Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Minute and second of arc
A minute of arc, arc minute, or minute arc is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn, one minute of arc is 1/21600 of a turn – it is for this reason that the Earth's circumference is exactly 21,600 nautical miles. A minute of arc is π/10800 of a radian. A second of arc, arcsecond, or arc second is 1/60 of an arcminute, 1/3600 of a degree, 1/1296000 of a turn, π/648000 of a radian; these units originated in Babylonian astronomy as sexagesimal subdivisions of the degree. To express smaller angles, standard SI prefixes can be employed; the number of square arcminutes in a complete sphere is 4 π 2 = 466 560 000 π ≈ 148510660 square arcminutes. The names "minute" and "second" have nothing to do with the identically named units of time "minute" or "second"; the identical names reflect the ancient Babylonian number system, based on the number 60. The standard symbol for marking the arcminute is the prime, though a single quote is used where only ASCII characters are permitted.
One arcminute is thus written 1′. It is abbreviated as arcmin or amin or, less the prime with a circumflex over it; the standard symbol for the arcsecond is the double prime, though a double quote is used where only ASCII characters are permitted. One arcsecond is thus written 1″, it is abbreviated as arcsec or asec. In celestial navigation, seconds of arc are used in calculations, the preference being for degrees and decimals of a minute, for example, written as 42° 25.32′ or 42° 25.322′. This notation has been carried over into marine GPS receivers, which display latitude and longitude in the latter format by default; the full moon's average apparent size is about 31 arcminutes. An arcminute is the resolution of the human eye. An arcsecond is the angle subtended by a U. S. dime coin at a distance of 4 kilometres. An arcsecond is the angle subtended by an object of diameter 725.27 km at a distance of one astronomical unit, an object of diameter 45866916 km at one light-year, an object of diameter one astronomical unit at a distance of one parsec, by definition.
A milliarcsecond is about the size of a dime atop the Eiffel Tower. A microarcsecond is about the size of a period at the end of a sentence in the Apollo mission manuals left on the Moon as seen from Earth. A nanoarcsecond is about the size of a penny on Neptune's moon Triton as observed from Earth. Notable examples of size in arcseconds are: Hubble Space Telescope has calculational resolution of 0.05 arcseconds and actual resolution of 0.1 arcseconds, close to the diffraction limit. Crescent Venus measures between 66 seconds of arc. Since antiquity the arcminute and arcsecond have been used in astronomy. In the ecliptic coordinate system and longitude; the principal exception is right ascension in equatorial coordinates, measured in time units of hours and seconds. The arcsecond is often used to describe small astronomical angles such as the angular diameters of planets, the proper motion of stars, the separation of components of binary star systems, parallax, the small change of position of a star in the course of a year or of a solar system body as the Earth rotates.
These small angles may be written in milliarcseconds, or thousandths of an arcsecond. The unit of distance, the parsec, named from the parallax of one arc second, was developed for such parallax measurements, it is the distance at which the mean radius of the Earth's orbit would subtend an angle of one arcsecond. The ESA astrometric space probe Gaia, launched in 2013, can approximate star positions to 7 microarcseconds. Apart from the Sun, the star with the largest angular diameter from Earth is R Doradus, a red giant with a diameter of 0.05 arcsecond. Because of the effects of atmospheric seeing, ground-based telescopes will smear the image of a star to an angular diameter of about 0.5 arcsecond. The dwarf planet Pluto has proven difficult to resolve because its angular diameter is about 0.1 arcsecond. Space telescopes are diffraction limited. For example, the Hubble Space Telescope can reach an angular size of stars down to about 0.1″. Techniques exist for improving seeing on the ground. Adaptive optics, for example, can produce images around 0.05 arcsecond on a 10 m class telescope.
Minutes and seconds of arc are used in cartography and navigation. At sea level one minute of arc
Luminosity
In astronomy, luminosity is the total amount of energy emitted per unit of time by a star, galaxy, or other astronomical object. As a term for energy emitted per unit time, luminosity is synonymous with power. In SI units luminosity is measured in joules per second or watts. Values for luminosity are given in the terms of the luminosity of the Sun, L⊙. Luminosity can be given in terms of the astronomical magnitude system: the absolute bolometric magnitude of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or filter band. In contrast, the term brightness in astronomy is used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the luminosity of the object and the distance between the object and observer, on any absorption of light along the path from object to observer. Apparent magnitude is a logarithmic measure of apparent brightness.
The distance determined by luminosity measures can be somewhat ambiguous, is thus sometimes called the luminosity distance. In astronomy, luminosity is the amount of electromagnetic energy; when not qualified, the term "luminosity" means bolometric luminosity, measured either in the SI units, watts, or in terms of solar luminosities. A bolometer is the instrument used to measure radiant energy over a wide band by absorption and measurement of heating. A star radiates neutrinos, which carry off some energy, contributing to the star's total luminosity; the IAU has defined a nominal solar luminosity of 3.828×1026 W to promote publication of consistent and comparable values in units of the solar luminosity. While bolometers do exist, they cannot be used to measure the apparent brightness of a star because they are insufficiently sensitive across the electromagnetic spectrum and because most wavelengths do not reach the surface of the Earth. In practice bolometric magnitudes are measured by taking measurements at certain wavelengths and constructing a model of the total spectrum, most to match those measurements.
In some cases, the process of estimation is extreme, with luminosities being calculated when less than 1% of the energy output is observed, for example with a hot Wolf-Rayet star observed only in the infra-red. Bolometric luminosities can be calculated using a bolometric correction to a luminosity in a particular passband; the term luminosity is used in relation to particular passbands such as a visual luminosity of K-band luminosity. These are not luminosities in the strict sense of an absolute measure of radiated power, but absolute magnitudes defined for a given filter in a photometric system. Several different photometric systems exist; some such as the UBV or Johnson system are defined against photometric standard stars, while others such as the AB system are defined in terms of a spectral flux density. A star's luminosity can be determined from two stellar characteristics: size and effective temperature; the former is represented in terms of solar radii, R⊙, while the latter is represented in kelvins, but in most cases neither can be measured directly.
To determine a star's radius, two other metrics are needed: the star's angular diameter and its distance from Earth. Both can be measured with great accuracy in certain cases, with cool supergiants having large angular diameters, some cool evolved stars having masers in their atmospheres that can be used to measure the parallax using VLBI. However, for most stars the angular diameter or parallax, or both, are far below our ability to measure with any certainty. Since the effective temperature is a number that represents the temperature of a black body that would reproduce the luminosity, it cannot be measured directly, but it can be estimated from the spectrum. An alternative way to measure stellar luminosity is to measure the star's apparent brightness and distance. A third component needed to derive the luminosity is the degree of interstellar extinction, present, a condition that arises because of gas and dust present in the interstellar medium, the Earth's atmosphere, circumstellar matter.
One of astronomy's central challenges in determining a star's luminosity is to derive accurate measurements for each of these components, without which an accurate luminosity figure remains elusive. Extinction can only be measured directly if the actual and observed luminosities are both known, but it can be estimated from the observed colour of a star, using models of the expected level of reddening from the interstellar medium. In the current system of stellar classification, stars are grouped according to temperature, with the massive young and energetic Class O stars boasting temperatures in excess of 30,000 K while the less massive older Class M stars exhibit temperatures less than 3,500 K; because luminosity is proportional to temperature to the fourth power, the large variation in stellar temperatures produces an vaster variation in stellar luminosity. Because the luminosity depends on a high power of the stellar mass, high mass luminous stars have much shorter lifetimes; the most luminous stars are always young stars, no more than a few million years for the most extreme.
In the Hertzsprung–Russell diagram, the x-axis represents temperature or spectral type while the y-axis represents luminosity or magnitude. The vast majority of stars are found along the main sequence with blue Class O stars found at the top left of the chart while red Class M stars fall to the bottom right. Certain stars like Deneb and Betelgeuse are
ArXiv
ArXiv is a repository of electronic preprints approved for posting after moderation, but not full peer review. It consists of scientific papers in the fields of mathematics, astronomy, electrical engineering, computer science, quantitative biology, mathematical finance and economics, which can be accessed online. In many fields of mathematics and physics all scientific papers are self-archived on the arXiv repository. Begun on August 14, 1991, arXiv.org passed the half-million-article milestone on October 3, 2008, had hit a million by the end of 2014. By October 2016 the submission rate had grown to more than 10,000 per month. ArXiv was made possible by the compact TeX file format, which allowed scientific papers to be transmitted over the Internet and rendered client-side. Around 1990, Joanne Cohn began emailing physics preprints to colleagues as TeX files, but the number of papers being sent soon filled mailboxes to capacity. Paul Ginsparg recognized the need for central storage, in August 1991 he created a central repository mailbox stored at the Los Alamos National Laboratory which could be accessed from any computer.
Additional modes of access were soon added: FTP in 1991, Gopher in 1992, the World Wide Web in 1993. The term e-print was adopted to describe the articles, it began as a physics archive, called the LANL preprint archive, but soon expanded to include astronomy, computer science, quantitative biology and, most statistics. Its original domain name was xxx.lanl.gov. Due to LANL's lack of interest in the expanding technology, in 2001 Ginsparg changed institutions to Cornell University and changed the name of the repository to arXiv.org. It is now hosted principally with eight mirrors around the world, its existence was one of the precipitating factors that led to the current movement in scientific publishing known as open access. Mathematicians and scientists upload their papers to arXiv.org for worldwide access and sometimes for reviews before they are published in peer-reviewed journals. Ginsparg was awarded a MacArthur Fellowship in 2002 for his establishment of arXiv; the annual budget for arXiv is $826,000 for 2013 to 2017, funded jointly by Cornell University Library, the Simons Foundation and annual fee income from member institutions.
This model arose in 2010, when Cornell sought to broaden the financial funding of the project by asking institutions to make annual voluntary contributions based on the amount of download usage by each institution. Each member institution pledges a five-year funding commitment to support arXiv. Based on institutional usage ranking, the annual fees are set in four tiers from $1,000 to $4,400. Cornell's goal is to raise at least $504,000 per year through membership fees generated by 220 institutions. In September 2011, Cornell University Library took overall administrative and financial responsibility for arXiv's operation and development. Ginsparg was quoted in the Chronicle of Higher Education as saying it "was supposed to be a three-hour tour, not a life sentence". However, Ginsparg remains on the arXiv Scientific Advisory Board and on the arXiv Physics Advisory Committee. Although arXiv is not peer reviewed, a collection of moderators for each area review the submissions; the lists of moderators for many sections of arXiv are publicly available, but moderators for most of the physics sections remain unlisted.
Additionally, an "endorsement" system was introduced in 2004 as part of an effort to ensure content is relevant and of interest to current research in the specified disciplines. Under the system, for categories that use it, an author must be endorsed by an established arXiv author before being allowed to submit papers to those categories. Endorsers are not asked to review the paper for errors, but to check whether the paper is appropriate for the intended subject area. New authors from recognized academic institutions receive automatic endorsement, which in practice means that they do not need to deal with the endorsement system at all. However, the endorsement system has attracted criticism for restricting scientific inquiry. A majority of the e-prints are submitted to journals for publication, but some work, including some influential papers, remain purely as e-prints and are never published in a peer-reviewed journal. A well-known example of the latter is an outline of a proof of Thurston's geometrization conjecture, including the Poincaré conjecture as a particular case, uploaded by Grigori Perelman in November 2002.
Perelman appears content to forgo the traditional peer-reviewed journal process, stating: "If anybody is interested in my way of solving the problem, it's all there – let them go and read about it". Despite this non-traditional method of publication, other mathematicians recognized this work by offering the Fields Medal and Clay Mathematics Millennium Prizes to Perelman, both of which he refused. Papers can be submitted in any of several formats, including LaTeX, PDF printed from a word processor other than TeX or LaTeX; the submission is rejected by the arXiv software if generating the final PDF file fails, if any image file is too large, or if the total size of the submission is too large. ArXiv now allows one to store and modify an incomplete submission, only finalize the submission when ready; the time stamp on the article is set. The standard access route is through one of several mirrors. Sev
Margin of error
The margin of error is a statistic expressing the amount of random sampling error in a survey's results. The larger the margin of error, the less confidence one should have that the poll's reported results are close to the "true" figures. Margin of error is positive whenever a population is incompletely sampled and the outcome measure has positive variance; the term "margin of error" is used in non-survey contexts to indicate observational error in reporting measured quantities. Margin of error is defined as the "radius" of a confidence interval for a particular statistic from a survey. One example is the percent of people who prefer product A versus product B; when a single, global margin of error is reported for a survey, it refers to the maximum margin of error for all reported percentages using the full sample from the survey. If the statistic is a percentage, this maximum margin of error can be calculated as the radius of the confidence interval for a reported percentage of 50%; the margin of error has been described as an "absolute" quantity, equal to a confidence interval radius for the statistic.
For example, if the true value is 50 percentage points, the statistic has a confidence interval radius of 5 percentage points we say the margin of error is 5 percentage points. As another example, if the true value is 50 people, the statistic has a confidence interval radius of 5 people we might say the margin of error is 5 people. In some cases, the margin of error is not expressed as an "absolute" quantity. For example, suppose the true value is 50 people, the statistic has a confidence interval radius of 5 people. If we use the "absolute" definition, the margin of error would be 5 people. If we use the "relative" definition we express this absolute margin of error as a percent of the true value. Hence, in this case, the absolute margin of error is 5 people, but the "percent relative" margin of error is 10%. However, the distinction is not explicitly made, yet is apparent from context. Like confidence intervals, the margin of error can be defined for any desired confidence level, but a level of 90%, 95% or 99% is chosen.
This level is the confidence that a margin of error around the reported percentage would include the "true" percentage. Hence, for example, we can be confident, at the 95% level, that out of every 100 simple random samples taken from a given population, 95 of them will contain the true percentage or other statistic under investigation, within the margin of error associated with each. Along with the confidence level, the sample design for a survey, in particular its sample size, determines the magnitude of the margin of error. A larger sample size produces a smaller margin of all else remaining equal. If the exact confidence intervals are used the margin of error takes into account both sampling error and non-sampling error. If an approximate confidence interval is used the margin of error may only take random sampling error into account, it does not represent other potential sources of error or bias such as a non-representative sample-design, poorly phrased questions, people lying or refusing to respond, the exclusion of people who could not be contacted, or miscounts and miscalculations.
An example from the 2004 U. S. presidential campaign will be used to illustrate concepts throughout this article. According to an October 2, 2004 survey by Newsweek, 47% of registered voters would vote for John Kerry/John Edwards if the election were held on that day, 45% would vote for George W. Bush/Dick Cheney, 2% would vote for Ralph Nader/Peter Camejo; the size of the sample was 1,013. Unless otherwise stated, the remainder of this article uses a 95% level of confidence. Polls involve taking a sample from a certain population. In the case of the Newsweek poll, the population of interest is the population of people who will vote; because it is impractical to poll everyone who will vote, pollsters take smaller samples that are intended to be representative, that is, a random sample of the population. It is possible that pollsters sample 1,013 voters who happen to vote for Bush when in fact the population is evenly split between Bush and Kerry, but this is unlikely given that the sample is random.
Sampling theory provides methods for calculating the probability that the poll results differ from reality by more than a certain amount due to chance. This theory and some Bayesian assumptions suggest that the "true" percentage will be close to 47%; the more people that are sampled, the more confident pollsters can be that the "true" percentage is close to the observed percentage. The margin of error is a measure of how close the results are to be. However, the margin of error only accounts for random sampling error, so it is blind to systematic errors that may be introduced by non-response or by interactions between the survey and subjects' memory, motivation and knowledge; this section will discuss the standard error of a percentage, the corresponding confidence interval, connect these two concepts to the margin of error. For simplicity, the calculations here assume the poll was based on a simple random sample from a large population; the standard error of a reported proportion or percentage p measures its accuracy, is the estimated standard deviation of that perc
Stellar parallax
Stellar parallax is the apparent shift of position of any nearby star against the background of distant objects. Created by the different orbital positions of Earth, the small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline distance of about two astronomical units between observations; the parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit. Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years, it was first observed in 1806 by Giuseppe Calandrelli who reported parallax in α-Lyrae in his work "Osservazione e riflessione sulla parallasse annua dall’alfa della Lira". In 1838 Friedrich Bessel made the first successful parallax measurement, for the star 61 Cygni, using a Fraunhofer heliometer at Königsberg Observatory.
Once a star's parallax is known, its distance from Earth can be computed trigonometrically. But the more distant an object is, the smaller its parallax. With 21st-century techniques in astrometry, the limits of accurate measurement make distances farther away than about 100 parsecs too approximate to be useful when obtained by this technique; this limits the applicability of parallax as a measurement of distance to objects that are close on a galactic scale. Other techniques, such as spectral red-shift, are required to measure the distance of more remote objects. Stellar parallax measures are given in the tiny units of arcseconds, or in thousandths of arcseconds; the distance unit parsec is defined as the length of the leg of a right triangle adjacent to the angle of one arcsecond at one vertex, where the other leg is 1 AU long. Because stellar parallaxes and distances all involve such skinny right triangles, a convenient trigonometric approximation can be used to convert parallaxes to distance.
The approximate distance is the reciprocal of the parallax: d ≃ 1 / p. For example, Proxima Centauri, whose parallax is 0.7687, is 1 / 0.7687 parsecs = 1.3009 parsecs distant. Stellar parallax is so small that its apparent absence was used as a scientific argument against heliocentrism during the early modern age, it is clear from Euclid's geometry that the effect would be undetectable if the stars were far enough away, but for various reasons such gigantic distances involved seemed implausible: it was one of Tycho Brahe's principal objections to Copernican heliocentrism that in order for it to be compatible with the lack of observable stellar parallax, there would have to be an enormous and unlikely void between the orbit of Saturn and the eighth sphere. James Bradley first tried to measure stellar parallaxes in 1729; the stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of Earth's axis, catalogued 3222 stars. Stellar parallax is most measured using annual parallax, defined as the difference in position of a star as seen from Earth and Sun, i.e. the angle subtended at a star by the mean radius of Earth's orbit around the Sun.
The parsec is defined as the distance. Annual parallax is measured by observing the position of a star at different times of the year as Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars; the first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Being difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century by use of the filar micrometer. Astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated computer technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond. Stellar parallax remains the standard for calibrating other measurement methods. Accurate calculations of distance based on stellar parallax require a measurement of the distance from Earth to the Sun, now known to exquisite accuracy based on radar reflection off the surfaces of planets.
The angles involved in these calculations are small and thus difficult to measure. The nearest star to the Sun, Proxima Centauri, has a parallax of 0.7687 ± 0.0003 arcsec. This angle is that subtended by an object 2 centimeters in diameter located 5.3 kilometers away. In 1989 the satellite Hipparcos was launched for obtaining parallaxes and proper motions of nearby stars, increasing the number of stellar parallaxes measured to milliarcsecond accuracy a thousandfold. So, Hipparcos is only able to measure parallax angles for stars up to about 1,600 light-years away, a little more than one percent of the diameter of the Milky Way Galaxy; the Hubble telescope WFC3 now has a precision of 20 to 40 microarcseconds, enabling reliable distance measurements u
Star catalogue
A star catalogue or star catalog, is an astronomical catalogue that lists stars. In astronomy, many stars are referred to by catalogue numbers. There are a great many different star catalogues which have been produced for different purposes over the years, this article covers only some of the more quoted ones. Star catalogues were compiled by many different ancient people, including the Babylonians, Chinese and Arabs, they were sometimes accompanied by a star chart for illustration. Most modern catalogues are available in electronic format and can be downloaded from space agencies data centres. Completeness and accuracy is described by the weakest apparent magnitude V and the accuracy of the positions. From their existing records, it is known that the ancient Egyptians recorded the names of only a few identifiable constellations and a list of thirty-six decans that were used as a star clock; the Egyptians called the circumpolar star "the star that cannot perish" and, although they made no known formal star catalogues, they nonetheless created extensive star charts of the night sky which adorn the coffins and ceilings of tomb chambers.
Although the ancient Sumerians were the first to record the names of constellations on clay tablets, the earliest known star catalogues were compiled by the ancient Babylonians of Mesopotamia in the late 2nd millennium BC, during the Kassite Period. They are better known by their Assyrian-era name'Three Stars Each'; these star catalogues, written on clay tablets, listed thirty-six stars: twelve for "Anu" along the celestial equator, twelve for "Ea" south of that, twelve for "Enlil" to the north. The Mul. Apin lists, dated to sometime before the Neo-Babylonian Empire, are direct textual descendants of the "Three Stars Each" lists and their constellation patterns show similarities to those of Greek civilization. In Ancient Greece, the astronomer and mathematician Eudoxus laid down a full set of the classical constellations around 370 BC, his catalogue Phaenomena, rewritten by Aratus of Soli between 275 and 250 BC as a didactic poem, became one of the most consulted astronomical texts in antiquity and beyond.
It contains descriptions of the positions of the stars, the shapes of the constellations and provided information on their relative times of rising and setting. In the 3rd century BC, the Greek astronomers Timocharis of Alexandria and Aristillus created another star catalogue. Hipparchus completed his star catalogue in 129 BC, which he compared to Timocharis' and discovered that the longitude of the stars had changed over time; this led him to determine the first value of the precession of the equinoxes. In the 2nd century, Ptolemy of Roman Egypt published a star catalogue as part of his Almagest, which listed 1,022 stars visible from Alexandria. Ptolemy's catalogue was based entirely on an earlier one by Hipparchus, it remained the standard star catalogue in the Arab worlds for over eight centuries. The Islamic astronomer al-Sufi updated it in 964, the star positions were redetermined by Ulugh Beg in 1437, but it was not superseded until the appearance of the thousand-star catalogue of Tycho Brahe in 1598.
Although the ancient Vedas of India specified how the ecliptic was to be divided into twenty-eight nakshatra, Indian constellation patterns were borrowed from Greek ones sometime after Alexander's conquests in Asia in the 4th century BC. The earliest known inscriptions for Chinese star names were written on oracle bones and date to the Shang Dynasty. Sources dating from the Zhou Dynasty which provide star names include the Zuo Zhuan, the Shi Jing, the "Canon of Yao" in the Book of Documents; the Lüshi Chunqiu written by the Qin statesman Lü Buwei provides most of the names for the twenty-eight mansions. An earlier lacquerware chest found in the Tomb of Marquis Yi of Zeng contains a complete list of the names of the twenty-eight mansions. Star catalogues are traditionally attributed to Shi Shen and Gan De, two rather obscure Chinese astronomers who may have been active in the 4th century BC of the Warring States period; the Shi Shen astronomy is attributed to Shi Shen, the Astronomic star observation to Gan De.
It was not until the Han Dynasty that astronomers started to observe and record names for all the stars that were apparent in the night sky, not just those around the ecliptic. A star catalogue is featured in one of the chapters of the late 2nd-century-BC history work Records of the Grand Historian by Sima Qian and contains the "schools" of Shi Shen and Gan De's work. Sima's catalogue—the Book of Celestial Offices —includes some 90 constellations, the stars therein named after temples, ideas in philosophy, locations such as markets and shops, different people such as farmers and soldiers. For his Spiritual Constitution of the Universe of 120 AD, the astronomer Zhang Heng compiled a star catalogue comprising 124 constellations. Chinese constellation names were adopted by the Koreans and Japanese. A large number of star catalogues were published by Muslim astronomers in the medieval Islamic world; these were Zij treatises, including Arzachel's Tables of Toledo, the Maragheh observatory's Zij-i Ilkhani and Ulugh Beg's Zij-i-Sultani.
Other fam