1.
Lightcurve
–
In astronomy, a light curve is a graph of light intensity of a celestial object or region, as a function of time. The light is usually in a particular frequency interval or band, the study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Light waves can also be used in botany to determine a plants reactions to light intensities, in astronomy, light curves from a supernova are used to determine what type of supernova it is. If the supernovas light curve has a maximum and slopes down gradually. If the supernovas light curve has a sharp maximum, slopes down quickly. In planetary science, a curve can be used to derive the rotation period of a minor planet, moon. Thus, astronomers measure the amount of produced by an object as a function of time. The time separation of peaks in the curve gives an estimate of the rotational period of the object. The difference between the maximum and minimum brightnesses can be due to the shape of the object, or to bright, for example, an asymmetrical asteroids light curve generally has more pronounced peaks, while a more spherical objects light curve will be flatter. The Asteroid Lightcurve Database of the Collaborative Asteroid Lightcurve Link uses a code to assess the quality of a period solution for minor planet light curves. Its quality code parameter U ranges from 0 to 3, U =0 → Result later proven incorrect U =1 → Result based on fragmentary light curve, U =2 → Result based on less than full coverage. Period may be wrong by 30 percent or ambiguous, U =3 → Secure result within the precision given. A trailing plus sign or minus sign is used to indicate a slightly better or worse quality than the unsigned value. In botany, a light curve shows the response of leaf tissue or algal communities to varying light intensities. Since photosynthesis is limited by ambient carbon dioxide levels, light curves are often repeated at several different constant carbon dioxide concentrations. The AAVSO online light curve generator can plot light curves for thousands of variable stars Lightcurves, An Introduction by NASAs Imagine the Universe
2.
N. R. Pogson
–
Norman Robert Pogson, CIE was an English astronomer who worked in India at the Madras observatory. Norman was born in Nottingham, the son of George Owen Pogson, a manufacturer, lace dealer and commission agent, with enough income to support an extended family. His early education was largely informal and he left school at 16, intending to teach mathematics. At the age of eighteen, he calculated with the help of John Russell Hind of the Royal Astronomical Society and he was introduced to astronomy through George Bishops Observatory at South Villa Regents Park from 1846. He took an interest in comets and studied Iris, a planet that had been recently discovered. He was engaged as an assistant at the Radcliffe Observatory in 1852, after working as an assistant at the South Villa Observatory in 1851, he moved to the Radcliffe Observatory in Oxford in 1852. He received the Lalande medal upon his discovery of the minor planet Isis and his Oxford period was spent studying variable stars and other routine research. In 1854 he helped Sir George Airy conduct an experiment to determine the density of the earth, Pogson was appointed as director at the Hartwell Observatory belonging to John Lee in 1859. He published around fourteen papers from 1859 to 1860 in the Monthly Notices of the Royal Astronomical Society, mostly on variable stars, Sir Charles Wood appointed him as government astronomer for Madras in October 1860. Reaching India in 1861 and working at the Madras Observatory he worked tirelessly, in the next seven years he found five minor planets and seven variable stars. He continued worked on Taylors Madras Catalogue of 11,015 stars which had published in 1835 based on work begun in 1831 by T. G. Taylor. Pogson continued work on this to add 51,101 observations and after his death in 1891 the catalogue was revised by Arthur Downing and published in 1901. Despite Pogsons isolation he had at the time of his death discovered 134 stars,106 variable stars,21 possible variable stars and 7 possible supernovae, Pogson also made special expeditions, observing a total solar eclipse on 18 August 1868 at Masulipatnam and making spectrometric studies. He observed and commented on the line associated with Helium. Pogsons suggestion in 1856 was to make this a standard, thus and this fifth root of 100 is known as Pogsons Ratio. The magnitude relation is given as follows, m1 - m2 = -2.5 log10 where m is the magnitude and L is the luminosity. In 1868 and 1871, Pogson joined the Indian solar eclipse expeditions and he received a telegram from Ernst Friedrich Wilhelm Klinkerfues on November 30th,1872 which read Biela touched Earth on 27th. Search near Theta Centauri, a message so esoteric that it caught the fancy of the newspapers of the time, one of Pogsons assistants was Chintamani Raghunatha Chary
3.
Madras Observatory
–
The Madras Observatory was founded by the British East India Company in 1786 in Chennai. For over a century it was the astronomical observatory in India that exclusively worked on the stars. Among the astronomers at the observatory were Norman Robert Pogson, Michael Topping, by 1899, it had been relegated to gathering weather-related data. Tamil and Telugu inscriptions are carved on the pillar. The discovery began a 140-year period of other exoplanet discovery false alarms, History of old Madras Observatory Madras Observatory, Madras Madras and Kodaikanal Observatories, A Brief History Photograph and brief description of the Madras Observatory
4.
Camilla (mythology)
–
In Virgils Aeneid, Camilla of the Volsci is the daughter of King Metabus and Casmilla. Driven from his throne, Metabus is chased into the wilderness by armed Volsci, the river Amasenus blocked his path, and, fearing for the childs welfare, Metabus bound her to a spear. He promised Diana that Camilla would be her servant, a warrior virgin and he then safely threw her to the other side, and swam across to retrieve her. The baby Camilla was suckled by a mare, and once her first firm steps had taken and she was raised in her childhood to be a huntress and kept the companionship of her father and the shepherds in the hills and woods. In his book Virgils Aeneid, Semantic Relations and Proper Names, in the Aeneid, she helped her ally, King Turnus of the Rutuli, fight Aeneas and the Trojans in the war sparked by the courting of Princess Lavinia. Arruns, a Trojan ally, stalked Camilla on the battlefield, and, dianas attendant, Opis, at her mistress behest, avenged Camillas death by slaying Arruns. Virgil says that Camilla was so fast on her feet that she could run over a field of wheat without breaking the tops of the plants, giovanni Boccaccios De mulieribus claris includes a segment on Camilla. Camilla is similar to Penthesilea of Greek mythology
5.
Roman mythology
–
Roman mythology is the body of traditional stories pertaining to ancient Romes legendary origins and religious system, as represented in the literature and visual arts of the Romans. Roman mythology may also refer to the study of these representations. The Romans usually treated their traditional narratives as historical, even when these have miraculous or supernatural elements, the stories are often concerned with politics and morality, and how an individuals personal integrity relates to his or her responsibility to the community or Roman state. When the stories illuminate Roman religious practices, they are concerned with ritual, augury. Romes early myths and legends also have a relationship with Etruscan religion. In particular, the versions of Greek myths in Ovids Metamorphoses, written during the reign of Augustus, because ritual played the central role in Roman religion that myth did for the Greeks, it is sometimes doubted that the Romans had much of a native mythology. This perception is a product of Romanticism and the scholarship of the 19th century. From the Renaissance to the 18th century, however, Roman myths were an inspiration particularly for European painting, the Roman tradition is rich in historical myths, or legends, concerning the foundation and rise of the city. These narratives focus on human actors, with only occasional intervention from deities, in Romes earliest period, history and myth have a mutual and complementary relationship. As T. P. Wiseman notes, The Roman stories still matter, as they mattered to Dante in 1300 and Shakespeare in 1600, what does it take to be a free citizen. Can a superpower still be a republic, how does well-meaning authority turn into murderous tyranny. Major sources for Roman myth include the Aeneid of Vergil and the first few books of Livys history as well as Dionysius s Roman Antiquities. Other important sources are the Fasti of Ovid, a six-book poem structured by the Roman religious calendar, scenes from Roman myth also appear in Roman wall painting, coins, and sculpture, particularly reliefs. The Aeneid and Livys early history are the best extant sources for Romes founding myths, material from Greek heroic legend was grafted onto this native stock at an early date. By extension, the Trojans were adopted as the ancestors of the Roman people. Rape of the Sabine women, explaining the importance of the Sabines in the formation of Roman culture, numa Pompilius, the Sabine second king of Rome who consorted with the nymph Egeria and established many of Romes legal and religious institutions. Servius Tullius, the king of Rome, whose mysterious origins were freely mythologized. The Tarpeian Rock, and why it was used for the execution of traitors, lucretia, whose self-sacrifice prompted the overthrow of the early Roman monarchy and led to the establishment of the Republic
6.
Minor planet
–
A minor planet is an astronomical object in direct orbit around the Sun that is neither a planet nor exclusively classified as a comet. Minor planets can be dwarf planets, asteroids, trojans, centaurs, Kuiper belt objects, as of 2016, the orbits of 709,706 minor planets were archived at the Minor Planet Center,469,275 of which had received permanent numbers. The first minor planet to be discovered was Ceres in 1801, the term minor planet has been used since the 19th century to describe these objects. The term planetoid has also used, especially for larger objects such as those the International Astronomical Union has called dwarf planets since 2006. Historically, the asteroid, minor planet, and planetoid have been more or less synonymous. This terminology has become complicated by the discovery of numerous minor planets beyond the orbit of Jupiter. A Minor planet seen releasing gas may be classified as a comet. Before 2006, the IAU had officially used the term minor planet, during its 2006 meeting, the IAU reclassified minor planets and comets into dwarf planets and small Solar System bodies. Objects are called dwarf planets if their self-gravity is sufficient to achieve hydrostatic equilibrium, all other minor planets and comets are called small Solar System bodies. The IAU stated that the minor planet may still be used. However, for purposes of numbering and naming, the distinction between minor planet and comet is still used. Hundreds of thousands of planets have been discovered within the Solar System. The Minor Planet Center has documented over 167 million observations and 729,626 minor planets, of these,20,570 have official names. As of March 2017, the lowest-numbered unnamed minor planet is 1974 FV1, as of March 2017, the highest-numbered named minor planet is 458063 Gustavomuler. There are various broad minor-planet populations, Asteroids, traditionally, most have been bodies in the inner Solar System. Near-Earth asteroids, those whose orbits take them inside the orbit of Mars. Further subclassification of these, based on distance, is used, Apohele asteroids orbit inside of Earths perihelion distance. Aten asteroids, those that have semi-major axes of less than Earths, Apollo asteroids are those asteroids with a semimajor axis greater than Earths, while having a perihelion distance of 1.017 AU or less. Like Aten asteroids, Apollo asteroids are Earth-crossers, amor asteroids are those near-Earth asteroids that approach the orbit of Earth from beyond, but do not cross it
7.
Asteroid belt
–
The asteroid belt is the circumstellar disc in the Solar System located roughly between the orbits of the planets Mars and Jupiter. It is occupied by numerous irregularly shaped bodies called asteroids or minor planets, the asteroid belt is also termed the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System such as near-Earth asteroids and trojan asteroids. About half the mass of the belt is contained in the four largest asteroids, Ceres, Vesta, Pallas, the total mass of the asteroid belt is approximately 4% that of the Moon, or 22% that of Pluto, and roughly twice that of Plutos moon Charon. Ceres, the belts only dwarf planet, is about 950 km in diameter, whereas Vesta, Pallas. The remaining bodies range down to the size of a dust particle, the asteroid material is so thinly distributed that numerous unmanned spacecraft have traversed it without incident. Nonetheless, collisions between large asteroids do occur, and these can form a family whose members have similar orbital characteristics. Individual asteroids within the belt are categorized by their spectra. The asteroid belt formed from the solar nebula as a group of planetesimals. Planetesimals are the precursors of the protoplanets. Between Mars and Jupiter, however, gravitational perturbations from Jupiter imbued the protoplanets with too much energy for them to accrete into a planet. Collisions became too violent, and instead of fusing together, the planetesimals, as a result,99. 9% of the asteroid belts original mass was lost in the first 100 million years of the Solar Systems history. Some fragments eventually found their way into the inner Solar System, Asteroid orbits continue to be appreciably perturbed whenever their period of revolution about the Sun forms an orbital resonance with Jupiter. At these orbital distances, a Kirkwood gap occurs as they are swept into other orbits. Classes of small Solar System bodies in other regions are the objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids. On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on Ceres, the detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding was unexpected because comets, not asteroids, are considered to sprout jets. According to one of the scientists, The lines are becoming more and more blurred between comets and asteroids. This pattern, now known as the Titius–Bode law, predicted the semi-major axes of the six planets of the provided one allowed for a gap between the orbits of Mars and Jupiter
8.
Kirkwood gap
–
A Kirkwood gap is a gap or dip in the distribution of the semi-major axes of the orbits of main-belt asteroids. They correspond to the locations of orbital resonances with Jupiter, for example, there are very few asteroids with semimajor axis near 2.50 AU, period 3.95 years, which would make three orbits for each orbit of Jupiter. Other orbital resonances correspond to orbital periods whose lengths are simple fractions of Jupiters, the weaker resonances lead only to a depletion of asteroids, while spikes in the histogram are often due to the presence of a prominent asteroid family. The orbital elements of the asteroids vary chaotically as a result, the 2,1 MMR has a few relatively stable islands within the resonance, however. These islands are depleted due to slow diffusion onto less stable orbits and this process, which has been linked to Jupiter and Saturn being near a 5,2 resonance, may have been more rapid when Jupiters and Saturns orbits were closer together. More recently, a small number of asteroids have been found to possess high eccentricity orbits which do lie within the Kirkwood gaps. Examples include the Alinda family and the Griqua family and these orbits slowly increase their eccentricity on a timescale of tens of millions of years, and will eventually break out of the resonance due to close encounters with a major planet. The most prominent Kirkwood gaps are located at mean orbital radii of,2.06 AU2.5 AU, home to the Alinda family of asteroids 2.82 AU2.95 AU3.27 AU, home to the Griqua family of asteroids. Weaker and/or narrower gaps are found at,1.9 AU2.25 AU2.33 AU2.71 AU3.03 AU3.075 AU3.47 AU3.7 AU. Orbital resonance Alinda family Griqua family Article on Kirkwood gaps at Wolframs scienceworld
9.
Cybele asteroid
–
Cybele asteroids are a group of asteroids in the outer asteroid belt with a semi-major axis between 3.27 AU and 3.7 AU, an eccentricity less than 0.3, and an inclination less than 25°. The group is named for the asteroid 65 Cybele, as of 2010, the group is thought to have formed from the breakup of a larger object in the distant past. Some of the largest Cybele asteroids are 87 Sylvia,65 Cybele,107 Camilla,121 Hermione,76 Freia,790 Pretoria, some of the group also have asteroid moons, such as 121 Hermione
10.
Perihelion and aphelion
–
The perihelion is the point in the orbit of a celestial body where it is nearest to its orbital focus, generally a star. It is the opposite of aphelion, which is the point in the orbit where the body is farthest from its focus. The word perihelion stems from the Ancient Greek words peri, meaning around or surrounding, aphelion derives from the preposition apo, meaning away, off, apart. According to Keplers first law of motion, all planets, comets. Hence, a body has a closest and a farthest point from its parent object, that is, a perihelion. Each extreme is known as an apsis, orbital eccentricity measures the flatness of the orbit. Because of the distance at aphelion, only 93. 55% of the solar radiation from the Sun falls on a given area of land as does at perihelion. However, this fluctuation does not account for the seasons, as it is summer in the northern hemisphere when it is winter in the southern hemisphere and vice versa. Instead, seasons result from the tilt of Earths axis, which is 23.4 degrees away from perpendicular to the plane of Earths orbit around the sun. Winter falls on the hemisphere where sunlight strikes least directly, and summer falls where sunlight strikes most directly, in the northern hemisphere, summer occurs at the same time as aphelion. Despite this, there are larger land masses in the northern hemisphere, consequently, summers are 2.3 °C warmer in the northern hemisphere than in the southern hemisphere under similar conditions. Apsis Ellipse Solstice Dates and times of Earths perihelion and aphelion, 2000–2025 from the United States Naval Observatory
11.
Astronomical unit
–
The astronomical unit is a unit of length, roughly the distance from Earth to the Sun. However, that varies as Earth orbits the Sun, from a maximum to a minimum. Originally conceived as the average of Earths aphelion and perihelion, it is now defined as exactly 149597870700 metres, the astronomical unit is used primarily as a convenient yardstick for measuring distances within the Solar System or around other stars. However, it is also a component in the definition of another unit of astronomical length. A variety of symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A for the astronomical unit, in 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In 2012, the IAU, noting that various symbols are presently in use for the astronomical unit, in the 2014 revision of the SI Brochure, the BIPM used the unit symbol au. In ISO 80000-3, the symbol of the unit is ua. Earths orbit around the Sun is an ellipse, the semi-major axis of this ellipse is defined to be half of the straight line segment that joins the aphelion and perihelion. The centre of the sun lies on this line segment. In addition, it mapped out exactly the largest straight-line distance that Earth traverses over the course of a year, knowing Earths shift and a stars shift enabled the stars distance to be calculated. But all measurements are subject to some degree of error or uncertainty, improvements in precision have always been a key to improving astronomical understanding. Improving measurements were continually checked and cross-checked by means of our understanding of the laws of celestial mechanics, the expected positions and distances of objects at an established time are calculated from these laws, and assembled into a collection of data called an ephemeris. NASAs Jet Propulsion Laboratory provides one of several ephemeris computation services, in 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition. Equivalently, by definition, one AU is the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass. As with all measurements, these rely on measuring the time taken for photons to be reflected from an object. However, for precision the calculations require adjustment for such as the motions of the probe. In addition, the measurement of the time itself must be translated to a scale that accounts for relativistic time dilation
12.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction
13.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit
14.
Mean anomaly
–
In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. Define T as the time required for a body to complete one orbit. In time T, the radius vector sweeps out 2π radians or 360°. The average rate of sweep, n, is then n =2 π T or n =360 ∘ T, define τ as the time at which the body is at the pericenter. From the above definitions, a new quantity, M, the mean anomaly can be defined M = n, because the rate of increase, n, is a constant average, the mean anomaly increases uniformly from 0 to 2π radians or 0° to 360° during each orbit. It is equal to 0 when the body is at the pericenter, π radians at the apocenter, if the mean anomaly is known at any given instant, it can be calculated at any later instant by simply adding n δt where δt represents the time difference. Mean anomaly does not measure an angle between any physical objects and it is simply a convenient uniform measure of how far around its orbit a body has progressed since pericenter. The mean anomaly is one of three parameters that define a position along an orbit, the other two being the eccentric anomaly and the true anomaly. Define l as the longitude, the angular distance of the body from the same reference direction. Thus mean anomaly is also M = l − ϖ, mean angular motion can also be expressed, n = μ a 3, where μ is a gravitational parameter which varies with the masses of the objects, and a is the semi-major axis of the orbit. Mean anomaly can then be expanded, M = μ a 3, and here mean anomaly represents uniform angular motion on a circle of radius a
15.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
16.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky
17.
Longitude of the ascending node
–
The longitude of the ascending node is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a direction, called the origin of longitude, to the direction of the ascending node. The ascending node is the point where the orbit of the passes through the plane of reference. Commonly used reference planes and origins of longitude include, For a geocentric orbit, Earths equatorial plane as the plane. In this case, the longitude is called the right ascension of the ascending node. The angle is measured eastwards from the First Point of Aries to the node, for a heliocentric orbit, the ecliptic as the reference plane, and the First Point of Aries as the origin of longitude. The angle is measured counterclockwise from the First Point of Aries to the node, the angle is measured eastwards from north to the node. pp.40,72,137, chap. In the case of a star known only from visual observations, it is not possible to tell which node is ascending. In this case the orbital parameter which is recorded is the longitude of the node, Ω, here, n=<nx, ny, nz> is a vector pointing towards the ascending node. The reference plane is assumed to be the xy-plane, and the origin of longitude is taken to be the positive x-axis, K is the unit vector, which is the normal vector to the xy reference plane. For non-inclined orbits, Ω is undefined, for computation it is then, by convention, set equal to zero, that is, the ascending node is placed in the reference direction, which is equivalent to letting n point towards the positive x-axis. Kepler orbits Equinox Orbital node perturbation of the plane can cause revolution of the ascending node
18.
Argument of periapsis
–
The argument of periapsis, symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the ascending node to its periapsis. For specific types of orbits, words such as perihelion, perigee, periastron, an argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the body will reach periapsis at its northmost distance from the plane of reference. Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis, however, especially in discussions of binary stars and exoplanets, the terms longitude of periapsis or longitude of periastron are often used synonymously with argument of periapsis. In the case of equatorial orbits, the argument is strictly undefined, where, ex and ey are the x- and y-components of the eccentricity vector e. In the case of circular orbits it is assumed that the periapsis is placed at the ascending node. Kepler orbit Orbital mechanics Orbital node
19.
Natural satellite
–
A natural satellite or moon is, in the most common usage, an astronomical body that orbits a planet or minor planet. In the Solar System there are six planetary satellite systems containing 178 known natural satellites, four IAU-listed dwarf planets are also known to have natural satellites, Pluto, Haumea, Makemake, and Eris. As of January 2012, over 200 minor-planet moons have been discovered, the Earth–Moon system is unique in that the ratio of the mass of the Moon to the mass of Earth is much greater than that of any other natural-satellite–planet ratio in the Solar System. At 3,474 km across, Earths Moon is 0.27 times the diameter of Earth, the first known natural satellite was the Moon, but it was considered a planet until Copernicus introduction of heliocentrism in 1543. Until the discovery of the Galilean satellites in 1610, however, galileo chose to refer to his discoveries as Planetæ, but later discoverers chose other terms to distinguish them from the objects they orbited. The first to use of the satellite to describe orbiting bodies was the German astronomer Johannes Kepler in his pamphlet Narratio de Observatis a se quatuor Iouis satellitibus erronibus in 1610. He derived the term from the Latin word satelles, meaning guard, attendant, or companion, the term satellite thus became the normal one for referring to an object orbiting a planet, as it avoided the ambiguity of moon. In 1957, however, the launching of the artificial object Sputnik created a need for new terminology, to further avoid ambiguity, the convention is to capitalize the word Moon when referring to Earths natural satellite, but not when referring to other natural satellites. A few recent authors define moon as a satellite of a planet or minor planet, there is no established lower limit on what is considered a moon. Small asteroid moons, such as Dactyl, have also been called moonlets, the upper limit is also vague. Two orbiting bodies are described as a double body rather than primary. Asteroids such as 90 Antiope are considered double asteroids, but they have not forced a clear definition of what constitutes a moon, some authors consider the Pluto–Charon system to be a double planet. In contrast, irregular satellites are thought to be captured asteroids possibly further fragmented by collisions, most of the major natural satellites of the Solar System have regular orbits, while most of the small natural satellites have irregular orbits. The Moon and possibly Charon are exceptions among large bodies in that they are thought to have originated by the collision of two large proto-planetary objects. The material that would have placed in orbit around the central body is predicted to have reaccreted to form one or more orbiting natural satellites. As opposed to planetary-sized bodies, asteroid moons are thought to form by this process. Triton is another exception, although large and in a close, circular orbit, its motion is retrograde, most regular moons in the Solar System are tidally locked to their respective primaries, meaning that the same side of the natural satellite always faces its planet. The only known exception is Saturns natural satellite Hyperion, which rotates chaotically because of the influence of Titan
20.
IRAS
–
The Infrared Astronomical Satellite was the first-ever space telescope to perform a survey of the entire night sky at infrared wavelengths. Launched on 25 January 1983, its mission lasted ten months, the telescope was a joint project of the United States, the Netherlands, and the United Kingdom. Over 250,000 infrared sources were observed at 12,25,60, support for the processing and analysis of data from IRAS was contributed from the Infrared Processing and Analysis Center at the California Institute of Technology. Currently, the Infrared Science Archive at IPAC holds the IRAS archive, the success of early infrared space astronomy led to further missions, such as the Infrared Space Observatory and the Hubble Space Telescopes NICMOS instrument. IRAS was the first observatory to perform a survey at infrared wavelengths. It mapped 96% of the sky four times, at 12,25,60 and 100 micrometers and it discovered about 350,000 sources, many of which are still awaiting identification. About 75,000 of those are believed to be starburst galaxies, many other sources are normal stars with disks of dust around them, possibly the early stage of planetary system formation. New discoveries included a dust disk around Vega and the first images of the Milky Ways core, IRASs life, like that of most infrared satellites that followed, was limited by its cooling system. To effectively work in the domain, a telescope must be cooled to cryogenic temperatures. In IRASs case,73 kilograms of superfluid helium kept the telescope at a temperature of 2 K, the on-board supply of liquid helium was depleted after 10 months on 21 November 1983, causing the telescope temperature to rise, preventing further observations. The spacecraft continues to orbit the Earth, IRAS was designed to catalog fixed sources, so it scanned the same region of sky several times. Jack Meadows led a team at Leicester University, including John Davies and Simon Green and this led to the discovery of three asteroids, including 3200 Phaethon, six comets, and a huge dust trail associated with comet 10P/Tempel. The comets included 126P/IRAS, 161P/Hartley–IRAS, and comet IRAS–Araki–Alcock, which made an approach to the Earth in 1983. Out of the six comets IRAS found, four were long period, further analysis revealed that, of several unidentified objects, nine were distant galaxies and the tenth was intergalactic cirrus. None were found to be Solar System bodies, during its mission, IRAS detected odd infrared signatures around several stars. This led to the systems being targeted by the Hubble Space Telescopes NICMOS instrument between 1999 and 2006, but nothing was detected, in 2014, using new image processing techniques on the Hubble data, researchers discovered planetary disks around these stars. A next generation of infrared space telescopes began when NASAs Wide-field Infrared Survey Explorer launched on 14 December 2009 aboard a Delta II rocket from Vandenberg Air Force Base. A. Neugebauer, G. Habing, H. J. Clegg, P. E. Chester, Infrared Astronomical Satellite, Catalogs and Atlases
21.
Mass
–
In physics, mass is a property of a physical body. It is the measure of a resistance to acceleration when a net force is applied. It also determines the strength of its gravitational attraction to other bodies. The basic SI unit of mass is the kilogram, Mass is not the same as weight, even though mass is often determined by measuring the objects weight using a spring scale, rather than comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity and this is because weight is a force, while mass is the property that determines the strength of this force. In Newtonian physics, mass can be generalized as the amount of matter in an object, however, at very high speeds, special relativity postulates that energy is an additional source of mass. Thus, any body having mass has an equivalent amount of energy. In addition, matter is a defined term in science. There are several distinct phenomena which can be used to measure mass, active gravitational mass measures the gravitational force exerted by an object. Passive gravitational mass measures the force exerted on an object in a known gravitational field. The mass of an object determines its acceleration in the presence of an applied force, according to Newtons second law of motion, if a body of fixed mass m is subjected to a single force F, its acceleration a is given by F/m. A bodys mass also determines the degree to which it generates or is affected by a gravitational field and this is sometimes referred to as gravitational mass. The standard International System of Units unit of mass is the kilogram, the kilogram is 1000 grams, first defined in 1795 as one cubic decimeter of water at the melting point of ice. Then in 1889, the kilogram was redefined as the mass of the prototype kilogram. As of January 2013, there are proposals for redefining the kilogram yet again. In this context, the mass has units of eV/c2, the electronvolt and its multiples, such as the MeV, are commonly used in particle physics. The atomic mass unit is 1/12 of the mass of a carbon-12 atom, the atomic mass unit is convenient for expressing the masses of atoms and molecules. Outside the SI system, other units of mass include, the slug is an Imperial unit of mass, the pound is a unit of both mass and force, used mainly in the United States
22.
Density
–
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume, ρ = m V, where ρ is the density, m is the mass, and V is the volume. In some cases, density is defined as its weight per unit volume. For a pure substance the density has the numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity, osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. Thus a relative density less than one means that the floats in water. The density of a material varies with temperature and pressure and this variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object, increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a results in convection of the heat from the bottom to the top. This causes it to rise relative to more dense unheated material, the reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is a property in that increasing the amount of a substance does not increase its density. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass, upon this discovery, he leapt from his bath and ran naked through the streets shouting, Eureka. As a result, the term eureka entered common parlance and is used today to indicate a moment of enlightenment, the story first appeared in written form in Vitruvius books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time, from the equation for density, mass density has units of mass divided by volume. As there are units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per metre and the cgs unit of gram per cubic centimetre are probably the most commonly used units for density.1,000 kg/m3 equals 1 g/cm3. In industry, other larger or smaller units of mass and or volume are often more practical, see below for a list of some of the most common units of density
23.
Hour
–
An hour is a unit of time conventionally reckoned as 1⁄24 of a day and scientifically reckoned as 3, 599–3,601 seconds, depending on conditions. The seasonal, temporal, or unequal hour was established in the ancient Near East as 1⁄12 of the night or daytime, such hours varied by season, latitude, and weather. It was subsequently divided into 60 minutes, each of 60 seconds, the modern English word hour is a development of the Anglo-Norman houre and Middle English ure, first attested in the 13th century. It displaced the Old English tide and stound, the Anglo-Norman term was a borrowing of Old French ure, a variant of ore, which derived from Latin hōra and Greek hṓrā. Like Old English tīd and stund, hṓrā was originally a word for any span of time, including seasons. Its Proto-Indo-European root has been reconstructed as *yeh₁-, making hour distantly cognate with year, the time of day is typically expressed in English in terms of hours. Whole hours on a 12-hour clock are expressed using the contracted phrase oclock, Hours on a 24-hour clock are expressed as hundred or hundred hours. Fifteen and thirty minutes past the hour is expressed as a quarter past or after and half past, respectively, fifteen minutes before the hour may be expressed as a quarter to, of, till, or before the hour. Sumerian and Babylonian hours divided the day and night into 24 equal hours, the ancient Egyptians began dividing the night into wnwt at some time before the compilation of the Dynasty V Pyramid Texts in the 24th century BC. By 2150 BC, diagrams of stars inside Egyptian coffin lids—variously known as diagonal calendars or star clocks—attest that there were exactly 12 of these. The coffin diagrams show that the Egyptians took note of the risings of 36 stars or constellations. Each night, the rising of eleven of these decans were noted, the original decans used by the Egyptians would have fallen noticeably out of their proper places over a span of several centuries. By the time of Amenhotep III, the priests at Karnak were using water clocks to determine the hours and these were filled to the brim at sunset and the hour determined by comparing the water level against one of its twelve gauges, one for each month of the year. During the New Kingdom, another system of decans was used, the later division of the day into 12 hours was accomplished by sundials marked with ten equal divisions. The morning and evening periods when the failed to note time were observed as the first and last hours. The Egyptian hours were closely connected both with the priesthood of the gods and with their divine services, by the New Kingdom, each hour was conceived as a specific region of the sky or underworld through which Ras solar bark travelled. Protective deities were assigned to each and were used as the names of the hours, as the protectors and resurrectors of the sun, the goddesses of the night hours were considered to hold power over all lifespans and thus became part of Egyptian funerary rituals. The Egyptian for astronomer, used as a synonym for priest, was wnwty, the earliest forms of wnwt include one or three stars, with the later solar hours including the determinative hieroglyph for sun
24.
C-type asteroid
–
They are the most common variety, forming around 75% of known asteroids. They are distinguished by a low albedo because their composition includes a large amount of carbon, in addition to rocks. Asteroids of this class have very similar to those of carbonaceous chondrite meteorites. The latter are very close in composition to the Sun. C-type asteroids are extremely dark, with albedos typically in the 0.03 to 0.10 range, consequently, whereas a number of S-type asteroids can normally be viewed with binoculars at opposition, even the largest C-type asteroids require a small telescope. The potentially brightest C-type asteroid is 324 Bamberga, but that very high eccentricity means it rarely reaches its maximum magnitude. Their spectra contain moderately strong ultraviolet absorption at wavelengths below about 0.4 μm to 0.5 μm, while at longer wavelengths they are largely featureless but slightly reddish. The so-called water absorption feature around 3 μm, which can be an indication of content in minerals is also present
25.
Apparent magnitude
–
The apparent magnitude of a celestial object is a number that is a measure of its brightness as seen by an observer on Earth. The brighter an object appears, the lower its magnitude value, the Sun, at apparent magnitude of −27, is the brightest object in the sky. It is adjusted to the value it would have in the absence of the atmosphere, furthermore, the magnitude scale is logarithmic, a difference of one in magnitude corresponds to a change in brightness by a factor of 5√100, or about 2.512. The measurement of apparent magnitudes or brightnesses of celestial objects is known as photometry, apparent magnitudes are used to quantify the brightness of sources at ultraviolet, visible, and infrared wavelengths. An apparent magnitude is measured in a specific passband corresponding to some photometric system such as the UBV system. In standard astronomical notation, an apparent magnitude in the V filter band would be denoted either as mV or often simply as V, the scale used to indicate magnitude originates in the Hellenistic practice of dividing stars visible to the naked eye into six magnitudes. The brightest stars in the sky were said to be of first magnitude, whereas the faintest were of sixth magnitude. Each grade of magnitude was considered twice the brightness of the following grade and this rather crude scale for the brightness of stars was popularized by Ptolemy in his Almagest, and is generally believed to have originated with Hipparchus. This implies that a star of magnitude m is 2.512 times as bright as a star of magnitude m +1 and this figure, the fifth root of 100, became known as Pogsons Ratio. The zero point of Pogsons scale was defined by assigning Polaris a magnitude of exactly 2. However, with the advent of infrared astronomy it was revealed that Vegas radiation includes an Infrared excess presumably due to a disk consisting of dust at warm temperatures. At shorter wavelengths, there is negligible emission from dust at these temperatures, however, in order to properly extend the magnitude scale further into the infrared, this peculiarity of Vega should not affect the definition of the magnitude scale. Therefore, the scale was extrapolated to all wavelengths on the basis of the black body radiation curve for an ideal stellar surface at 11000 K uncontaminated by circumstellar radiation. On this basis the spectral irradiance for the zero magnitude point, with the modern magnitude systems, brightness over a very wide range is specified according to the logarithmic definition detailed below, using this zero reference. In practice such apparent magnitudes do not exceed 30, astronomers have developed other photometric zeropoint systems as alternatives to the Vega system. The AB magnitude zeropoint is defined such that an objects AB, the dimmer an object appears, the higher the numerical value given to its apparent magnitude, with a difference of 5 magnitudes corresponding to a brightness factor of exactly 100. Since an increase of 5 magnitudes corresponds to a decrease in brightness by a factor of exactly 100, each magnitude increase implies a decrease in brightness by the factor 5√100 ≈2.512. Inverting the above formula, a magnitude difference m1 − m2 = Δm implies a brightness factor of F2 F1 =100 Δ m 5 =100.4 Δ m ≈2.512 Δ m
26.
Asteroid
–
Asteroids are minor planets, especially those of the inner Solar System. The larger ones have also been called planetoids and these terms have historically been applied to any astronomical object orbiting the Sun that did not show the disc of a planet and was not observed to have the characteristics of an active comet. As minor planets in the outer Solar System were discovered and found to have volatile-based surfaces that resemble those of comets, in this article, the term asteroid refers to the minor planets of the inner Solar System including those co-orbital with Jupiter. There are millions of asteroids, many thought to be the remnants of planetesimals. The large majority of known asteroids orbit in the belt between the orbits of Mars and Jupiter, or are co-orbital with Jupiter. However, other orbital families exist with significant populations, including the near-Earth objects, individual asteroids are classified by their characteristic spectra, with the majority falling into three main groups, C-type, M-type, and S-type. These were named after and are identified with carbon-rich, metallic. The size of asteroids varies greatly, some reaching as much as 1000 km across, asteroids are differentiated from comets and meteoroids. In the case of comets, the difference is one of composition, while asteroids are composed of mineral and rock, comets are composed of dust. In addition, asteroids formed closer to the sun, preventing the development of the aforementioned cometary ice, the difference between asteroids and meteoroids is mainly one of size, meteoroids have a diameter of less than one meter, whereas asteroids have a diameter of greater than one meter. Finally, meteoroids can be composed of either cometary or asteroidal materials, only one asteroid,4 Vesta, which has a relatively reflective surface, is normally visible to the naked eye, and this only in very dark skies when it is favorably positioned. Rarely, small asteroids passing close to Earth may be visible to the eye for a short time. As of March 2016, the Minor Planet Center had data on more than 1.3 million objects in the inner and outer Solar System, the United Nations declared June 30 as International Asteroid Day to educate the public about asteroids. The date of International Asteroid Day commemorates the anniversary of the Tunguska asteroid impact over Siberia, the first asteroid to be discovered, Ceres, was found in 1801 by Giuseppe Piazzi, and was originally considered to be a new planet. In the early half of the nineteenth century, the terms asteroid. Asteroid discovery methods have improved over the past two centuries. This task required that hand-drawn sky charts be prepared for all stars in the band down to an agreed-upon limit of faintness. On subsequent nights, the sky would be charted again and any moving object would, hopefully, the expected motion of the missing planet was about 30 seconds of arc per hour, readily discernible by observers
27.
Carbonate
–
In chemistry, a carbonate is a salt of carbonic acid, characterized by the presence of the carbonate ion, a polyatomic ion with the formula of CO2−3. The name may mean an ester of carbonic acid, an organic compound containing the carbonate group C2. In geology and mineralogy, the term carbonate can refer both to carbonate minerals and carbonate rock, and both are dominated by the ion, CO2−3. Carbonate minerals are extremely varied and ubiquitous in chemically precipitated sedimentary rock, sodium carbonate and potassium carbonate have been used since antiquity for cleaning and preservation, as well as for the manufacture of glass. Carbonates are widely used in industry, e. g. in iron smelting, as a raw material for Portland cement and lime manufacture, in the composition of ceramic glazes, the carbonate ion is the simplest oxocarbon anion. It consists of one carbon atom surrounded by three oxygen atoms, in a planar arrangement, with D3h molecular symmetry. It has a mass of 60.01 g/mol and carries a total formal charge of −2. It is the base of the hydrogen carbonate ion, HCO−3. The Lewis structure of the ion has two single bonds to negative oxygen atoms, and one short double bond to a neutral oxygen. This structure is incompatible with the symmetry of the ion. This process is called calcination, after calx, the Latin name of quicklime or calcium oxide, CaO, exceptions include lithium, sodium, potassium and ammonium carbonates, as well as many uranium carbonates. In aqueous solution, carbonate, bicarbonate, carbon dioxide, in strongly basic conditions, the carbonate ion predominates, while in weakly basic conditions, the bicarbonate ion is prevalent. In more acid conditions, aqueous carbon dioxide, CO2, is the main form, thus sodium carbonate is basic, sodium bicarbonate is weakly basic, while carbon dioxide itself is a weak acid. Carbonated water is formed by dissolving CO2 in water under pressure, in living systems an enzyme, carbonic anhydrase, speeds the interconversion of CO2 and carbonic acid. Although the carbonate salts of most metals are insoluble in water, in solution this equilibrium between carbonate, bicarbonate, carbon dioxide and carbonic acid changes consonant to changing temperature and pressure conditions. In the case of ions with insoluble carbonates, e. g. CaCO3. This is an explanation for the buildup of scale inside pipes caused by hard water, in organic chemistry a carbonate can also refer to a functional group within a larger molecule that contains a carbon atom bound to three oxygen atoms, one of which is double bonded. These compounds are known as organocarbonates or carbonate esters, and have the general formula ROCOOR′
28.
Volsci
–
The Volsci were an Italic tribe, well known in the history of the first century of the Roman Republic. Rivals of Rome for several hundred years, their territories were taken over by, strabo says that the Volsci formed a sovereign state near the site of Rome. It was placed in the Pomentine plain, between the Latins and the Pontine marshes, which took their name from the plain, the Volsci spoke Volscian, a Sabellic Italic language, which was closely related to Oscan and Umbrian, and more distantly to Latin. In the Volscian territory lay the town of Velitrae, home of the ancestors of Caesar Augustus. The Volsci were among the most dangerous enemies of ancient Rome, also, the legendary Roman warrior Gaius Marcius Coriolanus earned his cognomen after taking the Volscian town of Corioli in 493 BC. The supposed rise and fall of this hero is chronicled in Shakespeares Coriolanus, however, if Livys account of the war between Rome and Clusium is accurate, it can be seen that the relationship between Rome and the Volsci was not always hostile. Livy writes that, at the approach of the Clusian army in 508 BC, with the prospect of a siege, cicero, orator and writer, was a native of Arpinum in former Volscian territory. Camilla featured as one of the fighters in Virgils Aeneid, a Volscian Warrior Maiden, virgil says that she can outrun the wind and run over crops so lightly she never even bent them. She could run over the waves of the sea without getting her feet wet and she fights on the side of the Latins and kills many of the Trojan refugees before being killed herself by the Etruscan hero Arruns. Gaius Marius, reforming consul and general, was a native of Arpinum in former Volscian territory, Augustus Caesar spent his early life in Velitrae, where he may have been born. This article incorporates text from a now in the public domain, Chisholm, Hugh
29.
Kitt Peak
–
Kitt Peak is a mountain in the U. S. state of Arizona, and at 6,883 feet is the highest point in the Quinlan Mountains. It is the location of the Kitt Peak National Observatory, the radio telescope at the Observatory is one of ten dishes comprising the Very Long Baseline Array radio telescope. The peak was named in English by County Surveyor George J. Roskruge for his sister, Phillippa, on his 1893 Pima County Survey map, Roskruge spelled the name Kits. At the request of the wife of George F. Kitt, Kitt Peak is the second-highest peak on the Tohono Oodham Indian reservation, and as such is the second-most sacred after Baboquivari Peak. Near the summit is Iitois Garden, the residence of the nations elder brother deity. The name Ioligam means red stick in reference to the abundance of bushes on