and honeycombs, Ph. D. Dissertation,1966 Hyperbolic Coxeter Groups, paper, convex polyhedra with regular faces, paper containing the original enumeration of the 92 Johnson solids and the conjecture that there are no others. Norman W. Johnson at the Mathematics Genealogy Project Norman W. Johnson Endowed Fund in Mathematics and Computer Science at Wheaton College
36.
Regular polytope
–
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, Regular polytopes are the generalized analog in any number of dimensions of regular polygons and regular polyhedra. The strong symmetry of the regular polytopes gives them an aesthetic quality that interests both non-mathematicians and mathematicians, classically, a regular polytope in n dimensions may be defined as having regular facets and regular vertex figures. These two conditions are sufficient to ensure that all faces are alike and all vertices are alike, note, however, that this definition does not work for abstract polytopes. A regular polytope can be represented by a Schläfli symbol of the form, with regular facets as, Regular polytopes are classified primarily according to their dimensionality. They can be classified according to symmetry. For example, the cube and the regular octahedron share the same symmetry, indeed, symmetry groups are sometimes named after regular polytopes, for example the tetrahedral and icosahedral symmetries. Three special classes of regular polytope exist in every dimensionality, Regular simplex Measure polytope Cross polytope In two dimensions there are many regular polygons. In three and four dimensions there are more regular polyhedra and 4-polytopes besides these three. In five dimensions and above, these are the only ones, see also the list of regular polytopes. The idea of a polytope is sometimes generalised to include related kinds of geometrical object, some of these have regular examples, as discussed in the section on historical discovery below. A concise symbolic representation for regular polytopes was developed by Ludwig Schläfli in the 19th Century, the notation is best explained by adding one dimension at a time. A convex regular polygon having n sides is denoted by, so an equilateral triangle is, a square, and so on indefinitely. A regular star polygon which winds m times around its centre is denoted by the fractional value, a regular polyhedron having faces with p faces joining around a vertex is denoted by. The nine regular polyhedra are and. is the figure of the polyhedron. A regular 4-polytope having cells with q cells joining around an edge is denoted by, the vertex figure of the 4-polytope is a. A five-dimensional regular polytope is an, the dual of a regular polytope is also a regular polytope. The Schläfli symbol for the dual polytope is just the original written backwards, is self-dual, is dual to, to
37.
Coxeter group
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators
38.
Simple Lie group
–
Simple Lie groups are a class of Lie groups which play a role in Lie group theory similar to that of simple groups in the theory of discrete groups. Essentially, simple Lie groups are connected Lie groups which cannot be decomposed as an extension of smaller connected Lie groups, and which are not commutative. Many commonly encountered Lie groups are simple or close to being simple, for example. In group theory, a simple Lie group is a locally compact non-abelian Lie group G which does not have nontrivial connected normal subgroups. A simple Lie algebra is a non-abelian Lie algebra whose only ideals are 0, an equivalent definition of a simple Lie group follows from the Lie correspondence, a connected Lie group is simple if its Lie algebra is simple. An important technical point is that a simple Lie group may contain discrete normal subgroups and it emerged in the course of classification of simple Lie groups that there exist also several exceptional possibilities not corresponding to any familiar geometry. These exceptional groups account for special examples and configurations in other branches of mathematics. All Lie groups are smooth manifolds, mathematicians often study complex Lie groups, which are Lie groups with a complex structure on the underlying manifold, which is required to be compatible with the group operations. A complex Lie group is called if it is connected as a topological space. Note that the underlying Lie group may not be simple, although it still be semisimple. It is often useful to study slightly more general classes of Lie groups than simple groups, namely semisimple or, more generally, reductive Lie groups. A connected Lie group is called if its Lie algebra is a semisimple lie algebra. It is called if its Lie algebra is a direct sum of simple. Reductive groups occur naturally as symmetries of a number of objects in algebra, geometry. For example, the group G L n of symmetries of a real vector space is reductive. Finite-dimensional representations of simple groups split into direct sums of irreducible representations, simple Lie groups are fully classified. The classification is usually stated in several steps, namely, Classification of simple complex Lie algebras The classification of simple Lie algebras over the numbers by Dynkin diagrams. Classification of centerless Lie groups For every simple Lie algebra g, there is a unique centerless simple Lie group G whose Lie algebra is g, Classification of simple Lie groups One can show that the fundamental group of any Lie group is a discrete commutative group
39.
E6 (mathematics)
–
The designation E6 comes from the Cartan–Killing classification of the complex simple Lie algebras. This classifies Lie algebras into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled E6, E7, E8, F4, the E6 algebra is thus one of the five exceptional cases. The fundamental group of the form, compact real form, or any algebraic version of E6 is the cyclic group Z/3Z. Its fundamental representation is 27-dimensional, and a basis is given by the 27 lines on a cubic surface, the dual representation, which is inequivalent, is also 27-dimensional. In particle physics, E6 plays a role in some grand unified theories, there is a unique complex Lie algebra of type E6, corresponding to a complex group of complex dimension 78. The complex adjoint Lie group E6 of complex dimension 78 can be considered as a simple real Lie group of real dimension 156, the split form, EI, which has maximal compact subgroup Sp/, fundamental group of order 2 and outer automorphism group of order 2. The quasi-split form EII, which has maximal compact subgroup SU × SU/, fundamental group cyclic of order 6, EIII, which has maximal compact subgroup SO × Spin/, fundamental group Z and trivial outer automorphism group. EIV, which has maximal compact subgroup F4, trivial fundamental group cyclic, the EIV form of E6 is the group of collineations of the octonionic projective plane OP2. It is also the group of determinant-preserving linear transformations of the exceptional Jordan algebra, the exceptional Jordan algebra is 27-dimensional, which explains why the compact real form of E6 has a 27-dimensional complex representation. Over finite fields, the Lang–Steinberg theorem implies that H1 =0, meaning that E6 has exactly one twisted form, known as 2E6, the Dynkin diagram for E6 is given by, which may also be drawn as or. Although they span a space, it is much more symmetrical to consider them as vectors in a six-dimensional subspace of a nine-dimensional space. Two 16-dimensional subalgebras that transform as a Weyl spinor of spin and these have a non-zero last entry. 1 generator which is their chirality generator, and is the sixth Cartan generator, the Lie algebra E6 has an F4 subalgebra, which is the fixed subalgebra of an outer automorphism, and an SU × SU × SU subalgebra. Other maximal subalgebras which have an importance in physics and can be read off the Dynkin diagram, are the algebras of SO × U, in addition to the 78-dimensional adjoint representation, there are two dual 27-dimensional vector representations. The characters of finite dimensional representations of the real and complex Lie algebras, the fundamental representations have dimensions 27,351,2925,351,27 and 78. The E6 polytope is the hull of the roots of E6. It therefore exists in 6 dimensions, its symmetry group contains the Coxeter group for E6 as an index 2 subgroup, the groups of type E6 over arbitrary fields were introduced by Dickson. The points over a field with q elements of the algebraic group E6, whether of the adjoint or simply connected form
40.
E7 (mathematics)
–
The E7 algebra is thus one of the five exceptional cases. The fundamental group of the form, compact real form, or any algebraic version of E7 is the cyclic group Z/2Z. The dimension of its representation is 56. There is a unique complex Lie algebra of type E7, corresponding to a group of complex dimension 133. The complex adjoint Lie group E7 of complex dimension 133 can be considered as a simple real Lie group of real dimension 266. This has fundamental group Z/2Z, has maximal compact subgroup the compact form of E7, the split form, EV, which has maximal compact subgroup SU/, fundamental group cyclic of order 4 and outer automorphism group of order 2. EVI, which has maximal compact subgroup SU·SO/, fundamental group non-cyclic of order 4, EVII, which has maximal compact subgroup SO·E6/, infinite cyclic findamental group and outer automorphism group of order 2. For a complete list of forms of simple Lie algebras. The compact real form of E7 is the group of the 64-dimensional exceptional compact Riemannian symmetric space EVI. This can be seen using a construction known as the magic square, due to Hans Freudenthal. The Tits–Koecher construction produces forms of the E7 Lie algebra from Albert algebras, over finite fields, the Lang–Steinberg theorem implies that H1 =0, meaning that E7 has no twisted forms, see below. The Dynkin diagram for E7 is given by, even though the roots span a 7-dimensional space, it is more symmetric and convenient to represent them as vectors lying in a 7-dimensional subspace of an 8-dimensional vector space. The roots are all the 8×7 permutations of and all the permutations of Note that the 7-dimensional subspace is the subspace where the sum of all the eight coordinates is zero. The simple roots are We have ordered them so that their corresponding nodes in the Dynkin diagram are ordered left to right with the side node last. Given the E7 Cartan matrix and a Dynkin diagram node ordering of, the Weyl group of E7 is of order 2903040, it is the direct product of the cyclic group of order 2 and the unique simple group of order 1451520. E7 has an SU subalgebra, as is evident by noting that in the 8-dimensional description of the root system, in addition to the 133-dimensional adjoint representation, there is a 56-dimensional vector representation, to be found in the E8 adjoint representation. The characters of finite dimensional representations of the real and complex Lie algebras, there exist non-isomorphic irreducible representation of dimensions 1903725824,16349520330, etc. The fundamental representations are those with dimensions 133,8645,365750,27664,1539,56 and 912, E7 is the automorphism group of the following pair of polynomials in 56 non-commutative variables
41.
E8 (mathematics)
–
The E8 algebra is the largest and most complicated of these exceptional cases. Wilhelm Killing discovered the complex Lie algebra E8 during his classification of simple compact Lie algebras, though he did not prove its existence, Cartan determined that a complex simple Lie algebra of type E8 admits three real forms. Each of them rise to a simple Lie group of dimension 248. Chevalley introduced algebraic groups and Lie algebras of type E8 over other fields, for example, the Lie group E8 has dimension 248. Its rank, which is the dimension of its maximal torus, is 8, therefore, the vectors of the root system are in eight-dimensional Euclidean space, they are described explicitly later in this article. The Weyl group of E8, which is the group of symmetries of the maximal torus which are induced by conjugations in the group, has order 21435527 =696729600. There is a Lie algebra Ek for every integer k ≥3, there is a unique complex Lie algebra of type E8, corresponding to a complex group of complex dimension 248. The complex Lie group E8 of complex dimension 248 can be considered as a simple real Lie group of real dimension 496 and this is simply connected, has maximal compact subgroup the compact form of E8, and has an outer automorphism group of order 2 generated by complex conjugation. The split form, EVIII, which has maximal compact subgroup Spin/, EIX, which has maximal compact subgroup E7×SU/, fundamental group of order 2 and has trivial outer automorphism group. For a complete list of forms of simple Lie algebras. Over finite fields, the Lang–Steinberg theorem implies that H1=0, meaning that E8 has no twisted forms, the characters of finite dimensional representations of the real and complex Lie algebras and Lie groups are all given by the Weyl character formula. There are two non-isomorphic irreducible representations of dimension 8634368000, the fundamental representations are those with dimensions 3875,6696000,6899079264,146325270,2450240,30380,248 and 147250. The values at 1 of the Lusztig–Vogan polynomials give the coefficients of the matrices relating the standard representations with the irreducible representations. These matrices were computed after four years of collaboration by a group of 18 mathematicians and computer scientists, led by Jeffrey Adams, the most difficult case is the split real form of E8, where the largest matrix is of size 453060×453060. The Lusztig–Vogan polynomials for all other simple groups have been known for some time. The announcement of the result in March 2007 received extraordinary attention from the media, the representations of the E8 groups over finite fields are given by Deligne–Lusztig theory. One can construct the E8 group as the group of the corresponding e8 Lie algebra. This algebra has a 120-dimensional subalgebra so generated by Jij as well as 128 new generators Qa that transform as a Weyl–Majorana spinor of spin and it is then possible to check that the Jacobi identity is satisfied
42.
E10 (mathematics)
–
In mathematics, especially in Lie theory, En is the Kac–Moody algebra whose Dynkin diagram is a bifurcating graph with three branches of length 1,2, and k, with k=n-4. In some older books and papers, E2 and E4 are used as names for G2, the En group is similar to the An group, except the nth node is connected to the 3rd node. So the Cartan matrix appears similar, -1 above and below the diagonal, except for the last row and column, have -1 in the third row, the determinant of the Cartan matrix for En is 9-n. E3 is another name for the Lie algebra A1A2 of dimension 11, E4 is another name for the Lie algebra A4 of dimension 24, with Cartan determinant 5. E5 is another name for the Lie algebra D5 of dimension 45, e6 is the exceptional Lie algebra of dimension 78, with Cartan determinant 3. E7 is the exceptional Lie algebra of dimension 133, with Cartan determinant 2, E8 is the exceptional Lie algebra of dimension 248, with Cartan determinant 1. E9 is another name for the infinite-dimensional affine Lie algebra E ~8 corresponding to the Lie algebra of type E8, e9 has a Cartan matrix with determinant 0. E10 is an infinite-dimensional Kac–Moody algebra whose root lattice is the even Lorentzian unimodular lattice II9,1 of dimension 10, some of its root multiplicities have been calculated, for small roots the multiplicities seem to be well behaved, but for larger roots the observed patterns break down. E10 has a Cartan matrix with determinant -1, E11 is a Lorentzian algebra, containing one time-like imaginary dimension, En for n≥12 is an infinite-dimensional Kac–Moody algebra that has not been studied much. The root lattice of En has determinant 9−n, and can be constructed as the lattice of vectors in the unimodular Lorentzian lattice Zn,1 that are orthogonal to the vector of norm n×12 −32 = n −9. Landsberg and Manivel extended the definition of En for integer n to include the case n = 7½ and they did this in order to fill the hole in dimension formulae for representations of the En series which was observed by Cvitanovic, Deligne, Cohen and de Man. E7½ has dimension 190, but is not a simple Lie algebra, k21, 2k1, 1k2 polytopes based on En Lie algebras. Kac, Victor G, Moody, R. V. Wakimoto, differential geometrical methods in theoretical physics. West, P. E11 and M Theory,18 4443-4460 Gebert, R. W. Nicolai, H. E10 for beginners. Guersey Memorial Conference Proceedings 94 Landsberg, J. M. Manivel, connections between Kac-Moody algebras and M-theory, Paul P. Cook,2006 A class of Lorentzian Kac-Moody algebras, Matthias R. Gaberdiel, David I
43.
F4 (mathematics)
–
In mathematics, F4 is the name of a Lie group and also its Lie algebra f4. It is one of the five exceptional simple Lie groups, F4 has rank 4 and dimension 52. The compact form is connected and its outer automorphism group is the trivial group. The compact real form of F4 is the group of a 16-dimensional Riemannian manifold known as the octonionic projective plane OP2. This can be seen using a construction known as the magic square, due to Hans Freudenthal. There are 3 real forms, a one, a split one. They are the groups of the three real Albert algebras. The F4 Lie algebra may be constructed by adding 16 generators transforming as a spinor to the 36-dimensional Lie algebra so, in older books and papers, F4 is sometimes denoted by E4. The Dynkin diagram for F4 is and its Weyl/Coxeter group G = W is the symmetry group of the 24-cell, it is a solvable group of order 1152. It has minimal faithful degree μ =24 which is realized by the action on the 24-cell, the F4 lattice is a four-dimensional body-centered cubic lattice. They form a ring called the Hurwitz quaternion ring, the 24 Hurwitz quaternions of norm 1 form the vertices of a 24-cell centered at the origin. One choice of roots for F4, is given by the rows of the following matrix. Invariant, F4 is the group of automorphisms of the set of 3 polynomials in 27 variables. Another way of writing these invariants is as Tr, Tr and Tr of the hermitian octonion matrix, the characters of finite dimensional representations of the real and complex Lie algebras and Lie groups are all given by the Weyl character formula. There are two non-isomorphic irreducible representations of dimensions 1053,160056,4313088, etc, the fundamental representations are those with dimensions 52,1274,273,26. The Exceptional Simple Lie Algebras F and E. Proc
44.
G2 (mathematics)
–
In mathematics, G2 is the name of three simple Lie groups, their Lie algebras g 2, as well as some algebraic groups. They are the smallest of the five exceptional simple Lie groups, G2 has rank 2 and dimension 14. It has two representations, with dimension 7 and 14. The Lie algebra g 2, being the smallest exceptional simple Lie algebra, was the first of these to be discovered in the attempt to classify simple Lie algebras. On May 23,1887, Wilhelm Killing wrote a letter to Friedrich Engel saying that he had found a 14-dimensional simple Lie algebra, in the same year, in the same journal, Engel noticed the same thing. Later it was discovered that the 2-dimensional distribution is related to a ball rolling on another ball. The space of configurations of the ball is 5-dimensional, with a 2-dimensional distribution that describes motions of the ball where it rolls without slipping or twisting. In 1900, Engel discovered that a generic antisymmetric trilinear form on a 7-dimensional complex vector space is preserved by a group isomorphic to the form of G2. In 1908 Cartan mentioned that the group of the octonions is a 14-dimensional simple Lie group. In 1914 he stated that this is the real form of G2. In older books and papers, G2 is sometimes denoted by E2, there are 3 simple real Lie algebras associated with this root system, The underlying real Lie algebra of the complex Lie algebra G2 has dimension 28. It has complex conjugation as an automorphism and is simply connected. The maximal compact subgroup of its associated group is the form of G2. The Lie algebra of the form is 14-dimensional. The associated Lie group has no outer automorphisms, no center, the Lie algebra of the non-compact form has dimension 14. The associated simple Lie group has fundamental group of order 2 and its maximal compact subgroup is SU × SU/. It has a double cover that is simply connected. The Dynkin diagram for G2 is given by and its Cartan matrix is, Although they span a 2-dimensional space, as drawn, it is much more symmetric to consider them as vectors in a 2-dimensional subspace of a three-dimensional space
45.
H4 (mathematics)
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators
46.
Regular polygon
–
In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be convex or star, in the limit, a sequence of regular polygons with an increasing number of sides becomes a circle, if the perimeter is fixed, or a regular apeirogon, if the edge length is fixed. These properties apply to all regular polygons, whether convex or star, a regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle and that is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon also has a circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon, a regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. The symmetry group of a regular polygon is dihedral group Dn, D2, D3. It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center, if n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all pass through a vertex. All regular simple polygons are convex and those having the same number of sides are also similar. An n-sided convex regular polygon is denoted by its Schläfli symbol, for n <3 we have two degenerate cases, Monogon, degenerate in ordinary space. Digon, a line segment, degenerate in ordinary space. In certain contexts all the polygons considered will be regular, in such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular, for n >2 the number of diagonals is n 2, i. e.0,2,5,9. for a triangle, square, pentagon, hexagon. The diagonals divide the polygon into 1,4,11,24, for a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices equals n. For a regular simple n-gon with circumradius R and distances di from a point in the plane to the vertices. For a regular n-gon, the sum of the distances from any interior point to the n sides is n times the apothem. This is a generalization of Vivianis theorem for the n=3 case, the sum of the perpendiculars from a regular n-gons vertices to any line tangent to the circumcircle equals n times the circumradius
47.
Equilateral triangle
–
In geometry, an equilateral triangle is a triangle in which all three sides are equal. In the familiar Euclidean geometry, equilateral triangles are also equiangular and they are regular polygons, and can therefore also be referred to as regular triangles. Thus these are properties that are unique to equilateral triangles, the three medians have equal lengths. The three angle bisectors have equal lengths, every triangle center of an equilateral triangle coincides with its centroid, which implies that the equilateral triangle is the only triangle with no Euler line connecting some of the centers. For some pairs of triangle centers, the fact that they coincide is enough to ensure that the triangle is equilateral, in particular, A triangle is equilateral if any two of the circumcenter, incenter, centroid, or orthocenter coincide. It is also equilateral if its circumcenter coincides with the Nagel point, for any triangle, the three medians partition the triangle into six smaller triangles. A triangle is equilateral if and only if any three of the triangles have either the same perimeter or the same inradius. A triangle is equilateral if and only if the circumcenters of any three of the triangles have the same distance from the centroid. Morleys trisector theorem states that, in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, a version of the isoperimetric inequality for triangles states that the triangle of greatest area among all those with a given perimeter is equilateral. That is, PA, PB, and PC satisfy the inequality that any two of them sum to at least as great as the third. By Eulers inequality, the triangle has the smallest ratio R/r of the circumradius to the inradius of any triangle, specifically. The triangle of largest area of all those inscribed in a circle is equilateral. The ratio of the area of the incircle to the area of an equilateral triangle, the ratio of the area to the square of the perimeter of an equilateral triangle,1123, is larger than that for any other triangle. If a segment splits an equilateral triangle into two regions with equal perimeters and with areas A1 and A2, then 79 ≤ A1 A2 ≤97, in no other triangle is there a point for which this ratio is as small as 2. For any point P in the plane, with p, q, and t from the vertices A, B. For any point P on the circle of an equilateral triangle, with distances p, q. There are numerous triangle inequalities that hold with equality if and only if the triangle is equilateral, an equilateral triangle is the most symmetrical triangle, having 3 lines of reflection and rotational symmetry of order 3 about its center. Its symmetry group is the group of order 6 D3