1.
Integer
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain
2.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number
3.
Factorization
–
In mathematics, factorization or factoring is the decomposition of an object into a product of other objects, or factors, which when multiplied together give the original. For example, the number 15 factors into primes as 3 ×5, in all cases, a product of simpler objects is obtained. The aim of factoring is usually to reduce something to “basic building blocks”, such as numbers to prime numbers, factoring integers is covered by the fundamental theorem of arithmetic and factoring polynomials by the fundamental theorem of algebra. Viètes formulas relate the coefficients of a polynomial to its roots, the opposite of polynomial factorization is expansion, the multiplying together of polynomial factors to an “expanded” polynomial, written as just a sum of terms. Integer factorization for large integers appears to be a difficult problem, there is no known method to carry it out quickly. Its complexity is the basis of the security of some public key cryptography algorithms. A matrix can also be factorized into a product of matrices of special types, One major example of this uses an orthogonal or unitary matrix, and a triangular matrix. There are different types, QR decomposition, LQ, QL, RQ and this situation is generalized by factorization systems. By the fundamental theorem of arithmetic, every integer greater than 1 has a unique prime factorization. Given an algorithm for integer factorization, one can factor any integer down to its constituent primes by repeated application of this algorithm, for very large numbers, no efficient classical algorithm is known. Modern techniques for factoring polynomials are fast and efficient, but use sophisticated mathematical ideas and these techniques are used in the construction of computer routines for carrying out polynomial factorization in Computer algebra systems. This article is concerned with classical techniques. While the general notion of factoring just means writing an expression as a product of simpler expressions, when factoring polynomials this means that the factors are to be polynomials of smaller degree. Thus, while x 2 − y = is a factorization of the expression, another issue concerns the coefficients of the factors. It is not always possible to do this, and a polynomial that can not be factored in this way is said to be irreducible over this type of coefficient, thus, x2 -2 is irreducible over the integers and x2 +4 is irreducible over the reals. In the first example, the integers 1 and -2 can also be thought of as real numbers, and if they are, then x 2 −2 = shows that this polynomial factors over the reals. Similarly, since the integers 1 and 4 can be thought of as real and hence complex numbers, x2 +4 splits over the complex numbers, i. e. x 2 +4 =. The fundamental theorem of algebra can be stated as, Every polynomial of n with complex number coefficients splits completely into n linear factors
4.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made
5.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
6.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
7.
Ternary numeral system
–
The ternary numeral system has three as its base. Analogous to a bit, a digit is a trit. One trit is equivalent to bits of information. Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary, for example, decimal 365 corresponds to binary 101101101 and to ternary 111112. However, they are far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary. The value of a number with n bits that are all 1 is 2n −1. Then N = M, N = /, and N = bd −1, for a three-digit ternary number, N =33 −1 =26 =2 ×32 +2 ×31 +2 ×30 =18 +6 +2. Nonary or septemvigesimal can be used for representation of ternary. A base-three system is used in Islam to keep track of counting Tasbih to 99 or to 100 on a hand for counting prayers. In certain analog logic, the state of the circuit is often expressed ternary and this is most commonly seen in Transistor–transistor logic using 7406 open collector logic. The output is said to either be low, high, or open, in this configuration the output of the circuit is actually not connected to any voltage reference at all. Where the signal is usually grounded to a reference, or at a certain voltage level. Thus, the voltage level is sometimes unpredictable. A rare ternary point is used to denote fractional parts of an inning in baseball, since each inning consists of three outs, each out is considered one third of an inning and is denoted as.1. For example, if a player pitched all of the 4th, 5th and 6th innings, plus 2 outs of the 7th inning, his Innings pitched column for that game would be listed as 3.2, meaning 3⅔. In this usage, only the part of the number is written in ternary form. Ternary numbers can be used to convey self-similar structures like the Sierpinski triangle or the Cantor set conveniently, additionally, it turns out that the ternary representation is useful for defining the Cantor set and related point sets, because of the way the Cantor set is constructed. The Cantor set consists of the points from 0 to 1 that have an expression that does not contain any instance of the digit 1
8.
Quaternary numeral system
–
Quaternary is the base-4 numeral system. It uses the digits 0,1,2 and 3 to represent any real number. Four is the largest number within the range and one of two numbers that is both a square and a highly composite number, making quaternary a convenient choice for a base at this scale. Despite being twice as large, its economy is equal to that of binary. However, it no better in the localization of prime numbers. See decimal and binary for a discussion of these properties, as with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix 4,8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit with 2,3 or 4 binary digits, for example, in base 4,302104 =11001001002. Although octal and hexadecimal are widely used in computing and computer programming in the discussion and analysis of binary arithmetic and logic, by analogy with byte and nybble, a quaternary digit is sometimes called a crumb. There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca, the Kharosthi numerals have a partial base 4 counting system from 1 to decimal 10. Quaternary numbers are used in the representation of 2D Hilbert curves, here a real number between 0 and 1 is converted into the quaternary system. Every single digit now indicates in which of the respective 4 sub-quadrants the number will be projected, parallels can be drawn between quaternary numerals and the way genetic code is represented by DNA. The four DNA nucleotides in order, abbreviated A, C, G and T, can be taken to represent the quaternary digits in numerical order 0,1,2. With this encoding, the complementary digit pairs 0↔3, and 1↔2 match the complementation of the pairs, A↔T and C↔G. For example, the nucleotide sequence GATTACA can be represented by the quaternary number 2033010, quaternary line codes have been used for transmission, from the invention of the telegraph to the 2B1Q code used in modern ISDN circuits
9.
Quinary
–
Quinary is a numeral system with five as the base. A possible origination of a system is that there are five fingers on either hand. The base five is stated from 0–4, in the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, today, the main usage of base 5 is as a biquinary system, which is decimal using five as a sub-base. Another example of a system, is sexagesimal, base 60. Each quinary digit has log25 bits of information, many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño and Saraveca. Gumatj is a true 5–25 language, in which 25 is the group of 5. The Gumatj numerals are shown below, In the video game Riven and subsequent games of the Myst franchise, a decimal system with 2 and 5 as a sub-bases is called biquinary, and is found in Wolof and Khmer. Roman numerals are a biquinary system, the numbers 1,5,10, and 50 are written as I, V, X, and L respectively. Eight is VIII and seventy is LXX, most versions of the abacus use a biquinary system to simulate a decimal system for ease of calculation. Urnfield culture numerals and some tally mark systems are also biquinary, units of currencies are commonly partially or wholly biquinary. A vigesimal system with 4 and 5 as a sub-bases is found in Nahuatl, pentimal system Quibinary Yan Tan Tethera References, Quinary Base Conversion, includes fractional part, from Math Is Fun Media related to Quinary numeral system at Wikimedia Commons
10.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
11.
Octal
–
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping binary digits into groups of three. For example, the representation for decimal 74 is 1001010. Two zeroes can be added at the left,1001010, corresponding the octal digits 112, in the decimal system each decimal place is a power of ten. For example,7410 =7 ×101 +4 ×100 In the octal system each place is a power of eight. The Yuki language in California and the Pamean languages in Mexico have octal systems because the speakers count using the spaces between their fingers rather than the fingers themselves and it has been suggested that the reconstructed Proto-Indo-European word for nine might be related to the PIE word for new. Based on this, some have speculated that proto-Indo-Europeans used a number system. In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number based on 64 instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base would be too difficult, in 1718 Swedenborg wrote a manuscript, En ny rekenkonst som om vexlas wid Thalet 8 i stelle then wanliga wid Thalet 10. The numbers 1-7 are there denoted by the l, s, n, m, t, f, u. Thus 8 = lo,16 = so,24 = no,64 = loo,512 = looo etc, numbers with consecutive consonants are pronounced with vowel sounds between in accordance with a special rule. Writing under the pseudonym Hirossa Ap-Iccim in The Gentlemans Magazine, July 1745, Hugh Jones proposed a system for British coins, weights. In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic and he suggested base 8 for which he coined the term octal. In the mid 19th century, Alfred B. Taylor concluded that Our octonary radix is, therefore, so, for example, the number 65 would be spoken in octonary as under-un. Taylor also republished some of Swedenborgs work on octonary as an appendix to the above-cited publications, in the 2009 film Avatar, the language of the extraterrestrial Navi race employs an octal numeral system, probably due to the fact that they have four fingers on each hand. In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, in the tabletop game series Warhammer 40,000, the Tau race use an octal number system. Octal became widely used in computing systems such as the PDP-8, ICL1900. Octal was an abbreviation of binary for these machines because their word size is divisible by three
12.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer
13.
Hexadecimal
–
In mathematics and computing, hexadecimal is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits, it allows a more human-friendly representation of binary-coded values, one hexadecimal digit represents a nibble, which is half of an octet or byte. For example, a byte can have values ranging from 00000000 to 11111111 in binary form. In a non-programming context, a subscript is typically used to give the radix, several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix 0x is used in C and related languages, where this value might be denoted as 0x2AF3, in contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously, a numerical subscript can give the base explicitly,15910 is decimal 159,15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h. example. com/name%20with%20spaces where %20 is the space character, thus ’, represents the right single quotation mark, Unicode code point number 2019 in hex,8217. In the Unicode standard, a value is represented with U+ followed by the hex value. Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits prefixed with #, white, CSS allows 3-hexdigit abbreviations with one hexdigit per component, #FA3 abbreviates #FFAA33. *nix shells, AT&T assembly language and likewise the C programming language, to output an integer as hexadecimal with the printf function family, the format conversion code %X or %x is used. In Intel-derived assembly languages and Modula-2, hexadecimal is denoted with a suffixed H or h, some assembly languages use the notation HABCD. Ada and VHDL enclose hexadecimal numerals in based numeric quotes, 16#5A3#, for bit vector constants VHDL uses the notation x5A3. Verilog represents hexadecimal constants in the form 8hFF, where 8 is the number of bits in the value, the Smalltalk language uses the prefix 16r, 16r5A3 PostScript and the Bourne shell and its derivatives denote hex with prefix 16#, 16#5A3. For PostScript, binary data can be expressed as unprefixed consecutive hexadecimal pairs, in early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the Sad Mac to tell the user what went wrong. Common Lisp uses the prefixes #x and #16r, setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, MSX BASIC, QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H, &H5A3 BBC BASIC and Locomotive BASIC use & for hex. TI-89 and 92 series uses a 0h prefix, 0h5A3 ALGOL68 uses the prefix 16r to denote hexadecimal numbers, binary, quaternary and octal numbers can be specified similarly
14.
Vigesimal
–
The vigesimal or base 20 numeral system is based on twenty. In a vigesimal system, twenty individual numerals are used. One modern method of finding the extra needed symbols is to write ten as the letter A20, to write nineteen as J20, and this is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters A–F. Another method skips over the letter I, in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, the number twenty is written as 1020. According to this notation,2020 means forty in decimal = + D020 means two hundred and sixty in decimal = +10020 means four hundred in decimal = + +, in the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example,10 means ten,20 means twenty, in decimal, dividing by three twice only gives one digit periods because 9 is the number below ten. 21, however, the adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods, the prime factorization of twenty is 22 ×5, so it is not a perfect power. However, its part,5, is congruent to 1. Thus, according to Artins conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37. 395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a set of bases found that, of the first 15,456 primes. In many European languages,20 is used as a base, vigesimal systems are common in Africa, for example in Yoruba. Ogún,20, is the basic numeric block, ogójì,40, =20 multiplied by 2. Ogota,60, =20 multiplied by 3, ogorin,80, =20 multiplied by 4. Ogorun,100, =20 multiplied by 5, twenty was a base in the Maya and Aztec number systems. The Maya used the names for the powers of twenty, kal, bak, pic, calab, kinchil. See also Maya numerals and Maya calendar, Mayan languages, Yucatec, the Aztec called them, cempoalli, centzontli, cenxiquipilli, cempoalxiquipilli, centzonxiquipilli and cempoaltzonxiquipilli. Note that the ce prefix at the beginning means one and is replaced with the number to get the names of other multiples of the power
15.
Base 36
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
16.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
17.
Italian language
–
By most measures, Italian, together with Sardinian, is the closest to Latin of the Romance languages. Italian is a language in Italy, Switzerland, San Marino, Vatican City. Italian is spoken by minorities in places such as France, Montenegro, Bosnia & Herzegovina, Crimea and Tunisia and by large expatriate communities in the Americas. Many speakers are native bilinguals of both standardized Italian and other regional languages, Italian is the fourth most studied language in the world. Italian is a major European language, being one of the languages of the Organisation for Security and Cooperation in Europe. It is the third most widely spoken first language in the European Union with 65 million native speakers, including Italian speakers in non-EU European countries and on other continents, the total number of speakers is around 85 million. Italian is the working language of the Holy See, serving as the lingua franca in the Roman Catholic hierarchy as well as the official language of the Sovereign Military Order of Malta. Italian is known as the language of music because of its use in musical terminology and its influence is also widespread in the arts and in the luxury goods market. Italian has been reported as the fourth or fifth most frequently taught foreign language in the world, Italian was adopted by the state after the Unification of Italy, having previously been a literary language based on Tuscan as spoken mostly by the upper class of Florentine society. Its development was influenced by other Italian languages and to some minor extent. Its vowels are the second-closest to Latin after Sardinian, unlike most other Romance languages, Italian retains Latins contrast between short and long consonants. As in most Romance languages, stress is distinctive, however, Italian as a language used in Italy and some surrounding regions has a longer history. What would come to be thought of as Italian was first formalized in the early 14th century through the works of Tuscan writer Dante Alighieri, written in his native Florentine. Dante is still credited with standardizing the Italian language, and thus the dialect of Florence became the basis for what would become the language of Italy. Italian was also one of the recognised languages in the Austro-Hungarian Empire. Italy has always had a dialect for each city, because the cities. Those dialects now have considerable variety, as Tuscan-derived Italian came to be used throughout Italy, features of local speech were naturally adopted, producing various versions of Regional Italian. Even in the case of Northern Italian languages, however, scholars are not to overstate the effects of outsiders on the natural indigenous developments of the languages
18.
Metric prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used
19.
Roman numeral
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
20.
Scientific notation
–
Scientific notation is a way of expressing numbers that are too big or too small to be conveniently written in decimal form. It is commonly used by scientists, mathematicians and engineers, in part because it can simplify certain arithmetic operations, on scientific calculators it is known as SCI display mode. In scientific notation all numbers are written in the form m × 10n, where the exponent n is an integer, however, the term mantissa may cause confusion because it is the name of the fractional part of the common logarithm. If the number is then a minus sign precedes m. In normalized notation, the exponent is chosen so that the value of the coefficient is at least one. Decimal floating point is an arithmetic system closely related to scientific notation. Any given integer can be written in the form m×10^n in many ways, in normalized scientific notation, the exponent n is chosen so that the absolute value of m remains at least one but less than ten. Thus 350 is written as 3. 5×102 and this form allows easy comparison of numbers, as the exponent n gives the numbers order of magnitude. In normalized notation, the exponent n is negative for a number with absolute value between 0 and 1, the 10 and exponent are often omitted when the exponent is 0. Normalized scientific form is the form of expression of large numbers in many fields, unless an unnormalized form. Normalized scientific notation is often called exponential notation—although the latter term is general and also applies when m is not restricted to the range 1 to 10. Engineering notation differs from normalized scientific notation in that the exponent n is restricted to multiples of 3, consequently, the absolute value of m is in the range 1 ≤ |m| <1000, rather than 1 ≤ |m| <10. Though similar in concept, engineering notation is rarely called scientific notation, engineering notation allows the numbers to explicitly match their corresponding SI prefixes, which facilitates reading and oral communication. A significant figure is a digit in a number that adds to its precision and this includes all nonzero numbers, zeroes between significant digits, and zeroes indicated to be significant. Leading and trailing zeroes are not significant because they exist only to show the scale of the number. Therefore,1,230,400 usually has five significant figures,1,2,3,0, and 4, when a number is converted into normalized scientific notation, it is scaled down to a number between 1 and 10. All of the significant digits remain, but the place holding zeroes are no longer required, thus 1,230,400 would become 1.2304 ×106. However, there is also the possibility that the number may be known to six or more significant figures, thus, an additional advantage of scientific notation is that the number of significant figures is clearer
21.
SI prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used
22.
Megawatt
–
The watt is a derived unit of power in the International System of Units defined as 1 joule per second and can be used to quantify the rate of energy transfer. Power has dimensions of M L2 T −3, when an objects velocity is held constant at one meter per second against constant opposing force of one newton the rate at which work is done is 1 watt. 1 W =1 V ⋅ A Two additional unit conversions for watt can be using the above equation. 1 W =1 V2 Ω =1 A2 ⋅ Ω Where ohm is the SI derived unit of electrical resistance, a person having a mass of 100 kilograms who climbs a 3-meter-high ladder in 5 seconds is doing work at a rate of about 600 watts. Mass times acceleration due to gravity times height divided by the time it takes to lift the object to the given height gives the rate of doing work or power. A laborer over the course of an 8-hour day can sustain an output of about 75 watts, higher power levels can be achieved for short intervals. The watt is named after the Scottish scientist James Watt for his contributions to the development of the steam engine, in 1960 the 11th General Conference on Weights and Measures adopted it for the measurement of power into the International System of Units. For additional examples of magnitude for multiples and submultiples of the watt, technologically important powers that are measured in femtowatts are typically found in reference to radio and radar receivers. For example, meaningful FM tuner performance figures for sensitivity, quieting and these input levels are often stated in dBf. This is 0.2739 microvolt across a 75-ohm load or 0.5477 microvolt across a 300-ohm load, the picowatt is equal to one trillionth of a watt. Technologically important powers that are measured in picowatts are typically used in reference to radio and radar receivers, acoustics, the nanowatt is equal to one billionth of a watt. Important powers that are measured in nanowatts are also used in reference to radio. The microwatt is equal to one millionth of a watt, compact solar cells for devices such as calculators and watches are typically measured in microwatts. The milliwatt is equal to one thousandth of a watt, a typical laser pointer outputs about five milliwatts of light power, whereas a typical hearing aid for people uses less than one milliwatt. Audio signals and other electronic signal levels are measured in dBm. The kilowatt is equal to one thousand watts and this unit is typically used to express the output power of engines and the power of electric motors, tools, machines, and heaters. It is also a unit used to express the electromagnetic power output of broadcast radio. One kilowatt is equal to 1.34 horsepower
23.
Long and short scales
–
Thus, billion means a million millions, trillion means a million billions, and so on. Short scale Every new term greater than million is one thousand times larger than the previous term, thus, billion means a thousand millions, trillion means a thousand billions, and so on. For whole numbers less than a million the two scales are identical. From a thousand million up the two scales diverge, using the words for different numbers, this can cause misunderstanding. Countries where the scale is currently used include most countries in continental Europe and most French-speaking, Spanish-speaking. The short scale is now used in most English-speaking and Arabic-speaking countries, in Brazil, in former Soviet Union, number names are rendered in the language of the country, but are similar everywhere due to shared etymology. Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, for example the Indian numbering system. After several decades of increasing informal British usage of the scale, in 1974 the government of the UK adopted it. With very few exceptions, the British usage and American usage are now identical, the first recorded use of the terms short scale and long scale was by the French mathematician Geneviève Guitel in 1975. At and above a million the same names are used to refer to numbers differing by a factor of an integer power of 1,000. Each scale has a justification to explain the use of each such differing numerical name. The short-scale logic is based on powers of one thousand, whereas the long-scale logic is based on powers of one million, in both scales, the prefix bi- refers to 2 and tri- refers to 3, etc. However only in the scale do the prefixes beyond one million indicate the actual power or exponent. In the short scale, the prefixes refer to one less than the exponent, the word, million, derives from the Old French, milion, from the earlier Old Italian, milione, an intensification of the Latin word, mille, a thousand. That is, a million is a big thousand, much as a great gross is a dozen gross or 12×144 =1728, the word, milliard, or its translation, is found in many European languages and is used in those languages for 109. However, it is unknown in American English, which uses billion, and not used in British English, which preferred to use thousand million before the current usage of billion. The financial term, yard, which derives from milliard, is used on financial markets, as, unlike the term, billion, it is internationally unambiguous and phonetically distinct from million. Likewise, many long scale use the word billiard for one thousand long scale billions
24.
English language
–
English /ˈɪŋɡlɪʃ/ is a West Germanic language that was first spoken in early medieval England and is now the global lingua franca. Named after the Angles, one of the Germanic tribes that migrated to England, English is either the official language or one of the official languages in almost 60 sovereign states. It is the third most common language in the world, after Mandarin. It is the most widely learned second language and a language of the United Nations, of the European Union. It is the most widely spoken Germanic language, accounting for at least 70% of speakers of this Indo-European branch, English has developed over the course of more than 1,400 years. The earliest forms of English, a set of Anglo-Frisian dialects brought to Great Britain by Anglo-Saxon settlers in the century, are called Old English. Middle English began in the late 11th century with the Norman conquest of England, Early Modern English began in the late 15th century with the introduction of the printing press to London and the King James Bible, and the start of the Great Vowel Shift. Through the worldwide influence of the British Empire, modern English spread around the world from the 17th to mid-20th centuries, English is an Indo-European language, and belongs to the West Germanic group of the Germanic languages. Most closely related to English are the Frisian languages, and English, Old Saxon and its descendent Low German languages are also closely related, and sometimes Low German, English, and Frisian are grouped together as the Ingvaeonic or North Sea Germanic languages. Modern English descends from Middle English, which in turn descends from Old English, particular dialects of Old and Middle English also developed into a number of other English languages, including Scots and the extinct Fingallian and Forth and Bargy dialects of Ireland. English is classified as a Germanic language because it shares new language features with other Germanic languages such as Dutch, German and these shared innovations show that the languages have descended from a single common ancestor, which linguists call Proto-Germanic. Through Grimms law, the word for foot begins with /f/ in Germanic languages, English is classified as an Anglo-Frisian language because Frisian and English share other features, such as the palatalisation of consonants that were velar consonants in Proto-Germanic. The earliest form of English is called Old English or Anglo-Saxon, in the fifth century, the Anglo-Saxons settled Britain and the Romans withdrew from Britain. England and English are named after the Angles, Old English was divided into four dialects, the Anglian dialects, Mercian and Northumbrian, and the Saxon dialects, Kentish and West Saxon. Through the educational reforms of King Alfred in the century and the influence of the kingdom of Wessex. The epic poem Beowulf is written in West Saxon, and the earliest English poem, Modern English developed mainly from Mercian, but the Scots language developed from Northumbrian. A few short inscriptions from the period of Old English were written using a runic script. By the sixth century, a Latin alphabet was adopted, written with half-uncial letterforms and it included the runic letters wynn ⟨ƿ⟩ and thorn ⟨þ⟩, and the modified Latin letters eth ⟨ð⟩, and ash ⟨æ⟩
25.
Metaphor
–
A metaphor is a figure of speech that refers, for rhetorical effect, to one thing by mentioning another thing. It may provide clarity or identify hidden similarities between two ideas, antithesis, hyperbole, metonymy and simile are all types of metaphor. The Philosophy of Rhetoric by rhetorician I. A. Richards describes a metaphor as having two parts, the tenor and the vehicle, the tenor is the subject to which attributes are ascribed. The vehicle is the object whose attributes are borrowed, other writers employ the general terms ground and figure to denote the tenor and the vehicle. Cognitive linguistics uses the target and source, respectively. Metaphors are most frequently compared with similes, a simile is a specific type of metaphor that uses the words like or as in comparing two objects, whereas what is commonly referred to as a metaphor states that A is B or substitutes B for A. What is usually referred to as a metaphor asserts the two objects in the comparison are identical on the point of comparison, a simile merely asserts a similarity, for this reason a common-type metaphor is generally considered more forceful than a simile. The metaphor category also contains these types, Allegory, An extended metaphor wherein a story illustrates an important attribute of the subject. Antithesis, A rhetorical contrast of ideas by means of parallel arrangements of words, clauses, or sentences Catachresis, A mixed metaphor used by design and accident. Hyperbole, Excessive exaggeration to illustrate a point Metonymy, A figure of speech using the name of one thing in reference to a different thing of which the first is associated, example, in lands belonging to the crown the word crown is metonymy for ruler or monarch. Parable, An extended metaphor narrated as an anecdote illustrating and teaching such as in Aesops fables, pun, Similar to a metaphor, a pun alludes to another term. However, the difference is that a pun is a frivolous allusion between two different things whereas a metaphor is a purposeful allusion between two different things. Metaphor, like other types of analogy, can usefully be distinguished from metonymy as one of two modes of thought. Thus, a metaphor creates new links between otherwise distinct conceptual domains, whereas a metonymy relies on the links within them. A dead metaphor is one in which the sense of an image has become absent. Examples, to grasp a concept and to gather what youve understood use physical action as a metaphor for understanding, the audience does not need to visualize the action, dead metaphors normally go unnoticed. Some people distinguish between a dead metaphor and a cliché, others use dead metaphor to denote both. A mixed metaphor is one that leaps from one identification to a second identification inconsistent with the first, e. g. Checkmate
26.
Pulp magazine
–
Pulp magazines were inexpensive fiction magazines that were published from 1896 to the 1950s. The term pulp derives from the wood pulp paper on which the magazines were printed, in contrast. The typical pulp magazine had 128 pages, it was 7 inches wide by 10 inches high, the pulps gave rise to the term pulp fiction in reference to run-of-the-mill, low-quality literature. Pulps were the successors to the penny dreadfuls, dime novels, although many respected writers wrote for pulps, the magazines were best known for their lurid, exploitative, and sensational subject matter. The first pulp was Frank Munseys revamped Argosy Magazine of 1896, with about 135,000 words per issue, on paper with untrimmed edges. In six years Argosy went from a few thousand copies per month to over half a million, Street & Smith, a dime novel and boys weekly publisher, was next on the market. Seeing Argosys success, they launched The Popular Magazine in 1903, due to differences in page layout however, the magazine had substantially less text than Argosy. Haggards Lost World genre influenced several key pulp writers, including Edgar Rice Burroughs, Robert E. Howard, Talbot Mundy and Abraham Merritt. Street and Smiths next innovation was the introduction of specialized genre pulps, with each focusing on a particular genre, such as detective stories, romance. At their peak of popularity in the 1920s and 1930s, the most successful pulps could sell up to one million copies per issue, in 1934, Frank Gruber says there were some 150 pulp titles. The most successful pulp magazines were Argosy, Adventure, Blue Book and Short Stories, although pulp magazines were primarily an American phenomenon, there were also a number of British pulp magazines published between the Edwardian era and World War II. Notable UK pulps included Pall Mall Magazine, The Novel Magazine, Cassells Magazine, The Story-Teller, The Sovereign Magazine, Hutchinsons Adventure-Story and Hutchinsons Mystery-Story. The German fantasy magazine Der Orchideengarten had a format to American pulp magazines, in that it was printed on rough pulp paper. During the Second World War paper shortages had a impact on pulp production, starting a steady rise in costs. Beginning with Ellery Queens Mystery Magazine in 1941, pulp magazines began to switch to digest size, in 1949, Street & Smith closed most of their pulp magazines in order to move upmarket and produce slicks. The pulp format declined from rising expenses, but even more due to the competition from comic books, television. In a more affluent post-war America, the price gap compared to slick magazines was far less significant, in the 1950s, mens adventure magazines began to replace the pulp. The format is still in use for some lengthy serials, like the German science fiction weekly Perry Rhodan, many titles of course survived only briefly
27.
Kilometer
–
The kilometre or kilometer is a unit of length in the metric system, equal to one thousand metres. K is occasionally used in some English-speaking countries as an alternative for the kilometre in colloquial writing. A slang term for the kilometre in the US military is klick, there are two common pronunciations for the word. It is generally preferred by the British Broadcasting Corporation and the Australian Broadcasting Corporation, many scientists and other users, particularly in countries where the metric system is not widely used, use the pronunciation with stress on the second syllable. The latter pronunciation follows the pattern used for the names of measuring instruments. The problem with this reasoning, however, is that the meter in those usages refers to a measuring device. The contrast is more obvious in countries using the British rather than American spelling of the word metre. When Australia introduced the system in 1975, the first pronunciation was declared official by the governments Metric Conversion Board. However, the Australian prime minister at the time, Gough Whitlam, by the 8 May 1790 decree, the Constituent assembly ordered the French Academy of Sciences to develop a new measurement system. In August 1793, the French National Convention decreed the metre as the length measurement system in the French Republic. The first name of the kilometre was Millaire, although the metre was formally defined in 1799, the myriametre was preferred to the kilometre for everyday use. The term myriamètre appeared a number of times in the text of Develeys book Physique dEmile, ou, Principes de la de la nature. French maps published in 1835 had scales showing myriametres and lieues de Poste, the Dutch, on the other hand, adopted the kilometre in 1817 but gave it the local name of the mijl. It was only in 1867 that the term became the only official unit of measure in the Netherlands to represent 1000 metres. In the US, the National Highway System Designation Act of 1995 prohibits the use of highway funds to convert existing signs or purchase new signs with metric units. Although the State DOTs had the option of using metric measurements or dual units, all of them abandoned metric measurements, the Manual on Uniform Traffic Control Devices since 2000 is published in both metric and American Customary Units. Some sporting disciplines feature 1000 m races in major events, but in other disciplines, even though records are catalogued
28.
Inch
–
The inch is a unit of length in the imperial and United States customary systems of measurement now formally equal to 1⁄36 yard but usually understood as 1⁄12 of a foot. Derived from the Roman uncia, inch is also used to translate related units in other measurement systems. The English word inch was a borrowing from Latin uncia not present in other Germanic languages. The vowel change from Latin /u/ to English /ɪ/ is known as umlaut, the consonant change from the Latin /k/ to English /tʃ/ or /ʃ/ is palatalisation. Both were features of Old English phonology, inch is cognate with ounce, whose separate pronunciation and spelling reflect its reborrowing in Middle English from Anglo-Norman unce and ounce. In many other European languages, the word for inch is the same as or derived from the word for thumb, the inch is a commonly used customary unit of length in the United States, Canada, and the United Kingdom. It is also used in Japan for electronic parts, especially display screens, for example, three feet two inches can be written as 3′ 2″. Paragraph LXVII sets out the fine for wounds of various depths, one inch, one shilling, an Anglo-Saxon unit of length was the barleycorn. After 1066,1 inch was equal to 3 barleycorns, which continued to be its legal definition for several centuries, similar definitions are recorded in both English and Welsh medieval law tracts. One, dating from the first half of the 10th century, is contained in the Laws of Hywel Dda which superseded those of Dyfnwal, both definitions, as recorded in Ancient Laws and Institutes of Wales, are that three lengths of a barleycorn is the inch. However, the oldest surviving manuscripts date from the early 14th century, john Bouvier similarly recorded in his 1843 law dictionary that the barleycorn was the fundamental measure. He noted that this process would not perfectly recover the standard, before the adoption of the international yard and pound, various definitions were in use. In the United Kingdom and most countries of the British Commonwealth, the United States adopted the conversion factor 1 metre =39.37 inches by an act in 1866. In 1930, the British Standards Institution adopted an inch of exactly 25.4 mm, the American Standards Association followed suit in 1933. By 1935, industry in 16 countries had adopted the industrial inch as it came to be known, in 1946, the Commonwealth Science Congress recommended a yard of exactly 0.9144 metres for adoption throughout the British Commonwealth. This was adopted by Canada in 1951, the United States on 1 July 1959, Australia in 1961, effective 1 January 1964, and the United Kingdom in 1963, effective on 1 January 1964. The new standards gave an inch of exactly 25.4 mm,1.7 millionths of a longer than the old imperial inch and 2 millionths of an inch shorter than the old US inch. The United States retains the 1/39. 37-metre definition for survey purposes and this is approximately 1/8-inch in a mile
29.
Mile
–
The mile is an English unit of length of linear measure equal to 5,280 feet, or 1,760 yards, and standardised as exactly 1,609.344 metres by international agreement in 1959. The Romans divided their mile into 5,000 feet but the importance of furlongs in pre-modern England meant that the statute mile was made equivalent to 8 furlongs or 5,280 feet in 1593. This form of the mile then spread to the British-colonized nations who continue to employ the mile, the US Geological Survey now employs the metre for official purposes but legacy data from its 1927 geodetic datum has meant that a separate US survey mile continues to see some use. Derived units such as miles per hour and miles per gallon, however, continue to be abbreviated as mph, mpg. The modern English word mile derives from Middle English myl and Old English mīl, the present international mile is usually what is understood by the unqualified term mile. When this distance needs to be distinguished from the nautical mile, in British English, the statute mile may refer to the present international miles or to any other form of English mile since the 1593 Act of Parliament which set it as a distance of 1,760 yards. Under American law, however, the statute mile refers to the US survey mile, the mile has been variously abbreviated—with and without a trailing period—as m, M, ml, and mi. The American National Institute of Standards and Technology now uses and recommends mi in order to avoid confusion with the SI metre and millilitre. Derived units such as miles per hour and miles per gallon, however, continue to be abbreviated in the United States, United Kingdom, the BBC style holds that There is no acceptable abbreviation for ‘miles’ and so it should be spelt out when used in describing areas. The Roman mile consisted of a thousand paces as measured by every other step—as in the distance of the left foot hitting the ground 1,000 times. The ancient Romans, marching their armies through uncharted territory, would push a carved stick in the ground after each 1000 paces. Well-fed and harshly driven Roman legionaries in good weather thus created longer miles, the distance was indirectly standardised by Agrippas establishment of a standard Roman foot in 29 BC, and the definition of a pace as 5 feet. An Imperial Roman mile thus denoted 5,000 Roman feet, surveyors and specialized equipment such as the decempeda and dioptra then spread its use. In modern times, Agrippas Imperial Roman mile was empirically estimated to have been about 1,481 metres in length, in Hellenic areas of the Empire, the Roman mile was used beside the native Greek units as equivalent to 8 stadia of 600 Greek feet. The mílion continued to be used as a Byzantine unit and was used as the name of the zero mile marker for the Byzantine Empire. The Roman mile also spread throughout Europe, with its local variations giving rise to the different units below, also arising from the Roman mile is the milestone. All roads radiated out from the Roman Forum throughout the Empire –50,000 miles of stone-paved roads, at every mile was placed a shaped stone, on which was carved a Roman numeral, indicating the number of miles from the center of Rome – the Forum. Hence, one knew how far one was from Rome