# 100,000,000

This article
needs additional citations for verification. (June 2016) (Learn how and when to remove this template message) |

100000000 | |
---|---|

Cardinal | One hundred million |

Ordinal | 100000000th (one hundred millionth) |

Factorization | 2^{8} × 5^{8} |

Greek numeral | |

Roman numeral | C |

Binary | 101111101011110000100000000_{2} |

Ternary | 20222011112012201_{3} |

Quaternary | 11331132010000_{4} |

Quinary | 201100000000_{5} |

Senary | 13531202544_{6} |

Octal | 575360400_{8} |

Duodecimal | 295A6454_{12} |

Hexadecimal | 5F5E100_{16} |

Vigesimal | 1B50000_{20} |

Base 36 | 1NJCHS_{36} |

**100,000,000** (**one hundred million**) is the natural number following 99,999,999 and preceding 100,000,001.

In scientific notation, it is written as 10^{8}.

East Asian languages treat 100,000,000 as a counting unit, significant as the square of a myriad, also a counting unit. In Chinese, Japanese, and Korean respectively it is (simplified Chinese: 亿; traditional Chinese: 億; pinyin: *yì*) (or Chinese: 萬萬; pinyin: *wànwàn* in ancient texts), *oku* (億), and *eok* (억/億). These languages do not have single words for a thousand to the second, third, fifth power, etc.

## Selected 9-digit numbers (100,000,001–999,999,999)[edit]

### 100,000,001 to 199,999,999[edit]

**100,000,007**- smallest nine digit prime^{[1]}**102,334,155**– Fibonacci number**107,890,609**– Wedderburn-Etherington number^{[2]}**111,111,111**– repunit, square root of 12345678987654321**111,111,113**– Chen prime, Sophie Germain prime, cousin prime.**123,456,789**– smallest zeroless base 10 pandigital number**129,140,163**= 3^{17}**129,644,790**– Catalan number^{[3]}**134,217,728**= 2^{27}**139,854,276**– the smallest pandigital square**142,547,559**– Motzkin number^{[4]}**165,580,141**– Fibonacci number**179,424,673**– 10000000th prime number**190,899,322**– Bell number^{[5]}

### 200,000,000 to 299,999,999[edit]

**214,358,881**= 11^{8}**222,222,222**– repdigit**222,222,227**– safe prime**225,058,681**– Pell number^{[6]}**225,331,713**– self-descriptive number in base 9**232,792,560**– superior highly composite number;^{[7]}colossally abundant number;^{[8]}the smallest number divisible by all the numbers 1 through 20**244,140,625**= 5^{12}**253,450,711**– Wedderburn-Etherington number^{[2]}**267,914,296**– Fibonacci number**268,402,687**– Carol number^{[9]}**268,435,456**= 2^{28}**268,468,223**– Kynea number^{[10]}**272,400,600**– the number of terms of the harmonic series required to pass 20**275,305,224**– the number of magic squares of order 5, excluding rotations and reflections**282,475,249**= 7^{10}

### 300,000,000 to 399,999,999[edit]

**333,333,333**– repdigit**367,567,200**– colossally abundant number,^{[11]}superior highly composite number^{[12]}**381,654,729**– the only polydivisible number that is also a zeroless pandigital number**387,420,489**= 3^{18}, 9^{9}and in tetration notation^{2}9

### 400,000,000 to 499,999,999[edit]

**400,763,223**– Motzkin number^{[4]}**433,494,437**– Fibonacci prime**442,386,619**– alternating factorial^{[13]}**444,444,444**– repdigit**477,638,700**– Catalan number^{[3]}**479,001,599**– factorial prime^{[14]}**479,001,600**= 12!

### 500,000,000 to 599,999,999[edit]

**536,870,912**= 2^{29}**543,339,720**– Pell number^{[6]}**554,999,445**– a Kaprekar constant for digit length 9 in base 10**555,555,555**– repdigit**596,572,387**– Wedderburn-Etherington number^{[2]}

### 600,000,000 to 699,999,999[edit]

**666,666,666**– repdigit**644,972,544**- perfect cube, 3-smooth number

### 700,000,000 to 799,999,999[edit]

**701,408,733**– Fibonacci number**715,827,883**– Wagstaff prime^{[15]}**777,777,777**– repdigit

### 800,000,000 to 899,999,999[edit]

**815,730,721**= 13^{8}**888,888,888**– repdigit

### 900,000,000 to 999,999,999[edit]

**906,150,257**– smallest counterexample to the Polya conjecture**987,654,321**– largest zeroless pandigital number**999,999,937**– largest 9-digit prime**999,999,999**– repdigit

## See also[edit]

## References[edit]

**^**"Sloane's A003617 : Smallest n-digit prime".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 7 September 2017.- ^
^{a}^{b}^{c}"Sloane's A001190 : Wedderburn-Etherington numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. - ^
^{a}^{b}"Sloane's A000108 : Catalan numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. - ^
^{a}^{b}"Sloane's A001006 : Motzkin numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. **^**"Sloane's A000110 : Bell or exponential numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.- ^
^{a}^{b}"Sloane's A000129 : Pell numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17. **^**"Sloane's A002201 : Superior highly composite numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A004490 : Colossally abundant numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A093112 : a(n) = (2^n-1)^2 - 2".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A093069 : a(n) = (2^n + 1)^2 - 2".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A004490 : Colossally abundant numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A002201 : Superior highly composite numbers".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A005165 : Alternating factorials".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A088054 : Factorial primes".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.**^**"Sloane's A000979 : Wagstaff primes".*The On-Line Encyclopedia of Integer Sequences*. OEIS Foundation. Retrieved 2016-06-17.