1.
Orthogonal projection
–
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself such that P2 = P. That is, whenever P is applied twice to any value, though abstract, this definition of projection formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on an object by examining the effect of the projection on points in the object. For example, the function maps the point in three-dimensional space R3 to the point is an orthogonal projection onto the x–y plane. This function is represented by the matrix P =, the action of this matrix on an arbitrary vector is P =. To see that P is indeed a projection, i. e. P = P2, a simple example of a non-orthogonal projection is P =. Via matrix multiplication, one sees that P2 = = = P. proving that P is indeed a projection, the projection P is orthogonal if and only if α =0. Let W be a finite dimensional space and P be a projection on W. Suppose the subspaces U and V are the range and kernel of P respectively, then P has the following properties, By definition, P is idempotent. P is the identity operator I on U ∀ x ∈ U, P x = x and we have a direct sum W = U ⊕ V. Every vector x ∈ W may be decomposed uniquely as x = u + v with u = P x and v = x − P x = x, the range and kernel of a projection are complementary, as are P and Q = I − P. The operator Q is also a projection and the range and kernel of P become the kernel and range of Q and we say P is a projection along V onto U and Q is a projection along U onto V. In infinite dimensional spaces, the spectrum of a projection is contained in as −1 =1 λ I +1 λ P. Only 0 or 1 can be an eigenvalue of a projection, the corresponding eigenspaces are the kernel and range of the projection. Decomposition of a space into direct sums is not unique in general. Therefore, given a subspace V, there may be many projections whose range is V, if a projection is nontrivial it has minimal polynomial x 2 − x = x, which factors into distinct roots, and thus P is diagonalizable. The product of projections is not, in general, a projection, if projections commute, then their product is a projection. When the vector space W has a product and is complete the concept of orthogonality can be used
2.
Petrie polygon
–
In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon such that every consecutive sides belong to one of the facets. The Petrie polygon of a polygon is the regular polygon itself. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the interior to it. The plane in question is the Coxeter plane of the group of the polygon. These polygons and projected graphs are useful in visualizing symmetric structure of the regular polytopes. John Flinders Petrie was the son of Egyptologist Flinders Petrie. He was born in 1907 and as a schoolboy showed remarkable promise of mathematical ability, in periods of intense concentration he could answer questions about complicated four-dimensional objects by visualizing them. He first noted the importance of the skew polygons which appear on the surface of regular polyhedra. When my incredulity had begun to subside, he described them to me, one consisting of squares, six at each vertex, in 1938 Petrie collaborated with Coxeter, Patrick du Val, and H. T. Flather to produce The Fifty-Nine Icosahedra for publication, realizing the geometric facility of the skew polygons used by Petrie, Coxeter named them after his friend when he wrote Regular Polytopes. In 1972, a few months after his retirement, Petrie was killed by a car attempting to cross a motorway near his home in Surrey. The idea of Petrie polygons was later extended to semiregular polytopes, the Petrie polygon of the regular polyhedron has h sides, where h+2=24/. The regular duals, and, are contained within the same projected Petrie polygon, three of the Kepler–Poinsot polyhedra have hexagonal, and decagrammic, petrie polygons. The Petrie polygon projections are most useful for visualization of polytopes of dimension four and this table represents Petrie polygon projections of 3 regular families, and the exceptional Lie group En which generate semiregular and uniform polytopes for dimensions 4 to 8. Coxeter, H. S. M. Regular Polytopes, 3rd ed, Section 4.3 Flags and Orthoschemes, Section 11.3 Petrie polygons Ball, W. W. R. and H. S. M. Coxeter Mathematical Recreations and Essays, 13th ed. The Beauty of Geometry, Twelve Essays, Dover Publications LCCN 99-35678 Peter McMullen, Egon Schulte Abstract Regular Polytopes, ISBN 0-521-81496-0 Steinberg, Robert, ON THE NUMBER OF SIDES OF A PETRIE POLYGON Weisstein, Eric W. Petrie polygon. Weisstein, Eric W. Cross polytope graphs, Weisstein, Eric W. Gosset graph 3_21
3.
10-polytope
–
In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge. A uniform 10-polytope is one which is vertex-transitive, and constructed from uniform facets, Regular 10-polytopes can be represented by the Schläfli symbol, with x 9-polytope facets around each peak. There are exactly three convex regular 10-polytopes, - 10-simplex - 10-cube - 10-orthoplex There are no nonconvex regular 10-polytopes. The topology of any given 10-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 10-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, There are 512+16-1=527 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. 31 are shown below, all one and two ringed forms, and the final omnitruncated form, bowers-style acronym names are given in parentheses for cross-referencing. There are 1023 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings, twelve cases are shown below, ten single-ring forms, and two truncations. Bowers-style acronym names are given in parentheses for cross-referencing, the D10 family has symmetry of order 1,857,945,600. This family has 3×256−1=767 Wythoffian uniform polytopes, generated by marking one or more nodes of the D10 Coxeter-Dynkin diagram, of these,511 are repeated from the B10 family and 256 are unique to this family, with 2 listed below. Bowers-style acronym names are given in parentheses for cross-referencing, however, there are 3 noncompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 9-space as permutations of rings of the Coxeter diagrams. Miller, Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, N. W, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. Dissertation, University of Toronto,1966 Klitzing, Richard, polytope names Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary Glossary for hyperspace, George Olshevsky
4.
Simplex
–
In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. Specifically, a k-simplex is a polytope which is the convex hull of its k +1 vertices. More formally, suppose the k +1 points u 0, …, u k ∈ R k are affinely independent, then, the simplex determined by them is the set of points C =. For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, a single point may be considered a 0-simplex, and a line segment may be considered a 1-simplex. A simplex may be defined as the smallest convex set containing the given vertices, a regular simplex is a simplex that is also a regular polytope. A regular n-simplex may be constructed from a regular -simplex by connecting a new vertex to all original vertices by the edge length. In topology and combinatorics, it is common to “glue together” simplices to form a simplicial complex, the associated combinatorial structure is called an abstract simplicial complex, in which context the word “simplex” simply means any finite set of vertices. A 1-simplex is a line segment, the convex hull of any nonempty subset of the n+1 points that define an n-simplex is called a face of the simplex. In particular, the hull of a subset of size m+1 is an m-simplex. The 0-faces are called the vertices, the 1-faces are called the edges, the -faces are called the facets, in general, the number of m-faces is equal to the binomial coefficient. Consequently, the number of m-faces of an n-simplex may be found in column of row of Pascals triangle, a simplex A is a coface of a simplex B if B is a face of A. Face and facet can have different meanings when describing types of simplices in a simplicial complex, see simplical complex for more detail. The regular simplex family is the first of three regular polytope families, labeled by Coxeter as αn, the two being the cross-polytope family, labeled as βn, and the hypercubes, labeled as γn. A fourth family, the infinite tessellation of hypercubes, he labeled as δn, an -simplex can be constructed as a join of an n-simplex and a point. An -simplex can be constructed as a join of an m-simplex, the two simplices are oriented to be completely normal from each other, with translation in a direction orthogonal to both of them. A 1-simplex is a joint of two points, ∨ =2, a general 2-simplex is the join of 3 points, ∨∨. An isosceles triangle is the join of a 1-simplex and a point, a general 3-simplex is the join of 4 points, ∨∨∨. A 3-simplex with mirror symmetry can be expressed as the join of an edge and 2 points, a 3-simplex with triangular symmetry can be expressed as the join of an equilateral triangle and 1 point,3. ∨ or ∨
5.
Coxeter-Dynkin diagram
–
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction, each node represents a mirror. An unlabeled branch implicitly represents order-3, each diagram represents a Coxeter group, and Coxeter groups are classified by their associated diagrams. Dynkin diagrams correspond to and are used to root systems. Branches of a Coxeter–Dynkin diagram are labeled with a number p. When p =2 the angle is 90° and the mirrors have no interaction, if a branch is unlabeled, it is assumed to have p =3, representing an angle of 60°. Two parallel mirrors have a branch marked with ∞, in principle, n mirrors can be represented by a complete graph in which all n /2 branches are drawn. In practice, nearly all interesting configurations of mirrors include a number of right angles, diagrams can be labeled by their graph structure. The first forms studied by Ludwig Schläfli are the orthoschemes which have linear graphs that generate regular polytopes, plagioschemes are simplices represented by branching graphs, and cycloschemes are simplices represented by cyclic graphs. Every Coxeter diagram has a corresponding Schläfli matrix with matrix elements ai, j = aj, as a matrix of cosines, it is also called a Gramian matrix after Jørgen Pedersen Gram. All Coxeter group Schläfli matrices are symmetric because their root vectors are normalized. It is related closely to the Cartan matrix, used in the similar but directed graph Dynkin diagrams in the cases of p =2,3,4, and 6. The determinant of the Schläfli matrix, called the Schläflian, and its sign determines whether the group is finite, affine and this rule is called Schläflis Criterion. The eigenvalues of the Schläfli matrix determines whether a Coxeter group is of type, affine type. The indefinite type is further subdivided, e. g. into hyperbolic. However, there are multiple non-equivalent definitions for hyperbolic Coxeter groups and we use the following definition, A Coxeter group with connected diagram is hyperbolic if it is neither of finite nor affine type, but every proper connected subdiagram is of finite or affine type. A hyperbolic Coxeter group is compact if all subgroups are finite, Finite and affine groups are also called elliptical and parabolic respectively. Hyperbolic groups are also called Lannér, after F. Lannér who enumerated the compact groups in 1950
6.
9-simplex
–
In geometry, a 9-simplex is a self-dual regular 9-polytope. It has 10 vertices,45 edges,120 triangle faces,210 tetrahedral cells,252 5-cell 4-faces,210 5-simplex 5-faces,120 6-simplex 6-faces,45 7-simplex 7-faces and its dihedral angle is cos−1, or approximately 83. 62°. It can also be called a decayotton, or deca-9-tope, as a 10-facetted polytope in 9-dimensions, the name decayotton is derived from deca for ten facets in Greek and -yott, having 8-dimensional facets, and -on. This construction is based on facets of the 10-orthoplex, Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 9D uniform polytopes x3o3o3o3o3o3o3o3o - day, Polytopes of Various Dimensions Multi-dimensional Glossary
7.
8-simplex
–
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices,36 edges,84 triangle faces,126 tetrahedral cells,126 5-cell 4-faces,84 5-simplex 5-faces,36 6-simplex 6-faces and its dihedral angle is cos−1, or approximately 82. 82°. It can also be called an enneazetton, or ennea-8-tope, as a 9-facetted polytope in eight-dimensions, the name enneazetton is derived from ennea for nine facets in Greek and -zetta for having seven-dimensional facets, and -on. This construction is based on facets of the 9-orthoplex and this polytope is a facet in the uniform tessellations,251, and 521 with respective Coxeter-Dynkin diagrams, This polytope is one of 135 uniform 8-polytopes with A8 symmetry. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 8D uniform polytopes x3o3o3o3o3o3o3o - ene, Polytopes of Various Dimensions Multi-dimensional Glossary
8.
7-simplex
–
In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices,28 edges,56 triangle faces,70 tetrahedral cells,56 5-cell 5-faces,28 5-simplex 6-faces and its dihedral angle is cos−1, or approximately 81. 79°. It can also be called an octaexon, or octa-7-tope, as an 8-facetted polytope in 7-dimensions, the name octaexon is derived from octa for eight facets in Greek and -ex for having six-dimensional facets, and -on. Jonathan Bowers gives an octaexon the acronym oca, the Cartesian coordinates of the vertices of an origin-centered regular octaexon having edge length 2 are, More simply, the vertices of the 7-simplex can be positioned in 8-space as permutations of. This construction is based on facets of the 8-orthoplex and this polytope is a facet in the uniform tessellation 331 with Coxeter-Dynkin diagram, This polytope is one of 71 uniform 7-polytopes with A7 symmetry. Polytopes of Various Dimensions Multi-dimensional Glossary
9.
6-simplex
–
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices,21 edges,35 triangle faces,35 tetrahedral cells,21 5-cell 4-faces and its dihedral angle is cos−1, or approximately 80. 41°. It can also be called a heptapeton, or hepta-6-tope, as a 7-facetted polytope in 6-dimensions, the name heptapeton is derived from hepta for seven facets in Greek and -peta for having five-dimensional facets, and -on. Jonathan Bowers gives a heptapeton the acronym hop, the regular 6-simplex is one of 35 uniform 6-polytopes based on the Coxeter group, all shown here in A6 Coxeter plane orthographic projections. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 6D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary
10.
5-simplex
–
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices,15 edges,20 triangle faces,15 tetrahedral cells and it has a dihedral angle of cos−1, or approximately 78. 46°. It can also be called a hexateron, or hexa-5-tope, as a 6-facetted polytope in 5-dimensions, the name hexateron is derived from hexa- for having six facets and teron for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix, the hexateron can be constructed from a 5-cell by adding a 6th vertex such that it is equidistant from all the other vertices of the 5-cell. These construction can be seen as facets of the 6-orthoplex or rectified 6-cube respectively and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral dihedron and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron, the 5-simplex, as 220 polytope is first in dimensional series 22k. The regular 5-simplex is one of 19 uniform polytera based on the Coxeter group, the 5-simplex can also be considered a 5-cell pyramid, constructed as a 5-cell base in a 4-space hyperplane, and an apex point above the hyperplane. The five sides of the pyramid are made of 5-cell cells, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 5D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary
11.
5-cell
–
In geometry, the 5-cell is a four-dimensional object bounded by 5 tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid and it is a 4-simplex, the simplest possible convex regular 4-polytope, and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The pentachoron is a four dimensional pyramid with a tetrahedral base, the regular 5-cell is bounded by regular tetrahedra, and is one of the six regular convex 4-polytopes, represented by Schläfli symbol. Pentachoron 4-simplex Pentatope Pentahedroid Pen Hyperpyramid, tetrahedral pyramid The 5-cell is self-dual and its maximal intersection with 3-dimensional space is the triangular prism. Its dihedral angle is cos−1, or approximately 75. 52°, the 5-cell can be constructed from a tetrahedron by adding a 5th vertex such that it is equidistant from all the other vertices of the tetrahedron. The simplest set of coordinates is, with edge length 2√2, a 5-cell can be constructed as a Boerdijk–Coxeter helix of five chained tetrahedra, folded into a 4-dimensional ring. The 10 triangle faces can be seen in a 2D net within a triangular tiling, with 6 triangles around every vertex, the purple edges represent the Petrie polygon of the 5-cell. The A4 Coxeter plane projects the 5-cell into a regular pentagon, the four sides of the pyramid are made of tetrahedron cells. Many uniform 5-polytopes have tetrahedral pyramid vertex figures, Other uniform 5-polytopes have irregular 5-cell vertex figures, the symmetry of a vertex figure of a uniform polytope is represented by removing the ringed nodes of the Coxeter diagram. The compound of two 5-cells in dual configurations can be seen in this A5 Coxeter plane projection, with a red and this compound has symmetry, order 240. The intersection of these two 5-cells is a uniform birectified 5-cell, the pentachoron is the simplest of 9 uniform polychora constructed from the Coxeter group. It is in the sequence of regular polychora, the tesseract, 120-cell, of Euclidean 4-space, all of these have a tetrahedral vertex figure. It is similar to three regular polychora, the tesseract, 600-cell of Euclidean 4-space, and the order-6 tetrahedral honeycomb of hyperbolic space, all of these have a tetrahedral cell. T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D
12.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
13.
Triangle
–
A triangle is a polygon with three edges and three vertices. It is one of the shapes in geometry. A triangle with vertices A, B, and C is denoted △ A B C, in Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. This article is about triangles in Euclidean geometry except where otherwise noted, triangles can be classified according to the lengths of their sides, An equilateral triangle has all sides the same length. An equilateral triangle is also a polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length, some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides. The latter definition would make all equilateral triangles isosceles triangles, the 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths, equivalently, it has all angles of different measure. Hatch marks, also called tick marks, are used in diagrams of triangles, a side can be marked with a pattern of ticks, short line segments in the form of tally marks, two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is no more than 3 ticks. Similarly, patterns of 1,2, or 3 concentric arcs inside the angles are used to indicate equal angles, triangles can also be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°, the side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti of the triangle, special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 +42 =52, in this situation,3,4, and 5 are a Pythagorean triple. The other one is a triangle that has 2 angles that each measure 45 degrees. Triangles that do not have an angle measuring 90° are called oblique triangles, a triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, a triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, a triangle with an interior angle of 180° is degenerate
14.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
15.
Hendecagon
–
In geometry, a hendecagon or 11-gon is an eleven-sided polygon. A regular hendecagon is represented by Schläfli symbol, a regular hendecagon has internal angles of 147.27 degrees. The area of a regular hendecagon with side length a is given by A =114 a 2 cot π11 ≃9.36564 a 2, as 11 is not a Fermat prime, the regular hendecagon is not constructible with compass and straightedge. Because 11 is not a Pierpont prime, construction of a regular hendecagon is still impossible even with the usage of an angle trisector and it can, however, be constructed via neusis construction. Close approximations to the regular hendecagon can be constructed, however, for instance, the ancient Greek mathematicians approximated the side length of a hendecagon inscribed in a unit circle as being 14/25 units long. The following construction description is given by T, the regular hendecagon has Dih11 symmetry, order 22. Since 11 is a number there is one subgroup with dihedral symmetry, Dih1, and 2 cyclic group symmetries, Z11. These 4 symmetries can be seen in 4 distinct symmetries on the hendecagon, john Conway labels these by a letter and group order. Full symmetry of the form is r22 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices or edges, cyclic symmetries in the middle column are labeled as g for their central gyration orders. Each subgroup symmetry allows one or more degrees of freedom for irregular forms, only the g11 subgroup has no degrees of freedom but can seen as directed edges. The Canadian dollar coin, the loonie, is similar to, but not exactly, the cross-section of a loonie is actually a Reuleaux hendecagon. Anthony dollar has a hendecagonal outline along the inside of its edges
16.
Coxeter group
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators
17.
Self-dual polytope
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
18.
Convex polytope
–
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn. Some authors use the terms polytope and convex polyhedron interchangeably. In addition, some require a polytope to be a bounded set. The terms bounded/unbounded convex polytope will be used whenever the boundedness is critical to the discussed issue. Yet other texts treat a convex n-polytope as a surface or -manifold, Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. A comprehensive and influential book in the subject, called Convex Polytopes, was published in 1967 by Branko Grünbaum, in 2003 the 2nd edition of the book was published, with significant additional material contributed by new writers. In Grünbaums book, and in other texts in discrete geometry. Grünbaum points out that this is solely to avoid the repetition of the word convex. A polytope is called if it is an n-dimensional object in Rn. Many examples of bounded convex polytopes can be found in the article polyhedron, a convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaums definition is in terms of a set of points in space. Other important definitions are, as the intersection of half-spaces and as the hull of a set of points. This is equivalent to defining a bounded convex polytope as the hull of a finite set of points. Such a definition is called a vertex representation, for a compact convex polytope, the minimal V-description is unique and it is given by the set of the vertices of the polytope. A convex polytope may be defined as an intersection of a number of half-spaces. Such definition is called a half-space representation, there exist infinitely many H-descriptions of a convex polytope. However, for a convex polytope, the minimal H-description is in fact unique and is given by the set of the facet-defining halfspaces. A closed half-space can be written as an inequality, a 1 x 1 + a 2 x 2 + ⋯ + a n x n ≤ b where n is the dimension of the space containing the polytope under consideration
19.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
20.
Regular polytope
–
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, Regular polytopes are the generalized analog in any number of dimensions of regular polygons and regular polyhedra. The strong symmetry of the regular polytopes gives them an aesthetic quality that interests both non-mathematicians and mathematicians, classically, a regular polytope in n dimensions may be defined as having regular facets and regular vertex figures. These two conditions are sufficient to ensure that all faces are alike and all vertices are alike, note, however, that this definition does not work for abstract polytopes. A regular polytope can be represented by a Schläfli symbol of the form, with regular facets as, Regular polytopes are classified primarily according to their dimensionality. They can be classified according to symmetry. For example, the cube and the regular octahedron share the same symmetry, indeed, symmetry groups are sometimes named after regular polytopes, for example the tetrahedral and icosahedral symmetries. Three special classes of regular polytope exist in every dimensionality, Regular simplex Measure polytope Cross polytope In two dimensions there are many regular polygons. In three and four dimensions there are more regular polyhedra and 4-polytopes besides these three. In five dimensions and above, these are the only ones, see also the list of regular polytopes. The idea of a polytope is sometimes generalised to include related kinds of geometrical object, some of these have regular examples, as discussed in the section on historical discovery below. A concise symbolic representation for regular polytopes was developed by Ludwig Schläfli in the 19th Century, the notation is best explained by adding one dimension at a time. A convex regular polygon having n sides is denoted by, so an equilateral triangle is, a square, and so on indefinitely. A regular star polygon which winds m times around its centre is denoted by the fractional value, a regular polyhedron having faces with p faces joining around a vertex is denoted by. The nine regular polyhedra are and. is the figure of the polyhedron. A regular 4-polytope having cells with q cells joining around an edge is denoted by, the vertex figure of the 4-polytope is a. A five-dimensional regular polytope is an, the dual of a regular polytope is also a regular polytope. The Schläfli symbol for the dual polytope is just the original written backwards, is self-dual, is dual to, to
21.
Vertex (geometry)
–
In geometry, a vertex is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. A vertex is a point of a polygon, polyhedron, or other higher-dimensional polytope. However, in theory, vertices may have fewer than two incident edges, which is usually not allowed for geometric vertices. However, a smooth approximation to a polygon will also have additional vertices. A polygon vertex xi of a simple polygon P is a principal polygon vertex if the diagonal intersects the boundary of P only at x and x, there are two types of principal vertices, ears and mouths. A principal vertex xi of a simple polygon P is called an ear if the diagonal that bridges xi lies entirely in P, according to the two ears theorem, every simple polygon has at least two ears. A principal vertex xi of a simple polygon P is called a mouth if the diagonal lies outside the boundary of P. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces, for example, a cube has 12 edges and 6 faces, and hence 8 vertices
22.
Edge (geometry)
–
For edge in graph theory, see Edge In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a segment on the boundary. In a polyhedron or more generally a polytope, an edge is a segment where two faces meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal. In graph theory, an edge is an abstract object connecting two vertices, unlike polygon and polyhedron edges which have a concrete geometric representation as a line segment. However, any polyhedron can be represented by its skeleton or edge-skeleton, conversely, the graphs that are skeletons of three-dimensional polyhedra can be characterized by Steinitzs theorem as being exactly the 3-vertex-connected planar graphs. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces, for example, a cube has 8 vertices and 6 faces, and hence 12 edges. In a polygon, two edges meet at each vertex, more generally, by Balinskis theorem, at least d edges meet at every vertex of a convex polytope. Similarly, in a polyhedron, exactly two faces meet at every edge, while in higher dimensional polytopes three or more two-dimensional faces meet at every edge. Thus, the edges of a polygon are its facets, the edges of a 3-dimensional convex polyhedron are its ridges, archived from the original on 4 February 2007
23.
Face (geometry)
–
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object, a three-dimensional solid bounded exclusively by flat faces is a polyhedron. In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, in elementary geometry, a face is a polygon on the boundary of a polyhedron. Other names for a polygonal face include side of a polyhedron, for example, any of the six squares that bound a cube is a face of the cube. Sometimes face is used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, some other polygons, which are not faces, are also important for polyhedra and tessellations. These include Petrie polygons, vertex figures and facets, any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Eulers polyhedron formula, thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, in higher-dimensional geometry the faces of a polytope are features of all dimensions. A face of dimension k is called a k-face, for example, the polygonal faces of an ordinary polyhedron are 2-faces. In set theory, the set of faces of a polytope includes the polytope itself, for any n-polytope, −1 ≤ k ≤ n. For example, with meaning, the faces of a cube include the empty set, its vertices, edges and squares. Formally, a face of a polytope P is the intersection of P with any closed halfspace whose boundary is disjoint from the interior of P, from this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. In other areas of mathematics, such as the theories of abstract polytopes and star polytopes, abstract theory still requires that the set of faces include the polytope itself and the empty set. A cell is an element of a 4-dimensional polytope or 3-dimensional tessellation. Cells are facets for 4-polytopes and 3-honeycombs, examples, In higher-dimensional geometry, the facets of a n-polytope are the -faces of dimension one less than the polytope itself. A polytope is bounded by its facets, for example, The facets of a line segment are its 0-faces or vertices. The facets of a polygon are its 1-faces or edges, the facets of a polyhedron or plane tiling are its 2-faces. The facets of a 4D polytope or 3-honeycomb are its 3-faces, the facets of a 5D polytope or 4-honeycomb are its 4-faces
24.
Cell (mathematics)
–
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object, a three-dimensional solid bounded exclusively by flat faces is a polyhedron. In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, in elementary geometry, a face is a polygon on the boundary of a polyhedron. Other names for a polygonal face include side of a polyhedron, for example, any of the six squares that bound a cube is a face of the cube. Sometimes face is used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, some other polygons, which are not faces, are also important for polyhedra and tessellations. These include Petrie polygons, vertex figures and facets, any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Eulers polyhedron formula, thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, in higher-dimensional geometry the faces of a polytope are features of all dimensions. A face of dimension k is called a k-face, for example, the polygonal faces of an ordinary polyhedron are 2-faces. In set theory, the set of faces of a polytope includes the polytope itself, for any n-polytope, −1 ≤ k ≤ n. For example, with meaning, the faces of a cube include the empty set, its vertices, edges and squares. Formally, a face of a polytope P is the intersection of P with any closed halfspace whose boundary is disjoint from the interior of P, from this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. In other areas of mathematics, such as the theories of abstract polytopes and star polytopes, abstract theory still requires that the set of faces include the polytope itself and the empty set. A cell is an element of a 4-dimensional polytope or 3-dimensional tessellation. Cells are facets for 4-polytopes and 3-honeycombs, examples, In higher-dimensional geometry, the facets of a n-polytope are the -faces of dimension one less than the polytope itself. A polytope is bounded by its facets, for example, The facets of a line segment are its 0-faces or vertices. The facets of a polygon are its 1-faces or edges, the facets of a polyhedron or plane tiling are its 2-faces. The facets of a 4D polytope or 3-honeycomb are its 3-faces, the facets of a 5D polytope or 4-honeycomb are its 4-faces
25.
Dihedral angle
–
A dihedral angle is the angle between two intersecting planes. In chemistry it is the angle between planes through two sets of three atoms, having two atoms in common, in solid geometry it is defined as the union of a line and two half-planes that have this line as a common edge. In higher dimension, a dihedral angle represents the angle between two hyperplanes, a dihedral angle is an angle between two intersecting planes on a third plane perpendicular to the line of intersection. A torsion angle is an example of a dihedral angle. In stereochemistry every set of three atoms of a molecule defines a plane, when two such planes intersect, the angle between them is a dihedral angle. Dihedral angles are used to specify the molecular conformation, stereochemical arrangements corresponding to angles between 0° and ±90° are called syn, those corresponding to angles between ±90° and 180° anti. Similarly, arrangements corresponding to angles between 30° and 150° or between −30° and −150° are called clinal and those between 0° and ±30° or ±150° and 180° are called periplanar. The synperiplanar conformation is also known as the syn- or cis-conformation, antiperiplanar as anti or trans, for example, with n-butane two planes can be specified in terms of the two central carbon atoms and either of the methyl carbon atoms. The syn-conformation shown above, with an angle of 60° is less stable than the anti-configuration with a dihedral angle of 180°. For macromolecular usage the symbols T, C, G+, G−, A+, a Ramachandran plot, originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, is a way to visualize energetically allowed regions for backbone dihedral angles ψ against φ of amino acid residues in protein structure, the figure at right illustrates the definition of the φ and ψ backbone dihedral angles. In a protein chain three dihedral angles are defined as φ, ψ and ω, as shown in the diagram, the planarity of the peptide bond usually restricts ω to be 180° or 0°. The distance between the Cα atoms in the trans and cis isomers is approximately 3.8 and 2.9 Å, the cis isomer is mainly observed in Xaa–Pro peptide bonds. The sidechain dihedral angles tend to cluster near 180°, 60°, and −60°, which are called the trans, gauche+, the stability of certain sidechain dihedral angles is affected by the values φ and ψ. For instance, there are steric interactions between the Cγ of the side chain in the gauche+ rotamer and the backbone nitrogen of the next residue when ψ is near -60°. An alternative method is to calculate the angle between the vectors, nA and nB, which are normal to the planes. Cos φ = − n A ⋅ n B | n A | | n B | where nA · nB is the dot product of the vectors and |nA| |nB| is the product of their lengths. Any plane can also be described by two non-collinear vectors lying in that plane, taking their cross product yields a vector to the plane
26.
5-polytope
–
In five-dimensional geometry, a five-dimensional polytope or 5-polytope is a 5-dimensional polytope, bounded by facets. Each polyhedral cell being shared by exactly two 4-polytope facets, a 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet, an edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope, furthermore, the following requirements must be met, Each cell must join exactly two 4-faces. Adjacent 4-faces are not in the same four-dimensional hyperplane, the figure is not a compound of other figures which meet the requirements. The topology of any given 5-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, 5-polytopes may be classified based on properties like convexity and symmetry. Self-intersecting 5-polytopes are also known as star polytopes, from analogy with the shapes of the non-convex Kepler-Poinsot polyhedra. A uniform 5-polytope has a group under which all vertices are equivalent. The faces of a uniform polytope must be regular, a semi-regular 5-polytope contains two or more types of regular 4-polytope facets. There is only one figure, called a demipenteract. A regular 5-polytope has all identical regular 4-polytope facets, a prismatic 5-polytope is constructed by a Cartesian product of two lower-dimensional polytopes. A prismatic 5-polytope is uniform if its factors are uniform, the hypercube is prismatic, but is considered separately because it has symmetries other than those inherited from its factors. A 4-space tessellation is the division of four-dimensional Euclidean space into a grid of polychoral facets. Strictly speaking, tessellations are not polytopes as they do not bound a 5D volume, a uniform 4-space tessellation is one whose vertices are related by a space group and whose facets are uniform 4-polytopes. Regular 5-polytopes can be represented by the Schläfli symbol, with s polychoral facets around each face, the 5-demicube honeycomb, vertex figure is a rectified 5-orthoplex and facets are the 5-orthoplex and 5-demicube. Pyramidal 5-polytopes, or 5-pyramids, can be generated by a 4-polytope base in a 4-space hyperplane connected to a point off the hyperplane, the 5-simplex is the simplest example with a 4-simplex base
27.
Greek language
–
Greek is an independent branch of the Indo-European family of languages, native to Greece and other parts of the Eastern Mediterranean. It has the longest documented history of any living language, spanning 34 centuries of written records and its writing system has been the Greek alphabet for the major part of its history, other systems, such as Linear B and the Cypriot syllabary, were used previously. The alphabet arose from the Phoenician script and was in turn the basis of the Latin, Cyrillic, Armenian, Coptic, Gothic and many other writing systems. Together with the Latin texts and traditions of the Roman world, during antiquity, Greek was a widely spoken lingua franca in the Mediterranean world and many places beyond. It would eventually become the official parlance of the Byzantine Empire, the language is spoken by at least 13.2 million people today in Greece, Cyprus, Italy, Albania, Turkey, and the Greek diaspora. Greek roots are used to coin new words for other languages, Greek. Greek has been spoken in the Balkan peninsula since around the 3rd millennium BC, the earliest written evidence is a Linear B clay tablet found in Messenia that dates to between 1450 and 1350 BC, making Greek the worlds oldest recorded living language. Among the Indo-European languages, its date of earliest written attestation is matched only by the now extinct Anatolian languages, the Greek language is conventionally divided into the following periods, Proto-Greek, the unrecorded but assumed last ancestor of all known varieties of Greek. The unity of Proto-Greek would have ended as Hellenic migrants entered the Greek peninsula sometime in the Neolithic era or the Bronze Age, Mycenaean Greek, the language of the Mycenaean civilisation. It is recorded in the Linear B script on tablets dating from the 15th century BC onwards, Ancient Greek, in its various dialects, the language of the Archaic and Classical periods of the ancient Greek civilisation. It was widely known throughout the Roman Empire, after the Roman conquest of Greece, an unofficial bilingualism of Greek and Latin was established in the city of Rome and Koine Greek became a first or second language in the Roman Empire. The origin of Christianity can also be traced through Koine Greek, Medieval Greek, also known as Byzantine Greek, the continuation of Koine Greek in Byzantine Greece, up to the demise of the Byzantine Empire in the 15th century. Much of the written Greek that was used as the language of the Byzantine Empire was an eclectic middle-ground variety based on the tradition of written Koine. Modern Greek, Stemming from Medieval Greek, Modern Greek usages can be traced in the Byzantine period and it is the language used by the modern Greeks, and, apart from Standard Modern Greek, there are several dialects of it. In the modern era, the Greek language entered a state of diglossia, the historical unity and continuing identity between the various stages of the Greek language is often emphasised. Greek speakers today still tend to regard literary works of ancient Greek as part of their own rather than a foreign language and it is also often stated that the historical changes have been relatively slight compared with some other languages. According to one estimation, Homeric Greek is probably closer to demotic than 12-century Middle English is to modern spoken English, Greek is spoken by about 13 million people, mainly in Greece, Albania and Cyprus, but also worldwide by the large Greek diaspora. Greek is the language of Greece, where it is spoken by almost the entire population
28.
Xenna
–
A unit prefix is a specifier or mnemonic that is prepended to units of measurement to indicate multiples or fractions of the units. Units of various sizes are formed by the use of such prefixes. The prefixes of the system, such as kilo and milli. In information technology it is common to use binary prefixes, which are based on powers of two, historically, many prefixes have been used or proposed by various sources, but only a narrow set has been recognised by standards organisations. The prefixes of the metric system precede a basic unit of measure to indicate a decadic multiple, each prefix has a unique symbol that is prepended to the unit symbol. Some of the date back to the introduction of the metric system in the 1790s, but new prefixes have been added. The International Bureau of Weights and Measures has standardised twenty metric prefixes in resolutions dating from 1960 to 1991 for use with the International System of Units, although formerly in use, the SI disallows combining prefixes, the microkilogram or centimillimetre, for example, are not permitted. Prefixes corresponding to powers of one thousand are usually preferred, however, units such as the hectopascal, hectare, decibel, centimetre, in general, prefixes are used with any metric unit, but may also be used with non-metric units. Some combinations, however, are more common than others, the choice of prefixes for a given unit has often arisen by convenience of use and historical developments. Unit prefixes that are larger or smaller than encountered in practice are seldom used. In most contexts only a few, the most common, combinations are established, for example, prefixes for multiples greater than one thousand are rarely applied to the gram or metre. Some prefixes used in versions of the metric system are no longer used. The prefix myrio- was a spelling variant for myria-, as proposed by Thomas Young. A binary prefix indicates multiplication by a power of two, the tenth power of 2 has the value 1024, which is close to 1000. This has prompted the use of the prefixes kilo, mega, and giga to also denote the powers of 1024 which is common in information technology with the unit of digital information. Units of information are not covered in the International System of Units, for example, in citations of main memory or RAM capacity, kilobyte, megabyte and gigabyte customarily mean 1024,1048576 and 1073741824 bytes respectively. In the specifications of hard drive capacities and network transmission bit rates, on the other hand, decimal prefixes. For example, a 500-gigabyte hard drive holds 500 billion bytes, the ambiguity has led to some confusion and even of lawsuits from purchasers who were expecting 220 or 230 and considered themselves shortchanged by the seller
29.
Cartesian coordinate
–
Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair. The coordinates can also be defined as the positions of the projections of the point onto the two axis, expressed as signed distances from the origin. One can use the principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes. In general, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n and these coordinates are equal, up to sign, to distances from the point to n mutually perpendicular hyperplanes. The invention of Cartesian coordinates in the 17th century by René Descartes revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra. Using the Cartesian coordinate system, geometric shapes can be described by Cartesian equations, algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2, centered at the origin of the plane, a familiar example is the concept of the graph of a function. Cartesian coordinates are also tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering. They are the most common system used in computer graphics, computer-aided geometric design. Nicole Oresme, a French cleric and friend of the Dauphin of the 14th Century, used similar to Cartesian coordinates well before the time of Descartes. The adjective Cartesian refers to the French mathematician and philosopher René Descartes who published this idea in 1637 and it was independently discovered by Pierre de Fermat, who also worked in three dimensions, although Fermat did not publish the discovery. Both authors used a single axis in their treatments and have a length measured in reference to this axis. The concept of using a pair of axes was introduced later, after Descartes La Géométrie was translated into Latin in 1649 by Frans van Schooten and these commentators introduced several concepts while trying to clarify the ideas contained in Descartes work. Many other coordinate systems have developed since Descartes, such as the polar coordinates for the plane. The development of the Cartesian coordinate system would play a role in the development of the Calculus by Isaac Newton. The two-coordinate description of the plane was later generalized into the concept of vector spaces. Choosing a Cartesian coordinate system for a one-dimensional space – that is, for a straight line—involves choosing a point O of the line, a unit of length, and an orientation for the line. An orientation chooses which of the two half-lines determined by O is the positive, and which is negative, we say that the line is oriented from the negative half towards the positive half
30.
11-orthoplex
–
In geometry, a cross-polytope, orthoplex, hyperoctahedron, or cocube is a regular, convex polytope that exists in n-dimensions. A 2-orthoplex is a square, a 3-orthoplex is an octahedron. Its facets are simplexes of the dimension, while the cross-polytopes vertex figure is another cross-polytope from the previous dimension. The vertices of a cross-polytope are all the permutations of, the cross-polytope is the convex hull of its vertices. The n-dimensional cross-polytope can also be defined as the unit ball in the ℓ1-norm on Rn. In 1 dimension the cross-polytope is simply the line segment, in 2 dimensions it is a square with vertices, in 3 dimensions it is an octahedron—one of the five convex regular polyhedra known as the Platonic solids. Higher-dimensional cross-polytopes are generalizations of these, the cross-polytope is the dual polytope of the hypercube. The 1-skeleton of a n-dimensional cross-polytope is a Turán graph T, the 4-dimensional cross-polytope also goes by the name hexadecachoron or 16-cell. It is one of six convex regular 4-polytopes and these 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. The cross polytope family is one of three regular polytope families, labeled by Coxeter as βn, the two being the hypercube family, labeled as γn, and the simplices, labeled as αn. A fourth family, the infinite tessellations of hypercubes, he labeled as δn, the n-dimensional cross-polytope has 2n vertices, and 2n facets all of which are n−1 simplices. The vertex figures are all n −1 cross-polytopes, the Schläfli symbol of the cross-polytope is. The dihedral angle of the n-dimensional cross-polytope is δ n = arccos and this gives, δ2 = arccos = 90°, δ3 = arccos =109. 47°, δ4 = arccos = 120°, δ5 = arccos =126. 87°. The volume of the n-dimensional cross-polytope is 2 n n. Petrie polygon projections map the points into a regular 2n-gon or lower order regular polygons. A second projection takes the 2-gon petrie polygon of the dimension, seen as a bipyramid, projected down the axis. The vertices of a cross polytope are all at equal distance from each other in the Manhattan distance. Kusners conjecture states that this set of 2d points is the largest possible equidistant set for this distance, Regular complex polytopes can be defined in complex Hilbert space called generalized orthoplexes, βpn =22. 2p, or. Real solutions exist with p=2, i. e. β2n = βn =22.22 =, for p>2, they exist in C n
31.
Coxeter plane
–
In mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. Note that this assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple classes of Coxeter elements. There are many different ways to define the Coxeter number h of a root system. A Coxeter element is a product of all simple reflections, the product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. The Coxeter number is the number of roots divided by the rank, the number of reflections in the Coxeter group is half the number of roots. The Coxeter number is the order of any Coxeter element, if the highest root is ∑miαi for simple roots αi, then the Coxeter number is 1 + ∑mi The dimension of the corresponding Lie algebra is n, where n is the rank and h is the Coxeter number. The Coxeter number is the highest degree of an invariant of the Coxeter group acting on polynomials. Notice that if m is a degree of a fundamental invariant then so is h +2 − m, the eigenvalues of a Coxeter element are the numbers e2πi/h as m runs through the degrees of the fundamental invariants. Since this starts with m =2, these include the primitive hth root of unity, ζh = e2πi/h, an example, has h=30, so 64*30/g =12 -3 -6 -5 + 4/3 + 4/5 = 2/15, so g = 1920*15/2= 960*15 =14400. Coxeter elements of A n −1 ≅ S n, considered as the group on n elements, are n-cycles, for simple reflections the adjacent transpositions, …. The dihedral group Dihm is generated by two reflections that form an angle of 2 π /2 m, and thus their product is a rotation by 2 π / m. For a given Coxeter element w, there is a unique plane P on which w acts by rotation by 2π/h and this is called the Coxeter plane and is the plane on which P has eigenvalues e2πi/h and e−2πi/h = e2πi/h. This plane was first systematically studied in, and subsequently used in to provide uniform proofs about properties of Coxeter elements, for polytopes, a vertex may map to zero, as depicted below. Projections onto the Coxeter plane are depicted below for the Platonic solids, in three dimensions, the symmetry of a regular polyhedron, with one directed petrie polygon marked, defined as a composite of 3 reflections, has rotoinversion symmetry Sh, order h. Adding a mirror, the symmetry can be doubled to symmetry, Dhd. In orthogonal 2D projection, this becomes dihedral symmetry, Dihh, in four dimension, the symmetry of a regular polychoron, with one directed petrie polygon marked is a double rotation, defined as a composite of 4 reflections, with symmetry +1/h, order h. In five dimension, the symmetry of a regular polyteron, with one directed petrie polygon marked, is represented by the composite of 5 reflections
32.
Dihedral symmetry
–
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of groups, and they play an important role in group theory, geometry. The notation for the group of order n differs in geometry. In geometry, Dn or Dihn refers to the symmetries of the n-gon, in abstract algebra, Dn refers to the dihedral group of order n. The geometric convention is used in this article, a regular polygon with n sides has 2 n different symmetries, n rotational symmetries and n reflection symmetries. Usually, we take n ≥3 here. The associated rotations and reflections make up the dihedral group D n, if n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is even, there are n/2 axes of symmetry connecting the midpoints of opposite sides, in either case, there are n axes of symmetry and 2 n elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes, as with any geometric object, the composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, the following Cayley table shows the effect of composition in the group D3. R0 denotes the identity, r1 and r2 denote counterclockwise rotations by 120° and 240° respectively, for example, s2s1 = r1, because the reflection s1 followed by the reflection s2 results in a rotation of 120°. The order of elements denoting the composition is right to left, the composition operation is not commutative. In all cases, addition and subtraction of subscripts are to be performed using modular arithmetic with modulus n, if we center the regular polygon at the origin, then elements of the dihedral group act as linear transformations of the plane. This lets us represent elements of Dn as matrices, with composition being matrix multiplication and this is an example of a group representation. For example, the elements of the group D4 can be represented by the eight matrices. In general, the matrices for elements of Dn have the following form, rk is a rotation matrix, expressing a counterclockwise rotation through an angle of 2πk/n. Sk is a reflection across a line makes an angle of πk/n with the x-axis. Further equivalent definitions of Dn are, D1 is isomorphic to Z2, D2 is isomorphic to K4, the Klein four-group. D1 and D2 are exceptional in that, D1 and D2 are the only abelian dihedral groups, Dn is a subgroup of the symmetric group Sn for n ≥3
33.
N-skeleton
–
In other words, given an inductive definition of a complex, the n-skeleton is obtained by stopping at the n-th step. The 0-skeleton is a space, and the 1-skeleton a topological graph. The skeletons of a space are used in theory, to construct spectral sequences by means of filtrations. They are particularly important when X has infinite dimension, in the sense that the Xn do not become constant as n → ∞, in geometry, a k-skeleton of n-polytope P consists of all i-polytope elements of dimension up to k. Briefly speaking, a simplicial set K ∗ can be described by a collection of sets K i, i ≥0, together with face and degeneracy maps between them satisfying a number of equations. More precisely, the restriction functor i ∗, Δ o p S e t s → Δ ≤ n o p S e t s has a left adjoint, denoted i ∗. The n-skeleton of some simplicial set K ∗ is defined as s k n, = i ∗ i ∗ K. Moreover, the n-coskeleton is defined as c o s k n, = i. For example, the 0-skeleton of K is the constant simplicial set defined by K0, the 0-coskeleton is given by the Cech nerve ⋯ → K0 × K0 → K0. The above constructions work for more categories as well, provided that the category has fiber products. The coskeleton is needed to define the concept of hypercovering in homotopical algebra and algebraic geometry
34.
11-cell
–
In mathematics, the 11-cell is a self-dual abstract regular 4-polytope. It has 11 vertices,55 edges and 55 faces and its symmetry group is the projective special linear group L2, so it has 660 symmetries. It was discovered in 1977 by Branko Grünbaum, who constructed it by pasting hemi-icosahedra together and it was independently discovered by H. S. M. Coxeter in 1984, who studied its structure and symmetry in greater depth. Orthographic projection of 10-simplex with 11 vertices,55 edges, the abstract 11-cell contains the same number of vertices and edges as the 10-dimensional 10-simplex, and contains 1/3 of its 165 faces. Thus it can be drawn as a figure in 11-space, although then its hemi-icosahedral cells are skew. 57-cell Icosahedral honeycomb - regular hyperbolic honeycomb with same Schläfli symbol, peter McMullen, Egon Schulte, Abstract Regular Polytopes, Cambridge University Press,2002. A Symmetrical Arrangement of Eleven hemi-Icosahedra, Annals of Discrete Mathematics 20 pp103–114,2007 ISAMA paper, Hyperseeing the Regular Hendecachoron, Carlo H. Séquin & Jaron Lanier, Also Isama 2007, Texas A&m hyper-Seeing the Regular Hendeca-choron
35.
Abstract polytope
–
An ordinary geometric polytope is said to be a realization in some real N-dimensional space, typically Euclidean, of the corresponding abstract polytope. The abstract definition allows some more general combinatorial structures than traditional definitions of a polytope, the term polytope is a generalisation of polygons and polyhedra into any number of dimensions. In Euclidean geometry, the six quadrilaterals illustrated are all different, yet they have a common structure in the alternating chain of four vertices and four sides which gives them their name. They are said to be isomorphic or “structure preserving”, the measurable properties of traditional polytopes such as angles, edge-lengths, skewness, straightness and convexity have no meaning for an abstract polytope. What is true for traditional polytopes may not be so for abstract ones, for example, a traditional polytope is regular if all its facets and vertex figures are regular, but this is not necessarily so for an abstract polytope. A traditional geometric polytope is said to be a realisation of the abstract polytope. A realisation is a mapping or injection of the object into a real space, typically Euclidean. The six quadrilaterals shown are all distinct realisations of the abstract quadrilateral, some of them do not conform to traditional definitions of a quadrilateral and are said to be unfaithful realisations. A conventional polytope is a faithful realisation, in an abstract polytope, each structural element - vertex, edge, cell, etc. is associated with a corresponding member or element of the set. The term face often refers to any such element e. g. a vertex, edge or a general k-face, the faces are ranked according to their associated real dimension, vertices have rank =0, edges rank =1 and so on. This usage of incidence also occurs in Finite geometry, although it differs from traditional geometry, for example in the square abcd, edges ab and bc are not abstractly incident. A polytope is defined as a set of faces P with an order relation <. Formally, P will be an ordered set, or poset. Just as the zero is necessary in mathematics, so also set theory requires an empty set which, technically. In an abstract polytope this is known as the least or null face and is a subface of all the others, since the least face is one level below the vertices or 0-faces, its rank is −1 and may be denoted as F−1. There is also a face of which all the others are subfaces. This is called the greatest face, in an n-dimensional polytope, the greatest face has rank = n and may be denoted as Fn. It is sometimes realized as the interior of the geometric figure and these least and greatest faces are sometimes called improper faces, with all others being proper faces
36.
Harold Scott MacDonald Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M
37.
Regular Polytopes (book)
–
Regular Polytopes is a mathematical geometry book written by Canadian mathematician Harold Scott MacDonald Coxeter. Originally published in 1947, the book was updated and republished in 1963 and 1973, the book is a comprehensive survey of the geometry of regular polytopes, the generalisation of regular polygons and regular polyhedra to higher dimensions. Originating with an essay entitled Dimensional Analogy written in 1923, the first edition of the book took Coxeter twenty-four years to complete, regular Polytopes is a standard reference work on regular polygons, polyhedra and their higher dimensional analogues. It is unusual in the breadth of its coverage, its combination of mathematical rigour with geometric insight, Coxeter starts by introducing two-dimensional polygons and three-dimensional polyhedra. He then gives a rigorous definition of regularity and uses it to show that there are no other convex regular polyhedra apart from the five Platonic solids. The concept of regularity is extended to non-convex shapes such as star polygons and star polyhedra, to tessellations and honeycombs, Coxeter introduces and uses the groups generated by reflections that became known as Coxeter groups. The book combines algebraic rigour with clear explanations, many of which are illustrated with diagrams, the black and white plates in the book show solid models of three-dimensional polyhedra, and wire-frame models of projections of some higher-dimensional polytopes. At the end of each chapter Coxeter includes an Historical remarks section which provides a perspective of the development of the subject. The first two have been expounded by Sommerville and Neville, and we shall presuppose some familiarity with such treatises. Concerning the third, Poincaré wrote, A man who pursues it, will end up holding on to the fourth dimension. ”The original 1948 edition received a more complete review by M. Goldberg in MR0027148
38.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker
39.
John Horton Conway
–
John Horton Conway FRS is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has also contributed to many branches of mathematics, notably the invention of the cellular automaton called the Game of Life. Conway is currently Professor Emeritus of Mathematics at Princeton University in New Jersey, Conway was born in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at an early age, his mother has recalled that he could recite the powers of two when he was four years old. By the age of eleven his ambition was to become a mathematician, after leaving secondary school, Conway entered Gonville and Caius College, Cambridge to study mathematics. Conway, who was a terribly introverted adolescent in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person and he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport. Having solved the problem posed by Davenport on writing numbers as the sums of fifth powers. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos and he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University, Conway is especially known for the invention of the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, and articles. It is a staple of recreational mathematics, there is an extensive wiki devoted to curating and cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, at times Conway has said he hates the game of life–largely because it has come to overshadow some of the other deeper and more important things he has done. Nevertheless, the game did help launch a new branch of mathematics, the Game of Life is now known to be Turing complete. Conways career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner, when Gardner featured Conways Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, for instance, he discussed Conways game of Sprouts, Hackenbush, and his angel and devil problem. In the September 1976 column he reviewed Conways book On Numbers and Games, Conway is widely known for his contributions to combinatorial game theory, a theory of partisan games. This he developed with Elwyn Berlekamp and Richard Guy, and with them also co-authored the book Winning Ways for your Mathematical Plays and he also wrote the book On Numbers and Games which lays out the mathematical foundations of CGT. He is also one of the inventors of sprouts, as well as philosophers football and he developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, and Conways soldiers
40.
Norman Johnson (mathematician)
–
Norman Woodason Johnson is a mathematician, previously at Wheaton College, Norton, Massachusetts. He earned his Ph. D. from the University of Toronto in 1966 with a title of The Theory of Uniform Polytopes. In 1966 he enumerated 92 convex non-uniform polyhedra with regular faces, victor Zalgaller later proved that Johnsons list was complete, and the set is now known as the Johnson solids. The theory of polytopes and honeycombs, Ph. D. Dissertation,1966 Hyperbolic Coxeter Groups, paper, convex polyhedra with regular faces, paper containing the original enumeration of the 92 Johnson solids and the conjecture that there are no others. Norman W. Johnson at the Mathematics Genealogy Project Norman W. Johnson Endowed Fund in Mathematics and Computer Science at Wheaton College
41.
Uniform polytope
–
A uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons and this is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures are allowed, which expand the possible solutions. A strict definition requires uniform polytopes to be finite, while a more expansive definition allows uniform honeycombs of Euclidean, nearly every uniform polytope can be generated by a Wythoff construction, and represented by a Coxeter diagram. Notable exceptions include the antiprism in four dimensions. Equivalently, the Wythoffian polytopes can be generated by applying basic operations to the regular polytopes in that dimension and this approach was first used by Johannes Kepler, and is the basis of the Conway polyhedron notation. Regular n-polytopes have n orders of rectification, the zeroth rectification is the original form. The th rectification is the dual, an extended Schläfli symbol can be used for representing rectified forms, with a single subscript, k-th rectification = tk = kr. Truncation operations that can be applied to regular n-polytopes in any combination, the resulting Coxeter diagram has two ringed nodes, and the operation is named for the distance between them. Truncation cuts vertices, cantellation cuts edges, runcination cuts faces, each higher operation also cuts lower ones too, so a cantellation also truncates vertices. T0,1 or t, Truncation - applied to polygons, a truncation removes vertices, and inserts a new facet in place of each former vertex. Faces are truncated, doubling their edges and it can be seen as rectifying its rectification. A cantellation truncates both vertices and edges and replaces them with new facets, cells are replaced by topologically expanded copies of themselves. There are higher cantellations also, bicantellation t1,3 or r2r, tricantellation t2,4 or r3r, quadricantellation t3,5 or r4r, etc. t0,1,2 or tr, Cantitruncation - applied to polyhedra and higher. It can be seen as a truncation of its rectification, a cantitruncation truncates both vertices and edges and replaces them with new facets. Cells are replaced by topologically expanded copies of themselves, runcination truncates vertices, edges, and faces, replacing them each with new facets. 4-faces are replaced by topologically expanded copies of themselves, There are higher runcinations also, biruncination t1,4, triruncination t2,5, etc. t0,4 or 2r2r, Sterication - applied to Uniform 5-polytopes and higher. It can be seen as birectifying its birectification, Sterication truncates vertices, edges, faces, and cells, replacing each with new facets
42.
Simple Lie group
–
Simple Lie groups are a class of Lie groups which play a role in Lie group theory similar to that of simple groups in the theory of discrete groups. Essentially, simple Lie groups are connected Lie groups which cannot be decomposed as an extension of smaller connected Lie groups, and which are not commutative. Many commonly encountered Lie groups are simple or close to being simple, for example. In group theory, a simple Lie group is a locally compact non-abelian Lie group G which does not have nontrivial connected normal subgroups. A simple Lie algebra is a non-abelian Lie algebra whose only ideals are 0, an equivalent definition of a simple Lie group follows from the Lie correspondence, a connected Lie group is simple if its Lie algebra is simple. An important technical point is that a simple Lie group may contain discrete normal subgroups and it emerged in the course of classification of simple Lie groups that there exist also several exceptional possibilities not corresponding to any familiar geometry. These exceptional groups account for special examples and configurations in other branches of mathematics. All Lie groups are smooth manifolds, mathematicians often study complex Lie groups, which are Lie groups with a complex structure on the underlying manifold, which is required to be compatible with the group operations. A complex Lie group is called if it is connected as a topological space. Note that the underlying Lie group may not be simple, although it still be semisimple. It is often useful to study slightly more general classes of Lie groups than simple groups, namely semisimple or, more generally, reductive Lie groups. A connected Lie group is called if its Lie algebra is a semisimple lie algebra. It is called if its Lie algebra is a direct sum of simple. Reductive groups occur naturally as symmetries of a number of objects in algebra, geometry. For example, the group G L n of symmetries of a real vector space is reductive. Finite-dimensional representations of simple groups split into direct sums of irreducible representations, simple Lie groups are fully classified. The classification is usually stated in several steps, namely, Classification of simple complex Lie algebras The classification of simple Lie algebras over the numbers by Dynkin diagrams. Classification of centerless Lie groups For every simple Lie algebra g, there is a unique centerless simple Lie group G whose Lie algebra is g, Classification of simple Lie groups One can show that the fundamental group of any Lie group is a discrete commutative group
43.
E6 (mathematics)
–
The designation E6 comes from the Cartan–Killing classification of the complex simple Lie algebras. This classifies Lie algebras into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled E6, E7, E8, F4, the E6 algebra is thus one of the five exceptional cases. The fundamental group of the form, compact real form, or any algebraic version of E6 is the cyclic group Z/3Z. Its fundamental representation is 27-dimensional, and a basis is given by the 27 lines on a cubic surface, the dual representation, which is inequivalent, is also 27-dimensional. In particle physics, E6 plays a role in some grand unified theories, there is a unique complex Lie algebra of type E6, corresponding to a complex group of complex dimension 78. The complex adjoint Lie group E6 of complex dimension 78 can be considered as a simple real Lie group of real dimension 156, the split form, EI, which has maximal compact subgroup Sp/, fundamental group of order 2 and outer automorphism group of order 2. The quasi-split form EII, which has maximal compact subgroup SU × SU/, fundamental group cyclic of order 6, EIII, which has maximal compact subgroup SO × Spin/, fundamental group Z and trivial outer automorphism group. EIV, which has maximal compact subgroup F4, trivial fundamental group cyclic, the EIV form of E6 is the group of collineations of the octonionic projective plane OP2. It is also the group of determinant-preserving linear transformations of the exceptional Jordan algebra, the exceptional Jordan algebra is 27-dimensional, which explains why the compact real form of E6 has a 27-dimensional complex representation. Over finite fields, the Lang–Steinberg theorem implies that H1 =0, meaning that E6 has exactly one twisted form, known as 2E6, the Dynkin diagram for E6 is given by, which may also be drawn as or. Although they span a space, it is much more symmetrical to consider them as vectors in a six-dimensional subspace of a nine-dimensional space. Two 16-dimensional subalgebras that transform as a Weyl spinor of spin and these have a non-zero last entry. 1 generator which is their chirality generator, and is the sixth Cartan generator, the Lie algebra E6 has an F4 subalgebra, which is the fixed subalgebra of an outer automorphism, and an SU × SU × SU subalgebra. Other maximal subalgebras which have an importance in physics and can be read off the Dynkin diagram, are the algebras of SO × U, in addition to the 78-dimensional adjoint representation, there are two dual 27-dimensional vector representations. The characters of finite dimensional representations of the real and complex Lie algebras, the fundamental representations have dimensions 27,351,2925,351,27 and 78. The E6 polytope is the hull of the roots of E6. It therefore exists in 6 dimensions, its symmetry group contains the Coxeter group for E6 as an index 2 subgroup, the groups of type E6 over arbitrary fields were introduced by Dickson. The points over a field with q elements of the algebraic group E6, whether of the adjoint or simply connected form
44.
E7 (mathematics)
–
The E7 algebra is thus one of the five exceptional cases. The fundamental group of the form, compact real form, or any algebraic version of E7 is the cyclic group Z/2Z. The dimension of its representation is 56. There is a unique complex Lie algebra of type E7, corresponding to a group of complex dimension 133. The complex adjoint Lie group E7 of complex dimension 133 can be considered as a simple real Lie group of real dimension 266. This has fundamental group Z/2Z, has maximal compact subgroup the compact form of E7, the split form, EV, which has maximal compact subgroup SU/, fundamental group cyclic of order 4 and outer automorphism group of order 2. EVI, which has maximal compact subgroup SU·SO/, fundamental group non-cyclic of order 4, EVII, which has maximal compact subgroup SO·E6/, infinite cyclic findamental group and outer automorphism group of order 2. For a complete list of forms of simple Lie algebras. The compact real form of E7 is the group of the 64-dimensional exceptional compact Riemannian symmetric space EVI. This can be seen using a construction known as the magic square, due to Hans Freudenthal. The Tits–Koecher construction produces forms of the E7 Lie algebra from Albert algebras, over finite fields, the Lang–Steinberg theorem implies that H1 =0, meaning that E7 has no twisted forms, see below. The Dynkin diagram for E7 is given by, even though the roots span a 7-dimensional space, it is more symmetric and convenient to represent them as vectors lying in a 7-dimensional subspace of an 8-dimensional vector space. The roots are all the 8×7 permutations of and all the permutations of Note that the 7-dimensional subspace is the subspace where the sum of all the eight coordinates is zero. The simple roots are We have ordered them so that their corresponding nodes in the Dynkin diagram are ordered left to right with the side node last. Given the E7 Cartan matrix and a Dynkin diagram node ordering of, the Weyl group of E7 is of order 2903040, it is the direct product of the cyclic group of order 2 and the unique simple group of order 1451520. E7 has an SU subalgebra, as is evident by noting that in the 8-dimensional description of the root system, in addition to the 133-dimensional adjoint representation, there is a 56-dimensional vector representation, to be found in the E8 adjoint representation. The characters of finite dimensional representations of the real and complex Lie algebras, there exist non-isomorphic irreducible representation of dimensions 1903725824,16349520330, etc. The fundamental representations are those with dimensions 133,8645,365750,27664,1539,56 and 912, E7 is the automorphism group of the following pair of polynomials in 56 non-commutative variables
45.
E8 (mathematics)
–
The E8 algebra is the largest and most complicated of these exceptional cases. Wilhelm Killing discovered the complex Lie algebra E8 during his classification of simple compact Lie algebras, though he did not prove its existence, Cartan determined that a complex simple Lie algebra of type E8 admits three real forms. Each of them rise to a simple Lie group of dimension 248. Chevalley introduced algebraic groups and Lie algebras of type E8 over other fields, for example, the Lie group E8 has dimension 248. Its rank, which is the dimension of its maximal torus, is 8, therefore, the vectors of the root system are in eight-dimensional Euclidean space, they are described explicitly later in this article. The Weyl group of E8, which is the group of symmetries of the maximal torus which are induced by conjugations in the group, has order 21435527 =696729600. There is a Lie algebra Ek for every integer k ≥3, there is a unique complex Lie algebra of type E8, corresponding to a complex group of complex dimension 248. The complex Lie group E8 of complex dimension 248 can be considered as a simple real Lie group of real dimension 496 and this is simply connected, has maximal compact subgroup the compact form of E8, and has an outer automorphism group of order 2 generated by complex conjugation. The split form, EVIII, which has maximal compact subgroup Spin/, EIX, which has maximal compact subgroup E7×SU/, fundamental group of order 2 and has trivial outer automorphism group. For a complete list of forms of simple Lie algebras. Over finite fields, the Lang–Steinberg theorem implies that H1=0, meaning that E8 has no twisted forms, the characters of finite dimensional representations of the real and complex Lie algebras and Lie groups are all given by the Weyl character formula. There are two non-isomorphic irreducible representations of dimension 8634368000, the fundamental representations are those with dimensions 3875,6696000,6899079264,146325270,2450240,30380,248 and 147250. The values at 1 of the Lusztig–Vogan polynomials give the coefficients of the matrices relating the standard representations with the irreducible representations. These matrices were computed after four years of collaboration by a group of 18 mathematicians and computer scientists, led by Jeffrey Adams, the most difficult case is the split real form of E8, where the largest matrix is of size 453060×453060. The Lusztig–Vogan polynomials for all other simple groups have been known for some time. The announcement of the result in March 2007 received extraordinary attention from the media, the representations of the E8 groups over finite fields are given by Deligne–Lusztig theory. One can construct the E8 group as the group of the corresponding e8 Lie algebra. This algebra has a 120-dimensional subalgebra so generated by Jij as well as 128 new generators Qa that transform as a Weyl–Majorana spinor of spin and it is then possible to check that the Jacobi identity is satisfied
46.
F4 (mathematics)
–
In mathematics, F4 is the name of a Lie group and also its Lie algebra f4. It is one of the five exceptional simple Lie groups, F4 has rank 4 and dimension 52. The compact form is connected and its outer automorphism group is the trivial group. The compact real form of F4 is the group of a 16-dimensional Riemannian manifold known as the octonionic projective plane OP2. This can be seen using a construction known as the magic square, due to Hans Freudenthal. There are 3 real forms, a one, a split one. They are the groups of the three real Albert algebras. The F4 Lie algebra may be constructed by adding 16 generators transforming as a spinor to the 36-dimensional Lie algebra so, in older books and papers, F4 is sometimes denoted by E4. The Dynkin diagram for F4 is and its Weyl/Coxeter group G = W is the symmetry group of the 24-cell, it is a solvable group of order 1152. It has minimal faithful degree μ =24 which is realized by the action on the 24-cell, the F4 lattice is a four-dimensional body-centered cubic lattice. They form a ring called the Hurwitz quaternion ring, the 24 Hurwitz quaternions of norm 1 form the vertices of a 24-cell centered at the origin. One choice of roots for F4, is given by the rows of the following matrix. Invariant, F4 is the group of automorphisms of the set of 3 polynomials in 27 variables. Another way of writing these invariants is as Tr, Tr and Tr of the hermitian octonion matrix, the characters of finite dimensional representations of the real and complex Lie algebras and Lie groups are all given by the Weyl character formula. There are two non-isomorphic irreducible representations of dimensions 1053,160056,4313088, etc, the fundamental representations are those with dimensions 52,1274,273,26. The Exceptional Simple Lie Algebras F and E. Proc
47.
G2 (mathematics)
–
In mathematics, G2 is the name of three simple Lie groups, their Lie algebras g 2, as well as some algebraic groups. They are the smallest of the five exceptional simple Lie groups, G2 has rank 2 and dimension 14. It has two representations, with dimension 7 and 14. The Lie algebra g 2, being the smallest exceptional simple Lie algebra, was the first of these to be discovered in the attempt to classify simple Lie algebras. On May 23,1887, Wilhelm Killing wrote a letter to Friedrich Engel saying that he had found a 14-dimensional simple Lie algebra, in the same year, in the same journal, Engel noticed the same thing. Later it was discovered that the 2-dimensional distribution is related to a ball rolling on another ball. The space of configurations of the ball is 5-dimensional, with a 2-dimensional distribution that describes motions of the ball where it rolls without slipping or twisting. In 1900, Engel discovered that a generic antisymmetric trilinear form on a 7-dimensional complex vector space is preserved by a group isomorphic to the form of G2. In 1908 Cartan mentioned that the group of the octonions is a 14-dimensional simple Lie group. In 1914 he stated that this is the real form of G2. In older books and papers, G2 is sometimes denoted by E2, there are 3 simple real Lie algebras associated with this root system, The underlying real Lie algebra of the complex Lie algebra G2 has dimension 28. It has complex conjugation as an automorphism and is simply connected. The maximal compact subgroup of its associated group is the form of G2. The Lie algebra of the form is 14-dimensional. The associated Lie group has no outer automorphisms, no center, the Lie algebra of the non-compact form has dimension 14. The associated simple Lie group has fundamental group of order 2 and its maximal compact subgroup is SU × SU/. It has a double cover that is simply connected. The Dynkin diagram for G2 is given by and its Cartan matrix is, Although they span a 2-dimensional space, as drawn, it is much more symmetric to consider them as vectors in a 2-dimensional subspace of a three-dimensional space