1.
Integer
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain
Integer
–
Algebraic structure → Group theory
Group theory
2.
Negative number
–
In mathematics, a negative number is a real number that is less than zero. If positive represents movement to the right, negative represents movement to the left, if positive represents above sea level, then negative represents below level. If positive represents a deposit, negative represents a withdrawal and they are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset, if a quantity may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. In the medical context of fighting a tumor, an expansion could be thought of as a negative shrinkage, negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common idea of an opposite is reflected in arithmetic. For example, − −3 =3 because the opposite of an opposite is the original thing, negative numbers are usually written with a minus sign in front. For example, −3 represents a quantity with a magnitude of three, and is pronounced minus three or negative three. To help tell the difference between a subtraction operation and a number, occasionally the negative sign is placed slightly higher than the minus sign. Conversely, a number that is greater than zero is called positive, the positivity of a number may be emphasized by placing a plus sign before it, e. g. +3. In general, the negativity or positivity of a number is referred to as its sign, every real number other than zero is either positive or negative. The positive whole numbers are referred to as natural numbers, while the positive and negative numbers are referred to as integers. In bookkeeping, amounts owed are often represented by red numbers, or a number in parentheses, Liu Hui established rules for adding and subtracting negative numbers. By the 7th century, Indian mathematicians such as Brahmagupta were describing the use of negative numbers, islamic mathematicians further developed the rules of subtracting and multiplying negative numbers and solved problems with negative coefficients. Western mathematicians accepted the idea of numbers by the 17th century. Prior to the concept of numbers, mathematicians such as Diophantus considered negative solutions to problems false. Negative numbers can be thought of as resulting from the subtraction of a number from a smaller. For example, negative three is the result of subtracting three from zero,0 −3 = −3, in general, the subtraction of a larger number from a smaller yields a negative result, with the magnitude of the result being the difference between the two numbers
Negative number
–
This thermometer is indicating a negative
Fahrenheit temperature (−4°F).
3.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number
100 (number)
–
The
U.S. hundred-dollar bill, Series 2009.
4.
Factorization
–
In mathematics, factorization or factoring is the decomposition of an object into a product of other objects, or factors, which when multiplied together give the original. For example, the number 15 factors into primes as 3 ×5, in all cases, a product of simpler objects is obtained. The aim of factoring is usually to reduce something to “basic building blocks”, such as numbers to prime numbers, factoring integers is covered by the fundamental theorem of arithmetic and factoring polynomials by the fundamental theorem of algebra. Viètes formulas relate the coefficients of a polynomial to its roots, the opposite of polynomial factorization is expansion, the multiplying together of polynomial factors to an “expanded” polynomial, written as just a sum of terms. Integer factorization for large integers appears to be a difficult problem, there is no known method to carry it out quickly. Its complexity is the basis of the security of some public key cryptography algorithms. A matrix can also be factorized into a product of matrices of special types, One major example of this uses an orthogonal or unitary matrix, and a triangular matrix. There are different types, QR decomposition, LQ, QL, RQ and this situation is generalized by factorization systems. By the fundamental theorem of arithmetic, every integer greater than 1 has a unique prime factorization. Given an algorithm for integer factorization, one can factor any integer down to its constituent primes by repeated application of this algorithm, for very large numbers, no efficient classical algorithm is known. Modern techniques for factoring polynomials are fast and efficient, but use sophisticated mathematical ideas and these techniques are used in the construction of computer routines for carrying out polynomial factorization in Computer algebra systems. This article is concerned with classical techniques. While the general notion of factoring just means writing an expression as a product of simpler expressions, when factoring polynomials this means that the factors are to be polynomials of smaller degree. Thus, while x 2 − y = is a factorization of the expression, another issue concerns the coefficients of the factors. It is not always possible to do this, and a polynomial that can not be factored in this way is said to be irreducible over this type of coefficient, thus, x2 -2 is irreducible over the integers and x2 +4 is irreducible over the reals. In the first example, the integers 1 and -2 can also be thought of as real numbers, and if they are, then x 2 −2 = shows that this polynomial factors over the reals. Similarly, since the integers 1 and 4 can be thought of as real and hence complex numbers, x2 +4 splits over the complex numbers, i. e. x 2 +4 =. The fundamental theorem of algebra can be stated as, Every polynomial of n with complex number coefficients splits completely into n linear factors
Factorization
–
A visual representation of the factorization of cubes using volumes. For a sum of cubes, simply substitute z=-y.
5.
Divisor
–
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some other integer to produce n. In this case one says also that n is a multiple of m, an integer n is divisible by another integer m if m is a divisor of n, this implies dividing n by m leaves no remainder. Under this definition, the statement m ∣0 holds for every m, as before, but with the additional constraint k ≠0. Under this definition, the statement m ∣0 does not hold for m ≠0, in the remainder of this article, which definition is applied is indicated where this is significant. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4, they are 1,2,4, −1, −2, and −4,1 and −1 divide every integer. Every integer is a divisor of itself, every integer is a divisor of 0. Integers divisible by 2 are called even, and numbers not divisible by 2 are called odd,1, −1, n and −n are known as the trivial divisors of n. A divisor of n that is not a divisor is known as a non-trivial divisor. A non-zero integer with at least one divisor is known as a composite number, while the units −1 and 1. There are divisibility rules which allow one to recognize certain divisors of a number from the numbers digits, the generalization can be said to be the concept of divisibility in any integral domain. 7 is a divisor of 42 because 7 ×6 =42 and it can also be said that 42 is divisible by 7,42 is a multiple of 7,7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2,3, the positive divisors of 42 are 1,2,3,6,7,14,21,42. 5 ∣0, because 5 ×0 =0, if a ∣ b and b ∣ a, then a = b or a = − b. If a ∣ b and a ∣ c, then a ∣ holds, however, if a ∣ b and c ∣ b, then ∣ b does not always hold. If a ∣ b c, and gcd =1, then a ∣ c, if p is a prime number and p ∣ a b then p ∣ a or p ∣ b. A positive divisor of n which is different from n is called a proper divisor or a part of n. A number that does not evenly divide n but leaves a remainder is called an aliquant part of n, an integer n >1 whose only proper divisor is 1 is called a prime number
Divisor
–
The divisors of 10 illustrated with
Cuisenaire rods: 1, 2, 5, and 10
6.
1 (number)
–
1, is a number, a numeral, and the name of the glyph representing that number. It represents a single entity, the unit of counting or measurement, for example, a line segment of unit length is a line segment of length 1. It is also the first of the series of natural numbers. The word one can be used as a noun, an adjective and it comes from the English word an, which comes from the Proto-Germanic root *ainaz. The Proto-Germanic root *ainaz comes from the Proto-Indo-European root *oi-no-, compare the Proto-Germanic root *ainaz to Old Frisian an, Gothic ains, Danish een, Dutch een, German eins and Old Norse einn. Compare the Proto-Indo-European root *oi-no- to Greek oinos, Latin unus, Old Persian aivam, Old Church Slavonic -inu and ino-, Lithuanian vienas, Old Irish oin, One, sometimes referred to as unity, is the first non-zero natural number. It is thus the integer before two and after zero, and the first positive odd number, any number multiplied by one is that number, as one is the identity for multiplication. As a result,1 is its own factorial, its own square, its own cube, One is also the result of the empty product, as any number multiplied by one is itself. It is also the natural number that is neither composite nor prime with respect to division. The Gupta wrote it as a line, and the Nagari sometimes added a small circle on the left. The Nepali also rotated it to the right but kept the circle small and this eventually became the top serif in the modern numeral, but the occasional short horizontal line at the bottom probably originates from similarity with the Roman numeral I. Where the 1 is written with an upstroke, the number 7 has a horizontal stroke through the vertical line. While the shape of the 1 character has an ascender in most modern typefaces, in typefaces with text figures, many older typewriters do not have a separate symbol for 1 and use the lowercase letter l instead. It is possible to find cases when the uppercase J is used,1 cannot be used as the base of a positional numeral system, as the only digit that would be permitted in such a system would be 0. Since the base 1 exponential function always equals 1, its inverse does not exist, there are two ways to write the real number 1 as a recurring decimal, as 1.000. and as 0.999. There is only one way to represent the real number 1 as a Dedekind cut, in a multiplicative group or monoid, the identity element is sometimes denoted 1, but e is also traditional. However,1 is especially common for the identity of a ring. When such a ring has characteristic n not equal to 0,1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few
1 (number)
–
The 24-hour tower clock in
Venice, using J as a symbol for 1.
7.
2 (number)
–
2 is a number, numeral, and glyph. It is the number following 1 and preceding 3. The number two has many properties in mathematics, an integer is called even if it is divisible by 2. For integers written in a system based on an even number, such as decimal and hexadecimal. If it is even, then the number is even. In particular, when written in the system, all multiples of 2 will end in 0,2,4,6. In numeral systems based on an odd number, divisibility by 2 can be tested by having a root that is even. Two is the smallest and first prime number, and the only prime number. Two and three are the two consecutive prime numbers. 2 is the first Sophie Germain prime, the first factorial prime, the first Lucas prime, the first Ramanujan prime, and it is an Eisenstein prime with no imaginary part and real part of the form 3n −1. It is also a Stern prime, a Pell number, the first Fibonacci prime, and it is the third Fibonacci number, and the second and fourth Perrin numbers. Despite being prime, two is also a highly composite number, because it is a natural number which has more divisors than any other number scaled relative to the number itself. The next superior highly composite number is six, vulgar fractions with only 2 or 5 in the denominator do not yield infinite decimal expansions, as is the case with all other primes, because 2 and 5 are factors of ten, the decimal base. Two is the number x such that the sum of the reciprocals of the powers of x equals itself. In symbols ∑ k =0 ∞12 k =1 +12 +14 +18 +116 + ⋯ =2. This comes from the fact that, ∑ k =0 ∞1 n k =1 +1 n −1 for all n ∈ R >1, powers of two are central to the concept of Mersenne primes, and important to computer science. Two is the first Mersenne prime exponent, the square root of 2 was the first known irrational number. The smallest field has two elements, in the set-theoretical construction of the natural numbers,2 is identified with the set
2 (number)
–
The twos of all four suits in
playing cards
8.
7 (number)
–
7 is the natural number following 6 and preceding 8. Seven, the prime number, is not only a Mersenne prime. It is also a Newman–Shanks–Williams prime, a Woodall prime, a prime, a lucky prime, a happy number, a safe prime. Seven is the lowest natural number that cannot be represented as the sum of the squares of three integers, Seven is the aliquot sum of one number, the cubic number 8 and is the base of the 7-aliquot tree. N =7 is the first natural number for which the statement does not hold, Two nilpotent endomorphisms from Cn with the same minimal polynomial. 7 is the only number D for which the equation 2n − D = x2 has more than two solutions for n and x natural, in particular, the equation 2n −7 = x2 is known as the Ramanujan–Nagell equation. 7 is the dimension, besides the familiar 3, in which a vector cross product can be defined. 7 is the lowest dimension of an exotic sphere, although there may exist as yet unknown exotic smooth structures on the 4-dimensional sphere. 999,999 divided by 7 is exactly 142,857, for example, 1/7 =0.142857142857. and 2/7 =0.285714285714. In fact, if one sorts the digits in the number 142857 in ascending order,124578, the remainder of dividing any number by 7 will give the position in the sequence 124578 that the decimal part of the resulting number will start. For example,628 ÷7 =89 5/7, here 5 is the remainder, so in this case,628 ÷7 =89.714285. Another example,5238 ÷7 =748 2/7, hence the remainder is 2, in this case,5238 ÷7 =748.285714. A seven-sided shape is a heptagon, the regular n-gons for n ≤6 can be constructed by compass and straightedge alone, but the regular heptagon cannot. Figurate numbers representing heptagons are called heptagonal numbers, Seven is also a centered hexagonal number. Seven is the first integer reciprocal with infinitely repeating sexagesimal representation, There are seven frieze groups, the groups consisting of symmetries of the plane whose group of translations is isomorphic to the group of integers. There are seven types of catastrophes. When rolling two standard six-sided dice, seven has a 6 in 36 probability of being rolled, the greatest of any number, the Millennium Prize Problems are seven problems in mathematics that were stated by the Clay Mathematics Institute in 2000. Currently, six of the problems remain unsolved, in quaternary,7 is the smallest prime with a composite sum of digits
7 (number)
–
Seven Days of Creation - 1765 book
7 (number)
–
Graph of the probability distribution of the sum of 2 six-sided dice
7 (number)
–
The
Seven Lucky Gods in
Japanese mythology
9.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made
Greek numerals
–
Numeral systems
Greek numerals
–
A
Constantinopolitan map of the British Isles from
Ptolemy 's
Geography (c. 1300), using Greek numerals for its
graticule: 52–63°N of the
equator and 6–33°E from Ptolemy's
Prime Meridian at the
Fortunate Isles.
10.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
Roman numerals
–
Entrance to section LII (52) of the
Colosseum, with numerals still visible
Roman numerals
–
Numeral systems
Roman numerals
–
A typical
clock face with Roman numerals in
Bad Salzdetfurth, Germany
Roman numerals
–
An inscription on
Admiralty Arch, London. The number is 1910, for which MCMX would be more usual
11.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
Binary number
–
Numeral systems
Binary number
–
Arithmetic values represented by parts of the Eye of Horus
Binary number
–
Gottfried Leibniz
Binary number
–
George Boole
12.
Ternary numeral system
–
The ternary numeral system has three as its base. Analogous to a bit, a digit is a trit. One trit is equivalent to bits of information. Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary, for example, decimal 365 corresponds to binary 101101101 and to ternary 111112. However, they are far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary. The value of a number with n bits that are all 1 is 2n −1. Then N = M, N = /, and N = bd −1, for a three-digit ternary number, N =33 −1 =26 =2 ×32 +2 ×31 +2 ×30 =18 +6 +2. Nonary or septemvigesimal can be used for representation of ternary. A base-three system is used in Islam to keep track of counting Tasbih to 99 or to 100 on a hand for counting prayers. In certain analog logic, the state of the circuit is often expressed ternary and this is most commonly seen in Transistor–transistor logic using 7406 open collector logic. The output is said to either be low, high, or open, in this configuration the output of the circuit is actually not connected to any voltage reference at all. Where the signal is usually grounded to a reference, or at a certain voltage level. Thus, the voltage level is sometimes unpredictable. A rare ternary point is used to denote fractional parts of an inning in baseball, since each inning consists of three outs, each out is considered one third of an inning and is denoted as.1. For example, if a player pitched all of the 4th, 5th and 6th innings, plus 2 outs of the 7th inning, his Innings pitched column for that game would be listed as 3.2, meaning 3⅔. In this usage, only the part of the number is written in ternary form. Ternary numbers can be used to convey self-similar structures like the Sierpinski triangle or the Cantor set conveniently, additionally, it turns out that the ternary representation is useful for defining the Cantor set and related point sets, because of the way the Cantor set is constructed. The Cantor set consists of the points from 0 to 1 that have an expression that does not contain any instance of the digit 1
Ternary numeral system
–
Numeral systems
13.
Quaternary numeral system
–
Quaternary is the base-4 numeral system. It uses the digits 0,1,2 and 3 to represent any real number. Four is the largest number within the range and one of two numbers that is both a square and a highly composite number, making quaternary a convenient choice for a base at this scale. Despite being twice as large, its economy is equal to that of binary. However, it no better in the localization of prime numbers. See decimal and binary for a discussion of these properties, as with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix 4,8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit with 2,3 or 4 binary digits, for example, in base 4,302104 =11001001002. Although octal and hexadecimal are widely used in computing and computer programming in the discussion and analysis of binary arithmetic and logic, by analogy with byte and nybble, a quaternary digit is sometimes called a crumb. There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca, the Kharosthi numerals have a partial base 4 counting system from 1 to decimal 10. Quaternary numbers are used in the representation of 2D Hilbert curves, here a real number between 0 and 1 is converted into the quaternary system. Every single digit now indicates in which of the respective 4 sub-quadrants the number will be projected, parallels can be drawn between quaternary numerals and the way genetic code is represented by DNA. The four DNA nucleotides in order, abbreviated A, C, G and T, can be taken to represent the quaternary digits in numerical order 0,1,2. With this encoding, the complementary digit pairs 0↔3, and 1↔2 match the complementation of the pairs, A↔T and C↔G. For example, the nucleotide sequence GATTACA can be represented by the quaternary number 2033010, quaternary line codes have been used for transmission, from the invention of the telegraph to the 2B1Q code used in modern ISDN circuits
Quaternary numeral system
–
Numeral systems
14.
Quinary
–
Quinary is a numeral system with five as the base. A possible origination of a system is that there are five fingers on either hand. The base five is stated from 0–4, in the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, today, the main usage of base 5 is as a biquinary system, which is decimal using five as a sub-base. Another example of a system, is sexagesimal, base 60. Each quinary digit has log25 bits of information, many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño and Saraveca. Gumatj is a true 5–25 language, in which 25 is the group of 5. The Gumatj numerals are shown below, In the video game Riven and subsequent games of the Myst franchise, a decimal system with 2 and 5 as a sub-bases is called biquinary, and is found in Wolof and Khmer. Roman numerals are a biquinary system, the numbers 1,5,10, and 50 are written as I, V, X, and L respectively. Eight is VIII and seventy is LXX, most versions of the abacus use a biquinary system to simulate a decimal system for ease of calculation. Urnfield culture numerals and some tally mark systems are also biquinary, units of currencies are commonly partially or wholly biquinary. A vigesimal system with 4 and 5 as a sub-bases is found in Nahuatl, pentimal system Quibinary Yan Tan Tethera References, Quinary Base Conversion, includes fractional part, from Math Is Fun Media related to Quinary numeral system at Wikimedia Commons
Quinary
–
Numeral systems
15.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
Senary
–
Numeral systems
Senary
–
34 senary = 22 decimal, in senary finger counting
Senary
16.
Octal
–
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping binary digits into groups of three. For example, the representation for decimal 74 is 1001010. Two zeroes can be added at the left,1001010, corresponding the octal digits 112, in the decimal system each decimal place is a power of ten. For example,7410 =7 ×101 +4 ×100 In the octal system each place is a power of eight. The Yuki language in California and the Pamean languages in Mexico have octal systems because the speakers count using the spaces between their fingers rather than the fingers themselves and it has been suggested that the reconstructed Proto-Indo-European word for nine might be related to the PIE word for new. Based on this, some have speculated that proto-Indo-Europeans used a number system. In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number based on 64 instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base would be too difficult, in 1718 Swedenborg wrote a manuscript, En ny rekenkonst som om vexlas wid Thalet 8 i stelle then wanliga wid Thalet 10. The numbers 1-7 are there denoted by the l, s, n, m, t, f, u. Thus 8 = lo,16 = so,24 = no,64 = loo,512 = looo etc, numbers with consecutive consonants are pronounced with vowel sounds between in accordance with a special rule. Writing under the pseudonym Hirossa Ap-Iccim in The Gentlemans Magazine, July 1745, Hugh Jones proposed a system for British coins, weights. In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic and he suggested base 8 for which he coined the term octal. In the mid 19th century, Alfred B. Taylor concluded that Our octonary radix is, therefore, so, for example, the number 65 would be spoken in octonary as under-un. Taylor also republished some of Swedenborgs work on octonary as an appendix to the above-cited publications, in the 2009 film Avatar, the language of the extraterrestrial Navi race employs an octal numeral system, probably due to the fact that they have four fingers on each hand. In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, in the tabletop game series Warhammer 40,000, the Tau race use an octal number system. Octal became widely used in computing systems such as the PDP-8, ICL1900. Octal was an abbreviation of binary for these machines because their word size is divisible by three
Octal
–
Numeral systems
17.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer
Duodecimal
–
Numeral systems
Duodecimal
–
A duodecimal multiplication table
18.
Hexadecimal
–
In mathematics and computing, hexadecimal is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits, it allows a more human-friendly representation of binary-coded values, one hexadecimal digit represents a nibble, which is half of an octet or byte. For example, a byte can have values ranging from 00000000 to 11111111 in binary form. In a non-programming context, a subscript is typically used to give the radix, several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix 0x is used in C and related languages, where this value might be denoted as 0x2AF3, in contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously, a numerical subscript can give the base explicitly,15910 is decimal 159,15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h. example. com/name%20with%20spaces where %20 is the space character, thus ’, represents the right single quotation mark, Unicode code point number 2019 in hex,8217. In the Unicode standard, a value is represented with U+ followed by the hex value. Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits prefixed with #, white, CSS allows 3-hexdigit abbreviations with one hexdigit per component, #FA3 abbreviates #FFAA33. *nix shells, AT&T assembly language and likewise the C programming language, to output an integer as hexadecimal with the printf function family, the format conversion code %X or %x is used. In Intel-derived assembly languages and Modula-2, hexadecimal is denoted with a suffixed H or h, some assembly languages use the notation HABCD. Ada and VHDL enclose hexadecimal numerals in based numeric quotes, 16#5A3#, for bit vector constants VHDL uses the notation x5A3. Verilog represents hexadecimal constants in the form 8hFF, where 8 is the number of bits in the value, the Smalltalk language uses the prefix 16r, 16r5A3 PostScript and the Bourne shell and its derivatives denote hex with prefix 16#, 16#5A3. For PostScript, binary data can be expressed as unprefixed consecutive hexadecimal pairs, in early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the Sad Mac to tell the user what went wrong. Common Lisp uses the prefixes #x and #16r, setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, MSX BASIC, QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H, &H5A3 BBC BASIC and Locomotive BASIC use & for hex. TI-89 and 92 series uses a 0h prefix, 0h5A3 ALGOL68 uses the prefix 16r to denote hexadecimal numbers, binary, quaternary and octal numbers can be specified similarly
Hexadecimal
–
Numeral systems
Hexadecimal
–
Bruce Alan Martin's hexadecimal notation proposal
Hexadecimal
–
Hexadecimal finger-counting scheme.
19.
Vigesimal
–
The vigesimal or base 20 numeral system is based on twenty. In a vigesimal system, twenty individual numerals are used. One modern method of finding the extra needed symbols is to write ten as the letter A20, to write nineteen as J20, and this is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters A–F. Another method skips over the letter I, in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, the number twenty is written as 1020. According to this notation,2020 means forty in decimal = + D020 means two hundred and sixty in decimal = +10020 means four hundred in decimal = + +, in the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example,10 means ten,20 means twenty, in decimal, dividing by three twice only gives one digit periods because 9 is the number below ten. 21, however, the adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods, the prime factorization of twenty is 22 ×5, so it is not a perfect power. However, its part,5, is congruent to 1. Thus, according to Artins conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37. 395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a set of bases found that, of the first 15,456 primes. In many European languages,20 is used as a base, vigesimal systems are common in Africa, for example in Yoruba. Ogún,20, is the basic numeric block, ogójì,40, =20 multiplied by 2. Ogota,60, =20 multiplied by 3, ogorin,80, =20 multiplied by 4. Ogorun,100, =20 multiplied by 5, twenty was a base in the Maya and Aztec number systems. The Maya used the names for the powers of twenty, kal, bak, pic, calab, kinchil. See also Maya numerals and Maya calendar, Mayan languages, Yucatec, the Aztec called them, cempoalli, centzontli, cenxiquipilli, cempoalxiquipilli, centzonxiquipilli and cempoaltzonxiquipilli. Note that the ce prefix at the beginning means one and is replaced with the number to get the names of other multiples of the power
Vigesimal
–
Numeral systems
Vigesimal
–
The
Maya numerals are a base-20 system.
20.
Base 36
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
Base 36
–
Numeral systems
Base 36
–
34 senary = 22 decimal, in senary finger counting
Base 36
21.
Hebrew numerals
–
The system of Hebrew numerals is a quasi-decimal alphabetic numeral system using the letters of the Hebrew alphabet. The system was adapted from that of the Greek numerals in the late 2nd century BC, the current numeral system is also known as the Hebrew alphabetic numerals to contrast with earlier systems of writing numerals used in classical antiquity. The Greek system was adopted in Hellenistic Judaism and had been in use in Greece since about the 5th century BC, in this system, there is no notation for zero, and the numeric values for individual letters are added together. Each unit is assigned a letter, each tens a separate letter. The later hundreds are represented by the sum of two or three letters representing the first four hundreds, to represent numbers from 1,000 to 999,999, the same letters are reused to serve as thousands, tens of thousands, and hundreds of thousands. In Israel today, the system of Arabic numerals is used in almost all cases. The Hebrew numerals are used only in cases, such as when using the Hebrew calendar, or numbering a list. Numbers in Hebrew from zero to one million, Hebrew alphabet are used to a limited extent to represent numbers, widely used on calendars. In other situations Arabic numerals are used, cardinal and ordinal numbers must agree in gender with the noun they are describing. If there is no such noun, the form is used. For ordinal numbers greater than ten the cardinal is used and numbers above the value 20 have no gender, note, For ordinal numbers greater than 10, cardinal numbers are used instead. Note, For numbers greater than 20, gender does not apply, cardinal and ordinal numbers must agree in gender with the noun they are describing. If there is no such noun, the form is used. Ordinal numbers must also agree in number and definite status like other adjectives, the cardinal number precedes the noun, except for the number one which succeeds it. The number two is special - shnayim and shtayim become shney and shtey when followed by the noun they count, for ordinal numbers greater than ten the cardinal is used. The Hebrew numeric system operates on the principle in which the numeric values of the letters are added together to form the total. For example,177 is represented as קעז which corresponds to 100 +70 +7 =177, mathematically, this type of system requires 27 letters. In practice the last letter, tav is used in combination with itself and/or other letters from kof onwards, to numbers from 500
Hebrew numerals
–
Numeral systems
Hebrew numerals
–
The lower clock on the
Jewish Town Hall building in
Prague, with Hebrew numerals in counterclockwise order.
Hebrew numerals
–
Early 20th century pocket watches with Hebrew numerals in clockwise order (
Jewish Museum, Berlin).
22.
Chinese numeral
–
Chinese numerals are words and characters used to denote numbers in Chinese. Today speakers of Chinese use three written numeral systems, the system of Arabic numerals used worldwide, and two indigenous systems, the more familiar indigenous system is based on Chinese characters that correspond to numerals in the spoken language. These are shared with languages of the Chinese cultural sphere such as Japanese, Korean. The other indigenous system is the Suzhou numerals, or huama, a positional system and these were once used by Chinese mathematicians, and later in Chinese markets, such as those in Hong Kong before the 1990s, but have been gradually supplanted by Arabic numerals. The Chinese character numeral system consists of the Chinese characters used by the Chinese written language to write spoken numerals, similar to spelling-out numbers in English, it is not an independent system per se. Since it reflects spoken language, it not use the positional system as in Arabic numerals. There are characters representing the numbers zero through nine, and other characters representing larger numbers such as tens, hundreds, thousands, there are two sets of characters for Chinese numerals, one for everyday writing and one for use in commercial or financial contexts known as dàxiě. A forger could easily change the everyday characters 三十 to 五千 just by adding a few strokes and that would not be possible when writing using the financial characters 參拾 and 伍仟. They are also referred to as bankers numerals, anti-fraud numerals, for the same reason, rod numerals were never used in commercial records. T denotes Traditional Chinese characters, S denotes Simplified Chinese characters, in the PLA, some numbers will have altered names when used for clearer radio communications. They are,0, renamed 洞 lit, hole 1, renamed 幺 lit. small 2, renamed 两 lit. Double 7, renamed 拐 lit. cane, kidnap, turn 9, hook For numbers larger than 10,000, similarly to the long and short scales in the West, there have been four systems in ancient and modern usage. The original one, with names for all powers of ten up to the 14th, is ascribed to the Yellow Emperor in the 6th century book by Zhen Luan. To avoid problems arising from the ambiguity, the PRC government never uses this character in official documents, the ROC government in Taiwan uses 兆 to mean 1012 in official documents. Numerals beyond 載 zài come from Buddhist texts in Sanskrit, but are found in ancient texts. Some of the words are still being used today. The following are characters used to denote small order of magnitude in Chinese historically, with the introduction of SI units, some of them have been incorporated as SI prefixes, while the rest have fallen into disuse. In the Peoples Republic of China, the translations for the SI prefixes in 1981 were different from those used today, the Republic of China defined 百萬 as the translation for mega
Chinese numeral
–
Numeral systems
Chinese numeral
–
Chinese and Arabic numerals may coexist, as on this kilometer marker: 1620 km on
Hwy G209 (G二〇九)
Chinese numeral
–
Counting rod numerals
Chinese numeral
–
Shang oracle bone numerals of 14th century B.C.
23.
Fibonacci coding
–
In mathematics and computing, Fibonacci coding is a universal code which encodes positive integers into binary code words. It is one example of representations of integers based on Fibonacci numbers, each code word ends with 11 and contains no other instances of 11 before the end. The Fibonacci code word for an integer is exactly the integers Zeckendorf representation with the order of its digits reversed. For a number N, if d, d, …, d, d represent the digits of the code word representing N then we have, N = ∑ i =0 k −1 d F, and d = d =1. Where F is the ith Fibonacci number, and so F is the ith distinct Fibonacci number starting with 1,2,3,5,8,13, the last bit d is always an appended bit of 1 and does not carry place value. It can be shown that such a coding is unique, note that the penultimate bit is the most significant bit and the first bit is the least significant bit. Note also that leading zeros cannot be omitted as they can in e. g. decimal numbers, the first few Fibonacci codes are shown below, and also the so-called implied probability distribution, the distribution of values for which Fibonacci coding gives a minimum-size code. To encode an integer N, Find the largest Fibonacci number equal to or less than N, subtract this number from N, if the number subtracted was the ith Fibonacci number F, put a 1 in place i−2 in the code word. Repeat the previous steps, substituting the remainder for N, until a remainder of 0 is reached, place an additional 1 after the rightmost digit in the code word. To decode a code word, remove the final 1, assign the remaining the values 1,2,3,5,8,13. to the bits in the code word, and sum the values of the 1 bits. With most other codes, if a single bit is altered. Since the only stream that has no 0 in it is a stream of 11 tokens and this approach - encoding using sequence of symbols, in which some patterns are forbidden, can be freely generalized. The following table shows that the number 65 is represented in Fibonacci coding as 0100100011, the first two Fibonacci numbers are not used, and an additional 1 is always appended. The Fibonacci encodings for the integers are binary strings that end with 11. This can be generalized to binary strings that end with N consecutive 1s, for instance, for N =3 the positive integers are encoded as 111,0111,00111,10111,000111,100111,010111,110111,0000111,1000111,0100111, …. In this case, the number of encodings as a function of string length is given by the sequence of Tribonacci numbers, golden ratio base Ostrowski numeration Universal code Varicode, a practical application Zeckendorfs theorem Maximal Entropy Random Walk Allouche, Jean-Paul, Shallit, Jeffrey. Fraenkel, Aviezri S. Klein, Shmuel T, robust universal complete codes for transmission and compression. The Mathematics of Harmony, From Euclid to Contemporary Mathematics and Computer Science
Fibonacci coding
–
Numeral systems
24.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
Natural number
–
The
Ishango bone (on exhibition at the
Royal Belgian Institute of Natural Sciences) is believed to have been used 20,000 years ago for natural number arithmetic.
Natural number
–
Natural numbers can be used for counting (one
apple, two apples, three apples, …)
25.
Parity (mathematics)
–
Parity is a mathematical term that describes the property of an integers inclusion in one of two categories, even or odd. An integer is even if it is divisible by two and odd if it is not even. For example,6 is even there is no remainder when dividing it by 2. By contrast,3,5,7,21 leave a remainder of 1 when divided by 2, examples of even numbers include −4,0,8, and 1738. In particular, zero is an even number, some examples of odd numbers are −5,3,9, and 73. Parity does not apply to non-integer numbers and this classification applies only to integers, i. e. non-integers like 1/2,4.201, or infinity are neither even nor odd. The sets of even and odd numbers can be defined as following and that is, if the last digit is 1,3,5,7, or 9, then it is odd, otherwise it is even. The same idea will work using any even base, in particular, a number expressed in the binary numeral system is odd if its last digit is 1 and even if its last digit is 0. In an odd base, the number is according to the sum of its digits – it is even if. The following laws can be verified using the properties of divisibility and they are a special case of rules in modular arithmetic, and are commonly used to check if an equality is likely to be correct by testing the parity of each side. As with ordinary arithmetic, multiplication and addition are commutative and associative in modulo 2 arithmetic, however, subtraction in modulo 2 is identical to addition, so subtraction also possesses these properties, which is not true for normal integer arithmetic. The structure is in fact a field with just two elements, the division of two whole numbers does not necessarily result in a whole number. For example,1 divided by 4 equals 1/4, which is neither even nor odd, since the concepts even, but when the quotient is an integer, it will be even if and only if the dividend has more factors of two than the divisor. The ancient Greeks considered 1, the monad, to be neither odd nor fully even. It is this, that two relatively different things or ideas there stands always a third, in a sort of balance. Thus, there is here between odd and even numbers one number which is neither of the two, similarly, in form, the right angle stands between the acute and obtuse angles, and in language, the semi-vowels or aspirants between the mutes and vowels. A thoughtful teacher and a pupil taught to think for himself can scarcely help noticing this, integer coordinates of points in Euclidean spaces of two or more dimensions also have a parity, usually defined as the parity of the sum of the coordinates. For instance, the cubic lattice and its higher-dimensional generalizations
Parity (mathematics)
–
Rubik's Revenge in solved state
Parity (mathematics)
26.
Composite number
–
A composite number is a positive integer that can be formed by multiplying together two smaller positive integers. Equivalently, it is an integer that has at least one divisor other than 1. Every positive integer is composite, prime, or the unit 1, so the numbers are exactly the numbers that are not prime. For example, the integer 14 is a number because it is the product of the two smaller integers 2 ×7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one, every composite number can be written as the product of two or more primes. For example, the composite number 299 can be written as 13 ×23, and the composite number 360 can be written as 23 ×32 ×5, furthermore and this fact is called the fundamental theorem of arithmetic. There are several known primality tests that can determine whether a number is prime or composite, one way to classify composite numbers is by counting the number of prime factors. A composite number with two prime factors is a semiprime or 2-almost prime, a composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of prime factors and those with an even number of distinct prime factors. For the latter μ =2 x =1, while for the former μ =2 x +1 = −1, however, for prime numbers, the function also returns −1 and μ =1. For a number n with one or more repeated prime factors, if all the prime factors of a number are repeated it is called a powerful number. If none of its factors are repeated, it is called squarefree. For example,72 =23 ×32, all the factors are repeated. 42 =2 ×3 ×7, none of the factors are repeated. Another way to classify composite numbers is by counting the number of divisors, all composite numbers have at least three divisors. In the case of squares of primes, those divisors are, a number n that has more divisors than any x < n is a highly composite number. Composite numbers have also been called rectangular numbers, but that name can refer to the pronic numbers, numbers that are the product of two consecutive integers. Table of prime factors Integer factorization Canonical representation of a positive integer Sieve of Eratosthenes Fraleigh, a First Course In Abstract Algebra, Reading, Addison-Wesley, ISBN 0-201-01984-1 Herstein, I. N
Composite number
–
Overview
27.
Deficient number
–
In number theory, a deficient or deficient number is a number n for which the sum of divisors σ<2n, or, equivalently, the sum of proper divisors s<n. The value 2n − σ is called the numbers deficiency, as an example, consider the number 21. Its proper divisors are 1,3 and 7, and their sum is 11, because 11 is less than 21, the number 21 is deficient. Its deficiency is 2 ×21 −32 =10, since the aliquot sums of prime numbers equal 1, all prime numbers are deficient. An infinite number of even and odd deficient numbers exist. All odd numbers with one or two prime factors are deficient. All proper divisors of deficient or perfect numbers are deficient, there exists at least one deficient number in the interval for all sufficiently large n. Closely related to deficient numbers are perfect numbers with σ = 2n, the natural numbers were first classified as either deficient, perfect or abundant by Nicomachus in his Introductio Arithmetica. Almost perfect number Amicable number Sociable number Sándor, József, Mitrinović, Dragoslav S. Crstici, Borislav, the Prime Glossary, Deficient number Weisstein, Eric W. Deficient Number
Deficient number
–
Overview
28.
Proper divisors
–
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some other integer to produce n. In this case one says also that n is a multiple of m, an integer n is divisible by another integer m if m is a divisor of n, this implies dividing n by m leaves no remainder. Under this definition, the statement m ∣0 holds for every m, as before, but with the additional constraint k ≠0. Under this definition, the statement m ∣0 does not hold for m ≠0, in the remainder of this article, which definition is applied is indicated where this is significant. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4, they are 1,2,4, −1, −2, and −4,1 and −1 divide every integer. Every integer is a divisor of itself, every integer is a divisor of 0. Integers divisible by 2 are called even, and numbers not divisible by 2 are called odd,1, −1, n and −n are known as the trivial divisors of n. A divisor of n that is not a divisor is known as a non-trivial divisor. A non-zero integer with at least one divisor is known as a composite number, while the units −1 and 1. There are divisibility rules which allow one to recognize certain divisors of a number from the numbers digits, the generalization can be said to be the concept of divisibility in any integral domain. 7 is a divisor of 42 because 7 ×6 =42 and it can also be said that 42 is divisible by 7,42 is a multiple of 7,7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2,3, the positive divisors of 42 are 1,2,3,6,7,14,21,42. 5 ∣0, because 5 ×0 =0, if a ∣ b and b ∣ a, then a = b or a = − b. If a ∣ b and a ∣ c, then a ∣ holds, however, if a ∣ b and c ∣ b, then ∣ b does not always hold. If a ∣ b c, and gcd =1, then a ∣ c, if p is a prime number and p ∣ a b then p ∣ a or p ∣ b. A positive divisor of n which is different from n is called a proper divisor or a part of n. A number that does not evenly divide n but leaves a remainder is called an aliquant part of n, an integer n >1 whose only proper divisor is 1 is called a prime number
Proper divisors
–
The divisors of 10 illustrated with
Cuisenaire rods: 1, 2, 5, and 10
29.
4 (number)
–
4 is a number, numeral, and glyph. It is the number following 3 and preceding 5. Four is the only cardinal numeral in the English language that has the number of letters as its number value. Four is the smallest composite number, its divisors being 1 and 2. Four is also a composite number. The next highly composite number is 6, Four is the second square number, the second centered triangular number. 4 is the smallest squared prime and the even number in this form. It has a sum of 3 which is itself prime. The aliquot sequence of 4 has 4 members and is accordingly the first member of the 3-aliquot tree, a number is a multiple of 4 if its last two digits are a multiple of 4. For example,1092 is a multiple of 4 because 92 =4 ×23, only one number has an aliquot sum of 4 and that is squared prime 9. Four is the smallest composite number that is equal to the sum of its prime factors, however, it is the only composite number n for which. It is also a Motzkin number, in bases 6 and 12,4 is a 1-automorphic number. In addition,2 +2 =2 ×2 =22 =4, continuing the pattern in Knuths up-arrow notation,2 ↑↑2 =2 ↑↑↑2 =4, and so on, for any number of up arrows. A four-sided plane figure is a quadrilateral which include kites, rhombi, a circle divided by 4 makes right angles and four quadrants. Because of it, four is the number of plane. Four cardinal directions, four seasons, duodecimal system, and vigesimal system are based on four, a solid figure with four faces as well as four vertices is a tetrahedron, and 4 is the smallest possible number of faces of a polyhedron. The regular tetrahedron is the simplest Platonic solid, a tetrahedron, which can also be called a 3-simplex, has four triangular faces and four vertices. It is the only regular polyhedron
4 (number)
–
playing cards for 4
4 (number)
–
"Four" redirects here. For other uses, see
4 (disambiguation).
30.
8 (number)
–
8 is the natural number following 7 and preceding 9. 8 is, a number, its proper divisors being 1,2. It is twice 4 or four times 2, a power of two, being 23, and is the first number of the form p3, p being an integer greater than 1. The first number which is neither prime nor semiprime, the base of the octal number system, which is mostly used with computers. In octal, one digit represents 3 bits, in modern computers, a byte is a grouping of eight bits, also called an octet. A Fibonacci number, being 3 plus 5, the next Fibonacci number is 13. 8 is the only positive Fibonacci number, aside from 1, the order of the smallest non-abelian group all of whose subgroups are normal. The dimension of the octonions and is the highest possible dimension of a division algebra. The first number to be the sum of two numbers other than itself, the discrete biprime 10, and the square number 49. It has a sum of 7 in the 4 member aliquot sequence being the first member of 7-aliquot tree. All powers of 2, have a sum of one less than themselves. A number is divisible by 8 if its last 3 digits,8 and 9 form a Ruth–Aaron pair under the second definition in which repeated prime factors are counted as often as they occur. There are a total of eight convex deltahedra, a polygon with eight sides is an octagon. Figurate numbers representing octagons are called octagonal numbers, a polyhedron with eight faces is an octahedron. A cuboctahedron has as faces six equal squares and eight regular triangles. Sphenic numbers always have exactly eight divisors, the number 8 is involved with a number of interesting mathematical phenomena related to the notion of Bott periodicity. For example, if O is the limit of the inclusions of real orthogonal groups O ↪ O ↪ … ↪ O ↪ …. Clifford algebras also display a periodicity of 8, for example, the algebra Cl is isomorphic to the algebra of 16 by 16 matrices with entries in Cl
8 (number)
–
Four
playing cards showing the "8" of all four suits
8 (number)
–
The 8-spoked
Dharmacakra represents the
Noble Eightfold Path
31.
21 (number)
–
21 is the natural number following 20 and preceding 22. In a 24-hour clock, the twenty-first hour is in conventional language called nine or nine oclock,21 is, the fifth discrete semiprime and the second in the family. With 22 it forms the second discrete semiprime pair, a Blum integer, since it is a semiprime with both its prime factors being Gaussian primes. A composite number, its divisors being 1,3 and 7. The sum of the first six numbers, making it a triangular number. The sum of the sum of the divisors of the first 5 positive integers, the smallest non-trivial example of a Fibonacci number whose digits are Fibonacci numbers and whose digit sum is also a Fibonacci number. The smallest natural number that is not close to a power of 2, 2n,21 has an aliquot sum of 11 though it is the second composite number found in the 11-aliquot tree with the abundant square prime 18 being the first such member. Twenty-one is the first number to be the sum of three numbers 18,51,91. 21 appears in the Padovan sequence, preceded by the terms 9,12,16, in several countries 21 is the age of majority. In most US states,21 is the drinking age, however, in Puerto Rico and U. S. Virgin Island, the drinking age is 18. In Hawaii and New York,21 is the age that one person may purchase cigarettes. In some countries it is the voting age, in the United States,21 is the age at which one can purchase multiple tickets to an R-rated film without providing Identifications. It is also the age to one under the age of 17 as their parent or adult guardian for an R-rated movie. In some states,21 is the age, persons may gamble or enter casinos. In 2011, Adele named her second studio album 21, because of her age at the time, the Milwaukee Braves, for Hall of Famer Warren Spahn, the number continues to be honored by the team in its current home of Atlanta. The Pittsburgh Pirates, for Hall of Famer Roberto Clemente, following his death in a crash while attempting to deliver humanitarian aid to victims of an earthquake in Nicaragua. In the NBA, The Atlanta Hawks, for Hall of Famer Dominique Wilkins, the Boston Celtics, for Hall of Famer Bill Sharman. The Detroit Pistons, for Hall of Famer Dave Bing, the Sacramento Kings, for Vlade Divac
21 (number)
–
Number 21 on the road bicycle of
Ellen van Dijk at the
Ronde van Drenthe.
21 (number)
–
Building called "21" in
Zlín,
Czech Republic.
21 (number)
–
Detail of the building entrance
32.
31 (number)
–
31 is the natural number following 30 and preceding 32. As a Mersenne prime,31 is related to the perfect number 496,31 is also the 4th lucky prime and the 11th supersingular prime. 31 is a triangular number, the lowest prime centered pentagonal number. For the Steiner tree problem,31 is the number of possible Steiner topologies for Steiner trees with 4 terminals, at 31, the Mertens function sets a new low of −4, a value which is not subceded until 110. No integer added up to its base 10 digits results in 31,31 is a repdigit in base 5, and base 2. The numbers 31,331,3331,33331,333331,3333331, for a time it was thought that every number of the form 3w1 would be prime. Here,31 divides every fifteenth number in 3w1, the atomic number of gallium Messier object M31, a magnitude 4.5 galaxy in the constellation Andromeda. It is also known as the Andromeda Galaxy, and is visible to the naked eye in a modestly dark sky. The New General Catalogue object NGC31, a galaxy in the constellation Phoenix The Saros number of the solar eclipse series which began on -1805 January 31. The duration of Saros series 31 was 1316.2 years, the Saros number of the lunar eclipse series which began on -1774 May 30 and ended on -476 July 17. The duration of Saros series 31 was 1298.1 years, the jersey number 31 has been retired by several North American sports teams in honor of past playing greats, In Major League Baseball, The San Diego Padres, for Dave Winfield. The Chicago Cubs, for Ferguson Jenkins and Greg Maddux, the Atlanta Braves, also for Maddux. The New York Mets, for Mike Piazza, in the NBA, The Boston Celtics, for Cedric Maxwell. The Indiana Pacers, for Reggie Miller, in the NHL, The Edmonton Oilers, for Grant Fuhr. The New York Islanders, for Billy Smith, in the NFL, The Atlanta Falcons, for William Andrews. The New Orleans Saints, for Jim Taylor, NASCAR driver Jeff Burton drives #31, a car which was subject to a controversy when one of the sponsors changed its name after merging with another company. In ice hockey goaltenders often wear the number 31, in football the number 31 has been retired by Queens Park Rangers F. C.31 from the Prime Pages
31 (number)
–
31 is a
centered pentagonal number
33.
45 (number)
–
45 is the natural number following 44 and followed by 46. Forty-five is a number, and in particular the sum of all the decimal digits. It is the smallest triangle number which can be written as the sum of two squares and it is also a hexagonal and 16-gonal number. 45 is the positive integer with a prime factorization of the form p2q. 33 is the sum of 45 and the aliquot sequence of 45 is. Since the greatest prime factor of 452 +1 =2026 is 1013, in base 10, it is a Kaprekar number and a Harshad number. The duration of Saros series 45 was 1280.1 years, the Saros number of the lunar eclipse series which began on −1369 August 19 and ended on 182 March. The duration of Saros series 45 was 1550.6 years, a card game, Forty-five.45, a 2006 motion picture. In the United States,45 is often a reference to one of two specific.45 caliber cartridges— the.45 Colt or the.45 ACP, in years of marriage, the sapphire wedding anniversary. Forty Five a Big Finish 2008 audio play made for the forty fifth anniversary of the British science fiction television show Doctor Who, issue 45 of The North Briton was thought to be seditious but its publisher, John Wilkes, was celebrated as a champion of liberty. The number 45 was used as a symbol of support for him, banquets were held with a theme of 45 while many items were produced showing the number or featuring it in some way. For example, a wig was produced with 45 curls
45 (number)
–
45
rpm gramophone record
34.
66 (number)
–
66 is the natural number following 65 and preceding 67. Usages of this include,66 is, a sphenic number. A semiperfect number, being a multiple of a perfect number, an Erdős–Woods number, since it is possible to find sequences of 66 consecutive integers such that each inner member shares a factor with either the first or the last member. Palindromic and a repdigit in bases 10,21 and 32 a Harshad number in bases 2,4,5,6,7,8,11,12,13 and 16. Messier object Spiral Galaxy M66, a magnitude 10.0 galaxy in the constellation Leo, the New General Catalogue object NGC66, a peculiar barred spiral galaxy in the constellation Cetus. The Saros number of the solar eclipse series began on 12 March -756. The duration of Saros series 66 was 1298.1 years, the Saros number of the lunar eclipse series which began on 12 August -671 and ended on 27 January 826. The duration of Saros series 66 was 1496.5 years, the atomic number of dysprosium, a lanthanide. 66 megahertz is a common divisor for the front side bus speed, overall central processing unit speed, and base bus speed. On a Core 2 CPU, and a Core 2 motherboard, the FSB is 1066 MHz, the speed is usually 666.67 MHz. The designation of the historic U. S. Route 66, the designation of US Interstate 66, a freeway that runs from Virginia to Washington, D. C. The designation of 36 US state and 2 territorial highways, phillips 66, a brand of gasoline and service station in the United States. The total number of chapters in the Bible book of Isaiah, the number of verses in Chapter 3 of the book of Lamentations in the Old Testament. The total number of books in the Protestant edition of the Bible combined, in Abjad numerals, The Name Of Allah numeric value is 66. The Green Bay Packers of the National Football League retired jersey number 66 for linebacker Ray Nitschke, the last Packer to wear number 66 before it was retired in 1983 to honor Nitschke was offensive tackle Larry Pfohl, who is better known to professional wrestling fans as Lex Luger. Jersey number 66 was retired by the Pittsburgh Penguins of the National Hockey League in honor of Mario Lemieux, sixty Six is a 2006 British movie about a bar mitzvah in London on the day of the 1966 World Cup final. In the Star Wars movie series, Order 66 is an order to the clone troopers to kill the Jedi commanding them. Route 66 was a popular US television series on CBS from 1960 to 1964, in the video game Fullmetal Alchemist, elusive villain Barry the Chopper is imprisoned in cell number 66, which later becomes his alias when battling the brothers at Laboratory Five
66 (number)
–
Route 66 sign
35.
81 (number)
–
81 is the natural number following 80 and preceding 82. 81 is, the square of 9 and the power of 3. A perfect totient number like all powers of three, the ninth member of the Mian-Chowla sequence. A palindromic number in bases 8 and 26, a Harshad number in bases 2,3,4,7,9,10 and 13. One of three numbers which, when its digits are added together, produces a sum which. The inverse of 81 is 0.012345679 recurring, missing only the digit 8 from the set of digits. This is an example of the rule that, in base b,12 =0. 012 ⋯ ¯, omitting only the digit b−2, messier object M81, a magnitude 8. The duration of Saros series 81 was 1280.1 years, further, the number of lunar eclipse series which began on -0020 February 19 and ended on 1296 April 19. The duration of Saros series 81 was 1316.2 years, eighty-one is also, The number of squares on a shogi playing board The year AD81,81 BC, or 1981. The atomic number of thallium The symbolic number of the Hells Angels Motorcycle Club, H and A are the 8th and 1st letter of the alphabet, respectively. The code for international direct dial phone calls to Japan One of two ISBN Group Identifiers for books published in India Number of stanzas or chapters in the Tao te Ching, Number of prayers said in the Rosary in each night. The 81 is a 1965 song by Candy and the Kisses, artemis 81 is a 1981 BBC TV science fiction drama. The Eighty-One Brothers is a Japanese fable The most points NBA mega-star Kobe Bryant score in a game, the Arabic characters for the numerals 8 and 1 are visible in the left palm of the human hand. In China,81 always reminds people Peoples Liberation Army as it was founded on August 1,81 is used to refer to the motor-club Hells Angels, since H and A are, respectively, the 8th and 1st letters of the alphabet
81 (number)
–
Department 81 of France (
Tarn)
36.
Thue-Morse sequence
–
The first few steps of this procedure yield the strings 0 then 01,0110,01101001,0110100110010110, and so on, which are prefixes of the Thue–Morse sequence. There are several equivalent ways of defining the Thue–Morse sequence, to compute the nth element tn, write the number n in binary. If the number of ones in this expansion is odd then tn =1. For this reason John H. Conway et al. call numbers n satisfying tn =1 odious numbers and numbers for which tn =0 evil numbers. In other words, tn =0 if n is an evil number, if this bit is at an even index, tn differs from tn −1, and otherwise it is the same as tn −1. The resulting algorithm takes constant time to each sequence element. The Thue–Morse sequence is the sequence tn satisfying the relation for all non-negative integers n. So, the first element is 0, then once the first 2n elements have been specified, forming a string s, then the next 2n elements must form the bitwise negation of s. Now we have defined the first 2n+1 elements, and we recurse, spelling out the first few steps in detail, We start with 0. The bitwise negation of 0 is 1, combining these, the first 2 elements are 01. The bitwise negation of 01 is 10, combining these, the first 4 elements are 0110. The bitwise negation of 0110 is 1001, combining these, the first 8 elements are 01101001. The sequence can also be defined by, ∏ i =0 ∞ = ∑ j =0 ∞ t j x j and that is, there are many instances of XX, where X is some string. For instance, with k =0, we have A = T0 =0, however, there are no cubes, instances of XXX. There are also no overlapping squares, instances of 0X0X0 or 1X1X1, notice that T2n is palindrome for any n >1. Further, let qn be a word obtain from T2n by counting ones between consecutive zeros, for instance, q1 =2 and q2 =2102012 and so on. The words Tn do not contain overlapping squares in consequence, the words qn are palindrome squarefree words, the easiest way to make a recurrent sequence is to form a periodic sequence, one where the sequence repeats entirely after a given number m of steps. Then nX can be set to any multiple of m that is larger than twice the length of X, but the Morse sequence is uniformly recurrent without being periodic, not even eventually periodic
Thue-Morse sequence
–
5
logical matrices that give the beginning of the T.-M. sequence, when read line by line
Either in set A (vertical index)
or in set B (horizontal index) is an odd number of elements.
Thue-Morse sequence
–
This graphic demonstrates the repeating and complementary makeup of the Thue–Morse sequence.
37.
Pronic number
–
A pronic number is a number which is the product of two consecutive integers, that is, a number of the form n. The study of these dates back to Aristotle. They are also called oblong numbers, heteromecic numbers, or rectangular numbers, however, the rectangular number name has also been applied to the composite numbers. The first few numbers are,0,2,6,12,20,30,42,56,72,90,110,132,156,182,210,240,272,306,342,380,420,462 …. The nth pronic number is also the difference between the odd square 2 and the st centered hexagonal number. The sum of the reciprocals of the numbers is a telescoping series that sums to 1,1 =12 +16 +112 ⋯ = ∑ i =1 ∞1 i. The partial sum of the first n terms in this series is ∑ i =1 n 1 i = n n +1, the nth pronic number is the sum of the first n even integers. It follows that all numbers are even, and that 2 is the only prime pronic number. It is also the only number in the Fibonacci sequence. The number of entries in a square matrix is always a pronic number. The fact that consecutive integers are coprime and that a number is the product of two consecutive integers leads to a number of properties. Each distinct prime factor of a number is present in only one of the factors n or n+1. Thus a pronic number is squarefree if and only if n and n +1 are also squarefree, the number of distinct prime factors of a pronic number is the sum of the number of distinct prime factors of n and n +1. If 25 is appended to the representation of any pronic number. This is because 2 =100 n 2 +100 n +25 =100 n +25
Pronic number
–
Overview
38.
Sphenic number
–
In number theory, a sphenic number is a positive integer that is the product of three distinct prime numbers. A sphenic number is a product pqr where p, q and this definition is more stringent than simply requiring the integer to have exactly three prime factors. For instance,60 =22 ×3 ×5 has exactly 3 prime factors, the smallest sphenic number is 30 =2 ×3 ×5, the product of the smallest three primes. The first few numbers are 30,42,66,70,78,102,105,110,114,130,138,154,165. As of January 2016 the largest known number is × ×. It is the product of the three largest known primes, all sphenic numbers have exactly eight divisors. If we express the number as n = p ⋅ q ⋅ r, where p, q. For example,24 is not a number, but it has exactly eight divisors. All sphenic numbers are by definition squarefree, because the factors must be distinct. The Möbius function of any number is −1. The cyclotomic polynomials Φ n, taken over all sphenic numbers n, the first case of two consecutive sphenic integers is 230 = 2×5×23 and 231 = 3×7×11. The first case of three is 1309 = 7×11×17,1310 = 2×5×131, and 1311 = 3×19×23, there is no case of more than three, because every fourth consecutive positive integer is divisible by 4 = 2×2 and therefore not squarefree. The numbers 2013,2014, and 2015 are all sphenic, the next three consecutive sphenic years will be 2665,2666 and 2667. Semiprimes, products of two prime numbers
Sphenic number
–
Overview
39.
Prime factor
–
In number theory, the prime factors of a positive integer are the prime numbers that divide that integer exactly. The prime factorization of an integer is a list of the integers prime factors, together with their multiplicities. The fundamental theorem of arithmetic says that every integer has a single unique prime factorization. To shorten prime factorizations, factors are expressed in powers. For example,360 =2 ×2 ×2 ×3 ×3 ×5 =23 ×32 ×5, in which the factors 2,3 and 5 have multiplicities of 3,2 and 1, respectively. For a prime factor p of n, the multiplicity of p is the largest exponent a for which pa divides n exactly. For a positive n, the number of prime factors of n. Perfect square numbers can be recognized by the fact all of their prime factors have even multiplicities. For example, the number 144 has the prime factors 144 =2 ×2 ×2 ×2 ×3 ×3 =24 ×32. These can be rearranged to make the more visible,144 =2 ×2 ×2 ×2 ×3 ×3 = × =2 =2. Because every prime factor appears a number of times, the original number can be expressed as the square of some smaller number. In the same way, perfect cube numbers will have prime factors whose multiplicities are multiples of three, and so on, positive integers with no prime factors in common are said to be coprime. Two integers a and b can also be defined as if their greatest common divisor gcd =1. Euclids algorithm can be used to determine whether two integers are coprime without knowing their prime factors, the runs in a time that is polynomial in the number of digits involved. The integer 1 is coprime to every integer, including itself. This is because it has no prime factors, it is the empty product and this implies that gcd =1 for any b ≥1. The function, ω, represents the number of prime factors of n, while the function, Ω. If n = ∏ i =1 ω p i α i, for example,24 =23 ×31, so ω =2 and Ω =3 +1 =4
Prime factor
–
This image demonstrates how to find the prime factorization of 864. A shorthand way of writing the resulting prime factors is 2 5 × 3 3
40.
Square-free number
–
In mathematics, a square-free, or quadratfrei integer, is an integer which is divisible by no other perfect square than 1. For example,10 is square-free but 18 is not, as 18 is divisible by 9 =32. The smallest positive square-free numbers are 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,37,38,39. The radical of an integer is its largest square-free factor, an integer is square-free if and only if it is equal to its radical. Any arbitrary positive integer n can be represented in a way as the product of a powerful number and a square-free integer. The square-free factor is the largest square-free divisor k of n that is coprime with n/k, a positive integer n is square-free if and only if in the prime factorization of n, no prime factor occurs with an exponent larger than one. Another way of stating the same is that for every prime factor p of n, also n is square-free if and only if in every factorization n = ab, the factors a and b are coprime. An immediate result of this definition is that all numbers are square-free. A positive integer n is square-free if and only if all abelian groups of n are isomorphic. This follows from the classification of finitely generated abelian groups, a integer n is square-free if and only if the factor ring Z / nZ is a product of fields. This follows from the Chinese remainder theorem and the fact that a ring of the form Z / kZ is a field if, for every positive integer n, the set of all positive divisors of n becomes a partially ordered set if we use divisibility as the order relation. This partially ordered set is always a distributive lattice and it is a Boolean algebra if and only if n is square-free. A positive integer n is square-free if and only if μ ≠0, a positive integer n is squarefree if and only if ∑ d 2 ∣ n μ =1. This results from the properties of Möbius function, and the fact that this sum is equal to ∑ d ∣ m μ, where m is the largest divisor of n such that m2 divides n. The Dirichlet generating function for the numbers is ζ ζ = ∑ n =1 ∞ | μ | n s where ζ is the Riemann zeta function. This is easily seen from the Euler product ζ ζ = ∏ p = ∏ p, let Q denote the number of square-free integers between 1 and x. For large n, 3/4 of the positive integers less than n are not divisible by 4, 8/9 of these numbers are not divisible by 9, and so on. Under the Riemann hypothesis, the term can be further reduced to yield Q = x ζ + O =6 x π2 + O
Square-free number
–
Overview
41.
182 Elsa
–
182 Elsa is a Main belt asteroid that was discovered by Johann Palisa on February 7,1878. The origin of the name is uncertain, it may be named after the character in the legend of Lohengrin perpetuated by Richard Wagners opera of the same name, based upon its spectrum, it is classified as a stony S-type asteroid. It rotates very slowly, in 1980 its rotation period was estimated to be about 3.3 Earth days, a possible companion has been proposed to explain the slow rotation. Elsa has very amplified lightcurve indicating an elongated or irregular body, during 2002,109 Felicitas was observed by radar from the Arecibo Observatory. The return signal matched an effective diameter of 44 ±10 km and this is consistent with the asteroid dimensions computed through other means. 182 Elsa at the JPL Small-Body Database Discovery · Orbit diagram · Orbital elements · Physical parameters
182 Elsa
–
A three-dimensional model of 182 Elsa based on its light curve.
42.
S-type asteroid
–
S-type asteroids, or silicaceous asteroids, are of a stony composition, hence the name. Approximately 17% of asteroids are of type, making it the second most common after the C-type. S-types are moderately bright and consist mainly of iron- and magnesium-silicates and they are dominant in the inner asteroid belt within 2.2 AU, common in the central belt within about 3 AU, but become rare farther out. The largest is 15 Eunomia, with the next largest members by diameter being 3 Juno,29 Amphitrite,532 Herculina and 7 Iris. Their spectrum has a steep slope at wavelengths shorter than 0.7 µm. The 1 µm absorption is indicative of the presence of silicates, often there is also a broad but shallow absorption feature centered near 0.63 µm. The composition of asteroids is similar to a variety of stony meteorites which share similar spectral characteristics. This whole S assemblage of asteroids is spectrally quite distinct from the carbonaceous C-group, Asteroid spectral types L-type asteroid K-type asteroid X-type asteroid Bus, S. J. Binzel, R. P. Phase II of the Small Main-belt Asteroid Spectroscopy Survey, A feature-based taxonomy
S-type asteroid
–
433 Eros, an example of an S-type asteroid
43.
Asteroid belt
–
The asteroid belt is the circumstellar disc in the Solar System located roughly between the orbits of the planets Mars and Jupiter. It is occupied by numerous irregularly shaped bodies called asteroids or minor planets, the asteroid belt is also termed the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System such as near-Earth asteroids and trojan asteroids. About half the mass of the belt is contained in the four largest asteroids, Ceres, Vesta, Pallas, the total mass of the asteroid belt is approximately 4% that of the Moon, or 22% that of Pluto, and roughly twice that of Plutos moon Charon. Ceres, the belts only dwarf planet, is about 950 km in diameter, whereas Vesta, Pallas. The remaining bodies range down to the size of a dust particle, the asteroid material is so thinly distributed that numerous unmanned spacecraft have traversed it without incident. Nonetheless, collisions between large asteroids do occur, and these can form a family whose members have similar orbital characteristics. Individual asteroids within the belt are categorized by their spectra. The asteroid belt formed from the solar nebula as a group of planetesimals. Planetesimals are the precursors of the protoplanets. Between Mars and Jupiter, however, gravitational perturbations from Jupiter imbued the protoplanets with too much energy for them to accrete into a planet. Collisions became too violent, and instead of fusing together, the planetesimals, as a result,99. 9% of the asteroid belts original mass was lost in the first 100 million years of the Solar Systems history. Some fragments eventually found their way into the inner Solar System, Asteroid orbits continue to be appreciably perturbed whenever their period of revolution about the Sun forms an orbital resonance with Jupiter. At these orbital distances, a Kirkwood gap occurs as they are swept into other orbits. Classes of small Solar System bodies in other regions are the objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids. On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on Ceres, the detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding was unexpected because comets, not asteroids, are considered to sprout jets. According to one of the scientists, The lines are becoming more and more blurred between comets and asteroids. This pattern, now known as the Titius–Bode law, predicted the semi-major axes of the six planets of the provided one allowed for a gap between the orbits of Mars and Jupiter
Asteroid belt
–
By far the largest object within the belt is
Ceres. The total mass of the asteroid belt is significantly less than
Pluto 's, and approximately twice that of Pluto's moon
Charon.
Asteroid belt
–
Sun Jupiter trojans Orbits of
planets
Asteroid belt
–
Giuseppe Piazzi, discoverer of
Ceres, the largest object in the asteroid belt. For several decades after its discovery Ceres was known as a planet, after which it was reclassified as asteroid number 1. In 2006 it was recognized to be a dwarf planet.
Asteroid belt
–
951 Gaspra, the first asteroid imaged by a spacecraft, as viewed during
Galileo ' s 1991 flyby; colors are exaggerated
44.
Asteroid
–
Asteroids are minor planets, especially those of the inner Solar System. The larger ones have also been called planetoids and these terms have historically been applied to any astronomical object orbiting the Sun that did not show the disc of a planet and was not observed to have the characteristics of an active comet. As minor planets in the outer Solar System were discovered and found to have volatile-based surfaces that resemble those of comets, in this article, the term asteroid refers to the minor planets of the inner Solar System including those co-orbital with Jupiter. There are millions of asteroids, many thought to be the remnants of planetesimals. The large majority of known asteroids orbit in the belt between the orbits of Mars and Jupiter, or are co-orbital with Jupiter. However, other orbital families exist with significant populations, including the near-Earth objects, individual asteroids are classified by their characteristic spectra, with the majority falling into three main groups, C-type, M-type, and S-type. These were named after and are identified with carbon-rich, metallic. The size of asteroids varies greatly, some reaching as much as 1000 km across, asteroids are differentiated from comets and meteoroids. In the case of comets, the difference is one of composition, while asteroids are composed of mineral and rock, comets are composed of dust. In addition, asteroids formed closer to the sun, preventing the development of the aforementioned cometary ice, the difference between asteroids and meteoroids is mainly one of size, meteoroids have a diameter of less than one meter, whereas asteroids have a diameter of greater than one meter. Finally, meteoroids can be composed of either cometary or asteroidal materials, only one asteroid,4 Vesta, which has a relatively reflective surface, is normally visible to the naked eye, and this only in very dark skies when it is favorably positioned. Rarely, small asteroids passing close to Earth may be visible to the eye for a short time. As of March 2016, the Minor Planet Center had data on more than 1.3 million objects in the inner and outer Solar System, the United Nations declared June 30 as International Asteroid Day to educate the public about asteroids. The date of International Asteroid Day commemorates the anniversary of the Tunguska asteroid impact over Siberia, the first asteroid to be discovered, Ceres, was found in 1801 by Giuseppe Piazzi, and was originally considered to be a new planet. In the early half of the nineteenth century, the terms asteroid. Asteroid discovery methods have improved over the past two centuries. This task required that hand-drawn sky charts be prepared for all stars in the band down to an agreed-upon limit of faintness. On subsequent nights, the sky would be charted again and any moving object would, hopefully, the expected motion of the missing planet was about 30 seconds of arc per hour, readily discernible by observers
Asteroid
–
253 Mathilde, a
C-type asteroid measuring about 50 kilometres (30 mi) across, covered in craters half that size. Photograph taken in 1997 by the
NEAR Shoemaker probe.
Asteroid
–
2013 EC, shown here in radar images, has a provisional designation
Asteroid
–
⚵
Asteroid
–
243 Ida and its moon Dactyl. Dactyl is the first satellite of an asteroid to be discovered.
45.
Star
–
It is primarily present in steroid-producing cells, including theca cells and luteal cells in the ovary, Leydig cells in the testis and cell types in the adrenal cortex. The aqueous phase between two membranes cannot be crossed by the lipophilic cholesterol, unless certain proteins assist in this process. It is now clear that this process is mediated by the action of StAR. The mechanism by which StAR causes cholesterol movement remains unclear as it appears to act from the outside of the mitochondria, some involve StAR transferring cholesterol itself like a shuttle. Another notion is that it causes cholesterol to be kicked out of the membrane to the inner. StAR may also promote the formation of contact sites between the outer and inner mitochondrial membranes to allow cholesterol influx, another suggests that StAR acts in conjunction with PBR, causing the movement of Cl− out of the mitochondria to facilitate contact site formation. However, evidence for an interaction between StAR and PBR remains elusive, in humans, the gene for StAR is located on chromosome 8p11.2 and the protein has 285 amino acids. The signal sequence of StAR that targets it to the mitochondria is clipped off in two steps with import into the mitochondria, phosphorylation at the serine at position 195 increases its activity. The domain of StAR important for promoting cholesterol transfer is the StAR-related transfer domain, StAR is the prototypic member of the START domain family of proteins and is thus also known as STARD1 for START domain-containing protein 1. It is hypothesized that the START domain forms a pocket in StAR that binds single cholesterol molecules for delivery to P450scc, the closest homolog to StAR is MLN64. Together they comprise the StarD1/D3 subfamily of START domain-containing proteins, StAR is a mitochondrial protein that is rapidly synthesized in response to stimulation of the cell to produce steroid. Hormones that stimulate its production depend on the type and include luteinizing hormone, ACTH. At the cellular level, StAR is synthesized typically in response to activation of the second messenger system. StAR has thus far found in all tissues that can produce steroids, including the adrenal cortex, the gonads, the brain. One known exception is the human placenta, mutations in the gene for StAR cause lipoid congenital adrenal hyperplasia, in which patients produce little steroid and can die shortly after birth. Mutations that less severely affect the function of StAR result in nonclassic lipoid CAH or familial glucocorticoid deficiency type 3, all known mutations disrupt StAR function by altering its START domain. In the case of StAR mutation, the phenotype does not present until birth since human placental steroidogenesis is independent of StAR. At the cellular level, the lack of StAR results in an accumulation of lipid within cells
Star
46.
Constellation
–
A constellation is formally defined as a region of the celestial sphere, with boundaries laid down by the International Astronomical Union. The constellation areas mostly had their origins in Western-traditional patterns of stars from which the constellations take their names, in 1922, the International Astronomical Union officially recognized the 88 modern constellations, which cover the entire sky. They began as the 48 classical Greek constellations laid down by Ptolemy in the Almagest, Constellations in the far southern sky are late 16th- and mid 18th-century constructions. 12 of the 88 constellations compose the zodiac signs, though the positions of the constellations only loosely match the dates assigned to them in astrology. The term constellation can refer to the stars within the boundaries of that constellation. Notable groupings of stars that do not form a constellation are called asterisms, when astronomers say something is “in” a given constellation they mean it is within those official boundaries. Any given point in a coordinate system can unambiguously be assigned to a single constellation. Many astronomical naming systems give the constellation in which an object is found along with a designation in order to convey a rough idea in which part of the sky it is located. For example, the Flamsteed designation for bright stars consists of a number, the word constellation seems to come from the Late Latin term cōnstellātiō, which can be translated as set of stars, and came into use in English during the 14th century. It also denotes 88 named groups of stars in the shape of stellar-patterns, the Ancient Greek word for constellation was ἄστρον. Colloquial usage does not draw a distinction between constellation in the sense of an asterism and constellation in the sense of an area surrounding an asterism. The modern system of constellations used in astronomy employs the latter concept, the term circumpolar constellation is used for any constellation that, from a particular latitude on Earth, never sets below the horizon. From the North Pole or South Pole, all constellations south or north of the equator are circumpolar constellations. In the equatorial or temperate latitudes, the term equatorial constellation has sometimes been used for constellations that lie to the opposite the circumpolar constellations. They generally include all constellations that intersect the celestial equator or part of the zodiac, usually the only thing the stars in a constellation have in common is that they appear near each other in the sky when viewed from the Earth. In galactic space, the stars of a constellation usually lie at a variety of distances, since stars also travel on their own orbits through the Milky Way, the star patterns of the constellations change slowly over time. After tens to hundreds of thousands of years, their familiar outlines will become unrecognisable, the terms chosen for the constellation themselves, together with the appearance of a constellation, may reveal where and when its constellation makers lived. The earliest direct evidence for the constellations comes from inscribed stones and it seems that the bulk of the Mesopotamian constellations were created within a relatively short interval from around 1300 to 1000 BC
Constellation
Constellation
Constellation
–
Babylonian tablet recording
Halley's comet in 164 BC.
Constellation
–
Chinese star map with a cylindrical projection (
Su Song)
47.
Carina (constellation)
–
Carina /kəˈraɪnə/ is a constellation in the southern sky. Carina was once a part of Argo Navis, the ship of Jason. The constellation of Argo was introduced in ancient Greece, however, Nicolas Louis de Lacaille divided Argo into three component constellations in 1763, including Carina, the Keel. Despite the division, Lacaille kept Argos Bayer designations, therefore, Carina has the α, β and ε, Vela has γ and δ, Puppis has ζ, and so on. Carina contains Canopus, a white-hued supergiant that is the second brightest star in the sky at magnitude −0.72,313 light-years from Earth. Alpha Carinae, as Canopus is formally designated, is a star that varies by approximately 0.1 magnitudes. Its traditional name comes from the mythological Canopus, who was a navigator for Menelaus, there are several other stars above magnitude 3 in Carina. Beta Carinae, traditionally called Miaplacidus, is a blue-white hued star of magnitude 1.7,111 light-years from Earth, Epsilon Carinae is an orange-hued giant star similarly bright to Miaplacidus at magnitude 1.9, it is 630 light-years from Earth. Another fairly bright star is the blue-white hued Theta Carinae, it is a magnitude 2.7 star 440 light-years from Earth, Theta Carinae is also the most prominent member of the cluster IC2602. Iota Carinae is a supergiant star of magnitude 2.2,690 light-years from Earth. Eta Carinae is the most prominent variable star in Carina, with a mass of approximately 100 solar masses and 4 million times as bright as the Sun. It was first discovered to be unusual in 1677, when its magnitude suddenly rose to 4, Eta Carinae is inside NGC3372, commonly called the Carina Nebula. It had a long outburst in 1827, when it brightened to magnitude 1 and its most prominent outburst made Eta Carinae the equal of Sirius, it brightened to magnitude −1.5 in 1843. However, since 1843, Eta Carinae has remained relatively placid, however, in 1998, it brightened again, though only to magnitude 5.0, a far less drastic outburst. Eta Carinae is a star, with a companion that has a period of 5.5 years. There are several less prominent variable stars in Carina, L Carinae is a Cepheid variable noted for its brightness, it is the brightest Cepheid that is variable to the unaided eye. It is a supergiant star with a minimum magnitude of 4.2. Two bright Mira variable stars are in Carina, R Carinae and S Carinae, R Carinae has a minimum magnitude of 10.0 and a maximum magnitude of 4.0
Carina (constellation)
–
The constellation Carina as it can be seen by the naked eye
Carina (constellation)
–
List of stars in Carina
48.
USNS George W. Goethals (T-AP-182)
–
USNS George W. Goethals was a troop transport that served with the United States Military Sea Transportation Service during the 1950s. Prior to her MSTS service, she served as US Army transport USAT George W. Goethals during World War II. During World War II George W. Goethals operated as an Army transport out of New York City, Boston, and Gulf Coast ports to ports in North Africa, France, after the war, she continued transatlantic runs carrying military dependents between the United States and Europe. Acquired by the US Navy 1 March 1950, the transport was assigned to MSTS, manned by a civilian crew, George W. Goethals continued trooplift and passenger voyages out of New York. During the Korean War she helped to maintain American military strength in Europe, transporting troops and military cargo, she steamed to England, Germany, North Africa, Italy, Greece, and Turkey during European and Mediterranean deployments. In addition, she rotated troops to American bases in the Caribbean, in 1953, for example, she completed 12 round-trip voyages out of New York to Cuba, Puerto Rico, and the Canal Zone. Between 1955 and 1959 George W. Goethals continued a busy, during this period she deployed 18 times to ports in Western Europe and three times to the Mediterranean, and she completed 30 round trips to the Caribbean. Placed in a reserve status from 15 December 1958 to 21 February 1959, she made a run to Bremerhaven and back during February. In the next 6 months, she deployed to the Caribbean seven times, after returning to New York 29 September 1959, she was inactivated. Transferred to the Maritime Administration 20 November 1960 she entered the National Defense Reserve Fleet, USAT George W. Goethals - DANFS Online. T-AP-182 George W. Goethals, Navsource Online
USNS George W. Goethals (T-AP-182)
–
USNS George W. Goethals (T-AP-182), c. 1952
49.
United States Navy
–
The United States Navy is the naval warfare service branch of the United States Armed Forces and one of the seven uniformed services of the United States. The U. S. Navy is the largest, most capable navy in the world, the U. S. Navy has the worlds largest aircraft carrier fleet, with ten in service, two in the reserve fleet, and three new carriers under construction. The service has 323,792 personnel on duty and 108,515 in the Navy Reserve. It has 274 deployable combat vessels and more than 3,700 operational aircraft as of October 2016, the U. S. Navy traces its origins to the Continental Navy, which was established during the American Revolutionary War and was effectively disbanded as a separate entity shortly thereafter. It played a role in the American Civil War by blockading the Confederacy. It played the role in the World War II defeat of Imperial Japan. The 21st century U. S. Navy maintains a global presence, deploying in strength in such areas as the Western Pacific, the Mediterranean. The Navy is administratively managed by the Department of the Navy, the Department of the Navy is itself a division of the Department of Defense, which is headed by the Secretary of Defense. The Chief of Naval Operations is an admiral and the senior naval officer of the Department of the Navy. The CNO may not be the highest ranking officer in the armed forces if the Chairman or the Vice Chairman of the Joint Chiefs of Staff. The mission of the Navy is to maintain, train and equip combat-ready Naval forces capable of winning wars, deterring aggression, the United States Navy is a seaborne branch of the military of the United States. The Navys three primary areas of responsibility, The preparation of naval forces necessary for the prosecution of war. The development of aircraft, weapons, tactics, technique, organization, U. S. Navy training manuals state that the mission of the U. S. Armed Forces is to prepare and conduct prompt and sustained combat operations in support of the national interest, as part of that establishment, the U. S. Navys functions comprise sea control, power projection and nuclear deterrence, in addition to sealift duties. It follows then as certain as that night succeeds the day, that without a decisive naval force we can do nothing definitive, the Navy was rooted in the colonial seafaring tradition, which produced a large community of sailors, captains, and shipbuilders. In the early stages of the American Revolutionary War, Massachusetts had its own Massachusetts Naval Militia, the establishment of a national navy was an issue of debate among the members of the Second Continental Congress. Supporters argued that a navy would protect shipping, defend the coast, detractors countered that challenging the British Royal Navy, then the worlds preeminent naval power, was a foolish undertaking. Commander in Chief George Washington resolved the debate when he commissioned the ocean-going schooner USS Hannah to interdict British merchant ships, and reported the captures to the Congress
United States Navy
United States Navy
–
United States Navy portal
United States Navy
–
USS Constellation vs L'Insurgente during the
Quasi-War
United States Navy
–
USS Constitution vs HMS Guerriere during the
War of 1812
50.
Troop transport
–
A troopship is a ship used to carry soldiers, either in peacetime or wartime. Attack transports, a variant of ocean-going troopship adapted to transporting invasion forces ashore, landing ships beach themselves and bring their troops directly ashore. Ships to transport troops were used in Antiquity. Ancient Rome used the navis lusoria, a vessel powered by rowers and sail, to move soldiers on the Rhine. HMT Olympic even rammed and sank a U-boat during one of its wartime crossings, individual liners capable of exceptionally high speed transited without escorts, smaller or older liners with poorer performance were protected by operating in convoys. The British government aided both Cunard and the White Star Line to construct the liners RMS Mauretania, RMS Aquitania, RMS Olympic, when the vulnerability of these ships to return fire was realized most were used instead as troopship or hospital ships. RMS Queen Mary and RMS Queen Elizabeth were two of the most famous converted liners of World War II, when they were fully converted, each could carry well over 10,000 troops per trip. Queen Mary holds the record, with 15,740 troops on a single passage in late July 1943. The modified Liberties were capable of transporting up to 450,550,30 Type C4 ship-based General G. O. Squier-class, the largest carrying over 6,000 passengers. A class of Victory ship-based dedicated troopship was developed late in World War II, a total of 84 such VC2-S-AP2 hull conversions was completed. A class of Type C3 ship – comprising mainly C3-S-A2 and C3-S-A3 hulls – was also converted to dedicated troopships, at least 15 classes of Attack Transport, consisting of at least 400 ships specially equipped for landing invasion forces rather than general troop movement. The designation HMT would normally replace RMS, MV or SS for ships converted to troopship duty with the United Kingdoms Royal Navy, initially troopships adapted as attack transports were designated AP, starting in 1942 keel-up attack transports received the designation APA. In the era of the Cold War the United States designed the SS United States so that it could easily be converted from a liner to a troopship, in case of war. More recently, RMS Queen Elizabeth 2 and the SS Canberra were requisitioned by the Royal Navy to carry British soldiers to the Falklands War, by the end of the twentieth century, nearly all long-distance personnel transfer was done by airlift in military transport aircraft
Troop transport
–
Soldiers climb down netting on the sides of the
attack transport USS McCawley (APA-4) on 14 June 1943, rehearsing for landings on
New Georgia
Troop transport
–
A
Bayfield-class attack transport underway with its complement of landing craft, the
USS Hamblen (APA-114)
Troop transport
–
Nicknamed the "Grey Ghost",
RMS Queen Mary holds the all-time record for most troops on one passage, 15,740 on a late July 1943 run from the U.S. to Europe
Troop transport
–
A U.S.
General G. O. Squier-class troop transport