1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times
2.
Series (mathematics)
–
In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a sequence has defined first and last terms. To emphasize that there are a number of terms, a series is often called an infinite series. In order to make the notion of an infinite sum mathematically rigorous, given an infinite sequence, the associated series is the expression obtained by adding all those terms together, a 1 + a 2 + a 3 + ⋯. These can be written compactly as ∑ i =1 ∞ a i, by using the summation symbol ∑. The sequence can be composed of any kind of object for which addition is defined. A series is evaluated by examining the finite sums of the first n terms of a sequence, called the nth partial sum of the sequence, and taking the limit as n approaches infinity. If this limit does not exist, the infinite sum cannot be assigned a value, and, in this case, the series is said to be divergent. On the other hand, if the partial sums tend to a limit when the number of terms increases indefinitely, then the series is said to be convergent, and the limit is called the sum of the series. An example is the series from Zenos dichotomy and its mathematical representation, ∑ n =1 ∞12 n =12 +14 +18 + ⋯. The study of series is a part of mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures, in addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance. For any sequence of numbers, real numbers, complex numbers, functions thereof. By definition the series ∑ n =0 ∞ a n converges to a limit L if and this definition is usually written as L = ∑ n =0 ∞ a n ⇔ L = lim k → ∞ s k. When the index set is the natural numbers I = N, a series indexed on the natural numbers is an ordered formal sum and so we rewrite ∑ n ∈ N as ∑ n =0 ∞ in order to emphasize the ordering induced by the natural numbers. Thus, we obtain the common notation for a series indexed by the natural numbers ∑ n =0 ∞ a n = a 0 + a 1 + a 2 + ⋯. When the semigroup G is also a space, then the series ∑ n =0 ∞ a n converges to an element L ∈ G if. This definition is usually written as L = ∑ n =0 ∞ a n ⇔ L = lim k → ∞ s k, a series ∑an is said to converge or to be convergent when the sequence SN of partial sums has a finite limit
3.
Powers of two
–
In mathematics, a power of two means a number of the form 2n where n is an integer, i. e. the result of exponentiation with number two as the base and integer n as the exponent. In a context where only integers are considered, n is restricted to values, so we have 1,2. Because two is the base of the numeral system, powers of two are common in computer science. Written in binary, a power of two always has the form 100…000 or 0. 00…001, just like a power of ten in the decimal system, a word, interpreted as an unsigned integer, can represent values from 0 to 2n −1 inclusively. Corresponding signed integer values can be positive, negative and zero, either way, one less than a power of two is often the upper bound of an integer in binary computers. As a consequence, numbers of this show up frequently in computer software. For example, in the original Legend of Zelda the main character was limited to carrying 255 rupees at any time. Powers of two are used to measure computer memory. A byte is now considered eight bits (an octet, resulting in the possibility of 256 values, the prefix kilo, in conjunction with byte, may be, and has traditionally been, used, to mean 1,024. However, in general, the term kilo has been used in the International System of Units to mean 1,000, binary prefixes have been standardized, such as kibi meaning 1,024. Nearly all processor registers have sizes that are powers of two,32 or 64 being most common, powers of two occur in a range of other places as well. For many disk drives, at least one of the size, number of sectors per track. The logical block size is almost always a power of two. Numbers that are not powers of two occur in a number of situations, such as video resolutions, but they are often the sum or product of two or three powers of two, or powers of two minus one. For example,640 =512 +128 =128 ×5, put another way, they have fairly regular bit patterns. A prime number that is one less than a power of two is called a Mersenne prime, for example, the prime number 31 is a Mersenne prime because it is 1 less than 32. Similarly, a number that is one more than a positive power of two is called a Fermat prime—the exponent itself is a power of two. A fraction that has a power of two as its denominator is called a dyadic rational, the numbers that can be represented as sums of consecutive positive integers are called polite numbers, they are exactly the numbers that are not powers of two
4.
Geometric series
–
In mathematics, a geometric series is a series with a constant ratio between successive terms. For example, the series 12 +14 +18 +116 + ⋯ is geometric, Geometric series are among the simplest examples of infinite series with finite sums, although not all of them have this property. Historically, geometric series played an important role in the development of calculus. Geometric series are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queueing theory, the terms of a geometric series form a geometric progression, meaning that the ratio of successive terms in the series is constant. This relationship allows for the representation of a series using only two terms, r and a. The term r is the ratio, and a is the first term of the series. In the case above, where r is one half, the series has the sum one, if r is greater than one or less than minus one the terms of the series become larger and larger in magnitude. The sum of the terms also gets larger and larger, if r is equal to one, all of the terms of the series are the same. If r is one the terms take two values alternately. The sum of the oscillates between two values. This is a different type of divergence and again the series has no sum, see for example Grandis series,1 −1 +1 −1 + ···. The sum can be computed using the self-similarity of the series, consider the sum of the following geometric series, s =1 +23 +49 +827 + ⋯. This series has common ratio 2/3, if we multiply through by this common ratio, then the initial 1 becomes a 2/3, the 2/3 becomes a 4/9, and so on,23 s =23 +49 +827 +1681 + ⋯. This new series is the same as the original, except that the first term is missing, subtracting the new series s from the original series s cancels every term in the original but the first, s −23 s =1, so s =3. A similar technique can be used to evaluate any self-similar expression, as n goes to infinity, the absolute value of r must be less than one for the series to converge. When a =1, this can be simplified to 1 + r + r 2 + r 3 + ⋯ =11 − r, the formula also holds for complex r, with the corresponding restriction, the modulus of r is strictly less than one. Since = 1−rn+1 and rn+1 →0 for | r | <1, convergence of geometric series can also be demonstrated by rewriting the series as an equivalent telescoping series. Consider the function, g = r K1 − r
5.
1 (number)
–
1, is a number, a numeral, and the name of the glyph representing that number. It represents a single entity, the unit of counting or measurement, for example, a line segment of unit length is a line segment of length 1. It is also the first of the series of natural numbers. The word one can be used as a noun, an adjective and it comes from the English word an, which comes from the Proto-Germanic root *ainaz. The Proto-Germanic root *ainaz comes from the Proto-Indo-European root *oi-no-, compare the Proto-Germanic root *ainaz to Old Frisian an, Gothic ains, Danish een, Dutch een, German eins and Old Norse einn. Compare the Proto-Indo-European root *oi-no- to Greek oinos, Latin unus, Old Persian aivam, Old Church Slavonic -inu and ino-, Lithuanian vienas, Old Irish oin, One, sometimes referred to as unity, is the first non-zero natural number. It is thus the integer before two and after zero, and the first positive odd number, any number multiplied by one is that number, as one is the identity for multiplication. As a result,1 is its own factorial, its own square, its own cube, One is also the result of the empty product, as any number multiplied by one is itself. It is also the natural number that is neither composite nor prime with respect to division. The Gupta wrote it as a line, and the Nagari sometimes added a small circle on the left. The Nepali also rotated it to the right but kept the circle small and this eventually became the top serif in the modern numeral, but the occasional short horizontal line at the bottom probably originates from similarity with the Roman numeral I. Where the 1 is written with an upstroke, the number 7 has a horizontal stroke through the vertical line. While the shape of the 1 character has an ascender in most modern typefaces, in typefaces with text figures, many older typewriters do not have a separate symbol for 1 and use the lowercase letter l instead. It is possible to find cases when the uppercase J is used,1 cannot be used as the base of a positional numeral system, as the only digit that would be permitted in such a system would be 0. Since the base 1 exponential function always equals 1, its inverse does not exist, there are two ways to write the real number 1 as a recurring decimal, as 1.000. and as 0.999. There is only one way to represent the real number 1 as a Dedekind cut, in a multiplicative group or monoid, the identity element is sometimes denoted 1, but e is also traditional. However,1 is especially common for the identity of a ring. When such a ring has characteristic n not equal to 0,1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few
6.
Real number
–
In mathematics, a real number is a value that represents a quantity along a line. The adjective real in this context was introduced in the 17th century by René Descartes, the real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as √2. Included within the irrationals are the numbers, such as π. Real numbers can be thought of as points on a long line called the number line or real line. Any real number can be determined by a possibly infinite decimal representation, such as that of 8.632, the real line can be thought of as a part of the complex plane, and complex numbers include real numbers. These descriptions of the numbers are not sufficiently rigorous by the modern standards of pure mathematics. All these definitions satisfy the definition and are thus equivalent. The statement that there is no subset of the reals with cardinality greater than ℵ0. Simple fractions were used by the Egyptians around 1000 BC, the Vedic Sulba Sutras in, c.600 BC, around 500 BC, the Greek mathematicians led by Pythagoras realized the need for irrational numbers, in particular the irrationality of the square root of 2. Arabic mathematicians merged the concepts of number and magnitude into a general idea of real numbers. In the 16th century, Simon Stevin created the basis for modern decimal notation, in the 17th century, Descartes introduced the term real to describe roots of a polynomial, distinguishing them from imaginary ones. In the 18th and 19th centuries, there was work on irrational and transcendental numbers. Johann Heinrich Lambert gave the first flawed proof that π cannot be rational, Adrien-Marie Legendre completed the proof, Évariste Galois developed techniques for determining whether a given equation could be solved by radicals, which gave rise to the field of Galois theory. Charles Hermite first proved that e is transcendental, and Ferdinand von Lindemann, lindemanns proof was much simplified by Weierstrass, still further by David Hilbert, and has finally been made elementary by Adolf Hurwitz and Paul Gordan. The development of calculus in the 18th century used the set of real numbers without having defined them cleanly. The first rigorous definition was given by Georg Cantor in 1871, in 1874, he showed that the set of all real numbers is uncountably infinite but the set of all algebraic numbers is countably infinite. Contrary to widely held beliefs, his first method was not his famous diagonal argument, the real number system can be defined axiomatically up to an isomorphism, which is described hereafter. Another possibility is to start from some rigorous axiomatization of Euclidean geometry, from the structuralist point of view all these constructions are on equal footing
7.
Gottfried Wilhelm Leibniz
–
Leibnizs notation has been widely used ever since it was published. It was only in the 20th century that his Law of Continuity and he became one of the most prolific inventors in the field of mechanical calculators. He also refined the number system, which is the foundation of virtually all digital computers. Leibniz, along with René Descartes and Baruch Spinoza, was one of the three great 17th-century advocates of rationalism and he wrote works on philosophy, politics, law, ethics, theology, history, and philology. Leibnizs contributions to this vast array of subjects were scattered in various learned journals, in tens of thousands of letters and he wrote in several languages, but primarily in Latin, French, and German. There is no complete gathering of the writings of Leibniz in English, Gottfried Leibniz was born on July 1,1646, toward the end of the Thirty Years War, in Leipzig, Saxony, to Friedrich Leibniz and Catharina Schmuck. Friedrich noted in his journal,21. Juny am Sontag 1646 Ist mein Sohn Gottfried Wilhelm, post sextam vespertinam 1/4 uff 7 uhr abents zur welt gebohren, in English, On Sunday 21 June 1646, my son Gottfried Wilhelm is born into the world a quarter after six in the evening, in Aquarius. Leibniz was baptized on July 3 of that year at St. Nicholas Church, Leipzig and his father died when he was six and a half years old, and from that point on he was raised by his mother. Her teachings influenced Leibnizs philosophical thoughts in his later life, Leibnizs father had been a Professor of Moral Philosophy at the University of Leipzig, and the boy later inherited his fathers personal library. He was given access to it from the age of seven. Access to his fathers library, largely written in Latin, also led to his proficiency in the Latin language and he also composed 300 hexameters of Latin verse, in a single morning, for a special event at school at the age of 13. In April 1661 he enrolled in his fathers former university at age 15 and he defended his Disputatio Metaphysica de Principio Individui, which addressed the principle of individuation, on June 9,1663. Leibniz earned his masters degree in Philosophy on February 7,1664, after one year of legal studies, he was awarded his bachelors degree in Law on September 28,1665. His dissertation was titled De conditionibus, in early 1666, at age 19, Leibniz wrote his first book, De Arte Combinatoria, the first part of which was also his habilitation thesis in Philosophy, which he defended in March 1666. His next goal was to earn his license and Doctorate in Law, in 1666, the University of Leipzig turned down Leibnizs doctoral application and refused to grant him a Doctorate in Law, most likely due to his relative youth. Leibniz then enrolled in the University of Altdorf and quickly submitted a thesis, the title of his thesis was Disputatio Inauguralis de Casibus Perplexis in Jure. Leibniz earned his license to practice law and his Doctorate in Law in November 1666 and he next declined the offer of an academic appointment at Altdorf, saying that my thoughts were turned in an entirely different direction
8.
Christian Wolff (philosopher)
–
Christian Wolff was a German philosopher. The mountain Mons Wolff on the Moon is named in his honor, Wolff was the most eminent German philosopher between Leibniz and Kant. Wolff was also the creator of German as the language of instruction and research, although he also wrote in Latin, so that an international audience could. Wolff was born in Breslau, Silesia, into a modest family and he studied mathematics and physics at the University of Jena, soon adding philosophy. In 1703, he qualified as Privatdozent at Leipzig University, where he lectured until 1706, by this time he had made the acquaintance of Leibniz, of whose philosophy his own system is a modified version. At Halle, Wolff at first restricted himself to mathematics, but on the departure of a colleague, he added physics, however, the claims Wolff advanced on behalf of philosophical reason appeared impious to his theological colleagues. Halle was the headquarters of Pietism, which, after a struggle against Lutheran dogmatism, had assumed the characteristics of a new orthodoxy. Wolffs professed ideal was to base theological truths on mathematically certain evidence, on 12 July 1723 Wolff held a lecture for students and the magistrates at the end of his term as a rector. Wolff compared, based on books by the Belgian missionaries François Noël and Philippe Couplet, Moses, Christ, according to Voltaire professor August Hermann Francke had been teaching in an empty classroom but Wolff attracted with his lectures around 1,000 students from all over. In the following up Wolff was accused by Francke of fatalism and atheism, as a consequence, Wolff was ousted in 1723 from his first chair at Halle in one of the most celebrated academic dramas of the 18th century. His successors were Joachim Lange, a pietist, and his son and this so enraged the king that he immediately deprived Wolff of his office, and commanded him to leave Prussian territory within 48 hours or be hanged. The same day Wolff passed into Saxony, and presently proceeded to Marburg, Hesse-Kassel, to university he had received a call even before this crisis. The Landgrave of Hesse received him with every mark of distinction, and it was everywhere discussed, and over two hundred books and pamphlets appeared for or against it before 1737, not reckoning the systematic treatises of Wolff and his followers. In 1726 Wolff published his Discours, in which he mentioned the importance of listening to music put on pregnant Chinese women. At the University of Marburg, as one of the most popular and fashionable university teachers in Europe, Frederick proposed to send a copy of Logique ou réflexions sur les forces de lentendement humain to Voltaire in his first letter to the philosopher from 8 August 1736. In 1737 Wolffs Metafysica was translated into French by Ulrich Friedrich von Suhm, Voltaire got the impression Frederick had translated the book himself. In 1738 Frederick William begun the hard labour of trying to read Wolff, in 1740 Frederick William died, and one of the first acts of his son and successor, Frederick the Great, was to acquire him for the Prussian Academy. Wolff refused, but accepted on 10 September 1740 an appointment in Halle and his entry into the town on 6 December 1740 took on the character of a triumphal procession
9.
Leonhard Euler
–
He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy, Euler was one of the most eminent mathematicians of the 18th century, and is held to be one of the greatest in history. He is also considered to be the most prolific mathematician of all time. His collected works fill 60 to 80 quarto volumes, more than anybody in the field and he spent most of his adult life in Saint Petersburg, Russia, and in Berlin, then the capital of Prussia. A statement attributed to Pierre-Simon Laplace expresses Eulers influence on mathematics, Read Euler, read Euler, Leonhard Euler was born on 15 April 1707, in Basel, Switzerland to Paul III Euler, a pastor of the Reformed Church, and Marguerite née Brucker, a pastors daughter. He had two sisters, Anna Maria and Maria Magdalena, and a younger brother Johann Heinrich. Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, Paul Euler was a friend of the Bernoulli family, Johann Bernoulli was then regarded as Europes foremost mathematician, and would eventually be the most important influence on young Leonhard. Eulers formal education started in Basel, where he was sent to live with his maternal grandmother. In 1720, aged thirteen, he enrolled at the University of Basel, during that time, he was receiving Saturday afternoon lessons from Johann Bernoulli, who quickly discovered his new pupils incredible talent for mathematics. In 1726, Euler completed a dissertation on the propagation of sound with the title De Sono, at that time, he was unsuccessfully attempting to obtain a position at the University of Basel. In 1727, he first entered the Paris Academy Prize Problem competition, Pierre Bouguer, who became known as the father of naval architecture, won and Euler took second place. Euler later won this annual prize twelve times, around this time Johann Bernoullis two sons, Daniel and Nicolaus, were working at the Imperial Russian Academy of Sciences in Saint Petersburg. In November 1726 Euler eagerly accepted the offer, but delayed making the trip to Saint Petersburg while he applied for a physics professorship at the University of Basel. Euler arrived in Saint Petersburg on 17 May 1727 and he was promoted from his junior post in the medical department of the academy to a position in the mathematics department. He lodged with Daniel Bernoulli with whom he worked in close collaboration. Euler mastered Russian and settled life in Saint Petersburg. He also took on a job as a medic in the Russian Navy. The Academy at Saint Petersburg, established by Peter the Great, was intended to improve education in Russia, as a result, it was made especially attractive to foreign scholars like Euler
10.
Halle (Saale)
–
Halle is a city in the southern part of the German state Saxony-Anhalt. Halle is an economic and educational center in central-eastern Germany, the University of Halle-Wittenberg is the largest university in Saxony-Anhalt and one of the oldest universities in Germany, and a nurturing ground for the local startup ecosystem. Together with Leipzig, Halle is at the heart of the Central German Metropolitan Region, Leipzig, one of eastern Germanys other major cities, is only 35 kilometres away. Halles early history is connected with harvesting of salt, the name Halle reflects early Celtic settlement given that halen is the Brythonic word for salt. The name of the river Saale also contains the Germanic root for salt, the Latin name Hala Saxonum was also used. The town was first mentioned in AD806, according to historic documents, the city of Halle has been a member of the Hanseatic League at least since 1281. By the 1740s, Halle had established many orphanages as well as schools for the wealthy in the sober style Pietism encouraged and this Halle education was the first time the modern education system was established. The Halle Pietists were also combated poverty, the Battle of Halle was fought between French and Prussian forces on 17 October 1806. The fighting moved from the bridges on the citys west side, through the streets and market place. In 1815, Halle became part of the Prussian Province of Saxony, in Ammendorf, a large factory owned by Orgacid produced mustard gas. Near the end of World War II, there were two bombing raids carried out against the town, the first on 31 March 1945, the second a few days later. The first attack took place between the station and the citys centre, and the second bombing was in the southern district. It killed over 1,000 inhabitants and destroyed 3,600 buildings, among them, the Market Church, St. George Church, the Old Town Hall, the City Theatre, historic buildings on Bruederstrasse and on Grosse Steinstrasse, and the city cemetery. On 17 April 1945, American soldiers occupied Halle, and the red tower was set on fire by artillery, the Market Church and the Church of St. George received more hits. However, the city was spared further damage because an aerial bombardment was canceled, in July, the Americans withdrew and the city was occupied by the Red Army. After World War II, Halle served as the capital of the administrative region of Saxony-Anhalt until 1952. As a part of East Germany, it functioned as the capital of the district of Halle. When Saxony-Anhalt was re-established as a Bundesland in 1990, Magdeburg, not Halle, Halloren Chocolate Factory and visitors centre, Germanys oldest chocolate factory still in use
11.
Hanover
–
At the end of the Napoleonic Wars, the Electorate was enlarged to become a Kingdom with Hanover as its capital. From 1868 to 1946 Hanover was the capital of the Prussian Province of Hanover and it is now the capital of the Land of Lower Saxony. Since 2001 it has been part of the Hanover district, which is a body made up from the former district. With a population of 518,000, Hanover is a centre of Northern Germany. Hanover also hosts annual commercial trade fairs such as the Hanover Fair, every year Hanover hosts the Schützenfest Hannover, the worlds largest marksmens festival, and the Oktoberfest Hannover, the second largest such festival in Germany. In 2000, Hanover hosted the world fair Expo 2000, the Hanover fairground, due to numerous extensions, especially for the Expo 2000, is the largest in the world. Hanover is of importance because of its universities and medical school, its international airport. The city is also a crossing point of railway lines and highways. Hanover is the traditional English spelling, the German spelling is becoming more popular in English, recent editions of encyclopaedias prefer the German spelling, and the local government uses the German spelling on English websites. The traditional English spelling is used in historical contexts, especially when referring to the British House of Hanover. Hanover was founded in times on the east bank of the River Leine. Its original name Honovere may mean high bank, though this is debated, Hanover was a small village of ferrymen and fishermen that became a comparatively large town in the 13th century due to its position at a natural crossroads. As overland travel was difficult, its position on the upper navigable reaches of the river helped it to grow by increasing trade. In the 14th century the churches of Hanover were built. The beginning of industrialization in Germany led to trade in iron and silver from the northern Harz Mountains, in 1636 George, Duke of Brunswick-Lüneburg, ruler of the Brunswick-Lüneburg principality of Calenberg, moved his residence to Hanover. The Dukes of Brunswick-Lüneburg were elevated by the Holy Roman Emperor to the rank of Prince-Elector in 1692, thus the principality was upgraded to the Electorate of Brunswick-Lüneburg, colloquially known as the Electorate of Hanover after Calenbergs capital. Its electors would later become monarchs of Great Britain, the first of these was George I Louis, who acceded to the British throne in 1714. The last British monarch who ruled in Hanover was William IV, semi-Salic law, which required succession by the male line if possible, forbade the accession of Queen Victoria in Hanover
12.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker
13.
Library of Congress Classification
–
The Library of Congress Classification is a system of library classification developed by the Library of Congress. It is used by most research and academic libraries in the U. S. the Classification is also distinct from Library of Congress Subject Headings, the system of labels such as Boarding schools and Boarding schools—Fiction that describe contents systematically. The classification was invented by Herbert Putnam in 1897, just before he assumed the librarianship of Congress, with advice from Charles Ammi Cutter, it was influenced by his Cutter Expansive Classification, the Dewey Decimal System, and the Putnam Classification System. It was designed specifically for the purposes and collection of the Library of Congress to replace the fixed location system developed by Thomas Jefferson, by the time Putnam departed from his post in 1939, all the classes except K and parts of B were well developed. LCC has been criticized for lacking a theoretical basis, many of the classification decisions were driven by the practical needs of that library rather than epistemological considerations. Although it divides subjects into broad categories, it is essentially enumerative in nature and that is, it provides a guide to the books actually in one librarys collections, not a classification of the world. In 2007 the Wall Street Journal reported that in the countries it surveyed most public libraries, the National Library of Medicine classification system uses the initial letters W and QS–QZ, which are not used by LCC. Some libraries use NLM in conjunction with LCC, eschewing LCCs R for Medicine, others use LCCs QP–QR schedules and include Medicine R. Subclass AC – Collections. Collected works Subclass AE – Encyclopedias Subclass AG – Dictionaries and other reference works Subclass AI – Indexes Subclass AM – Museums. Collectors and collecting Subclass AN – Newspapers Subclass AP – Periodicals Subclass AS – Academies, directories Subclass AZ – History of scholarship and learning. The humanities Subclass B – Philosophy Subclass BC – Logic Subclass BD – Speculative philosophy Subclass BF – Psychology Subclass BH – Aesthetics Subclass BJ – Ethics Subclass BL – Religions, rationalism Subclass BM – Judaism Subclass BP – Islam. Seals Subclass CE – Technical Chronology, calendar Subclass CJ – Numismatics Subclass CN – Inscriptions. Former Soviet Republics – Poland Subclass DL – Northern Europe, maps Subclass GA – Mathematical geography. Cartography Subclass GB – Physical geography Subclass GC – Oceanography Subclass GE – Environmental Sciences Subclass GF – Human ecology, anthropogeography Subclass GN – Anthropology Subclass GR – Folklore Subclass GT – Manners and customs Subclass GV – Recreation. Leisure Subclass H – Social sciences Subclass HA – Statistics Subclass HB – Economic theory, demography Subclass HC – Economic history and conditions Subclass HD – Industries. Labor Subclass HE – Transportation and communications Subclass HF – Commerce Subclass HG – Finance Subclass HJ – Public finance Subclass HM – Sociology Subclass HN – Social history, Social reform Subclass HQ – The family. Marriage, Women and Sexuality Subclass HS – Societies, secret, benevolent, races Subclass HV – Social pathology. Municipal government Subclass JV – Colonies and colonization, International migration Subclass JX – International law, see JZ and KZ Subclass JZ – International relations Subclass K – Law in general
14.
Sequence
–
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members, the number of elements is called the length of the sequence. Unlike a set, order matters, and exactly the elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the numbers or the set of the first n natural numbers. The position of an element in a sequence is its rank or index and it depends on the context or of a specific convention, if the first element has index 0 or 1. For example, is a sequence of letters with the letter M first, also, the sequence, which contains the number 1 at two different positions, is a valid sequence. Sequences can be finite, as in these examples, or infinite, the empty sequence is included in most notions of sequence, but may be excluded depending on the context. A sequence can be thought of as a list of elements with a particular order, Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations, Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers. There are a number of ways to denote a sequence, some of which are useful for specific types of sequences. One way to specify a sequence is to list the elements, for example, the first four odd numbers form the sequence. This notation can be used for sequences as well. For instance, the sequence of positive odd integers can be written. Listing is most useful for sequences with a pattern that can be easily discerned from the first few elements. Other ways to denote a sequence are discussed after the examples, the prime numbers are the natural numbers bigger than 1, that have no divisors but 1 and themselves. Taking these in their natural order gives the sequence, the prime numbers are widely used in mathematics and specifically in number theory. The Fibonacci numbers are the integer sequence whose elements are the sum of the two elements. The first two elements are either 0 and 1 or 1 and 1 so that the sequence is, for a large list of examples of integer sequences, see On-Line Encyclopedia of Integer Sequences
15.
Geometric progression
–
For example, the sequence 2,6,18,54. is a geometric progression with common ratio 3. Similarly 10,5,2.5,1.25. is a sequence with common ratio 1/2. Examples of a sequence are powers rk of a fixed number r, such as 2k. The general form of a sequence is a, a r, a r 2, a r 3, a r 4, … where r ≠0 is the common ratio. The n-th term of a sequence with initial value a. Such a geometric sequence also follows the relation a n = r a n −1 for every integer n ≥1. Generally, to whether a given sequence is geometric, one simply checks whether successive entries in the sequence all have the same ratio. The common ratio of a sequence may be negative, resulting in an alternating sequence, with numbers switching from positive to negative. For instance 1, −3,9, −27,81, the behaviour of a geometric sequence depends on the value of the common ratio. If the common ratio is, Positive, the terms will all be the sign as the initial term. Negative, the terms will alternate between positive and negative, greater than 1, there will be exponential growth towards positive or negative infinity. 1, the progression is a constant sequence, between −1 and 1 but not zero, there will be exponential decay towards zero. −1, the progression is an alternating sequence Less than −1, for the absolute values there is exponential growth towards infinity, due to the alternating sign. Geometric sequences show exponential growth or exponential decay, as opposed to the growth of an arithmetic progression such as 4,15,26,37,48. This result was taken by T. R. Malthus as the foundation of his Principle of Population. A geometric series is the sum of the numbers in a geometric progression, for example,2 +10 +50 +250 =2 +2 ×5 +2 ×52 +2 ×53. The formula works for any real numbers a and r. For example, −2 π +4 π2 −8 π3 = −2 π +2 +3 = −2 π1 − = −2 π1 +2 π ≈ −214.855
16.
Square number
–
In mathematics, a square number or perfect square is an integer that is the square of an integer, in other words, it is the product of some integer with itself. For example,9 is a number, since it can be written as 3 × 3. The usual notation for the square of a n is not the product n × n. The name square number comes from the name of the shape, another way of saying that a integer is a square number, is that its square root is again an integer. For example, √9 =3, so 9 is a square number, a positive integer that has no perfect square divisors except 1 is called square-free. For a non-negative integer n, the nth square number is n2, the concept of square can be extended to some other number systems. If rational numbers are included, then a square is the ratio of two integers, and, conversely, the ratio of two square integers is a square, e. g.49 =2. Starting with 1, there are ⌊√m⌋ square numbers up to and including m, the squares smaller than 602 =3600 are, The difference between any perfect square and its predecessor is given by the identity n2 −2 = 2n −1. Equivalently, it is possible to count up square numbers by adding together the last square, the last squares root, and the current root, that is, n2 =2 + + n. The number m is a number if and only if one can compose a square of m equal squares. Hence, a square with side length n has area n2, the expression for the nth square number is n2. This is also equal to the sum of the first n odd numbers as can be seen in the above pictures, the formula follows, n 2 = ∑ k =1 n. So for example,52 =25 =1 +3 +5 +7 +9, there are several recursive methods for computing square numbers. For example, the nth square number can be computed from the square by n2 =2 + + n =2 +. Alternatively, the nth square number can be calculated from the two by doubling the th square, subtracting the th square number, and adding 2. For example, 2 × 52 −42 +2 = 2 × 25 −16 +2 =50 −16 +2 =36 =62, a square number is also the sum of two consecutive triangular numbers. The sum of two square numbers is a centered square number. Every odd square is also an octagonal number
17.
Cube (algebra)
–
In arithmetic and algebra, the cube of a number n is its third power, the result of the number multiplied by itself twice, n3 = n × n × n. It is also the number multiplied by its square, n3 = n × n2 and this is also the volume formula for a geometric cube with sides of length n, giving rise to the name. The inverse operation of finding a number whose cube is n is called extracting the cube root of n and it determines the side of the cube of a given volume. It is also n raised to the one-third power, both cube and cube root are odd functions,3 = −. The cube of a number or any other mathematical expression is denoted by a superscript 3, a cube number, or a perfect cube, or sometimes just a cube, is a number which is the cube of an integer. The perfect cubes up to 603 are, Geometrically speaking, an integer m is a perfect cube if and only if one can arrange m solid unit cubes into a larger. For example,27 small cubes can be arranged into one larger one with the appearance of a Rubiks Cube, the difference between the cubes of consecutive integers can be expressed as follows, n3 −3 = 3n +1. There is no minimum perfect cube, since the cube of an integer is negative. For example, −4 × −4 × −4 = −64, unlike perfect squares, perfect cubes do not have a small number of possibilities for the last two digits. Except for cubes divisible by 5, where only 25,75 and 00 can be the last two digits, any pair of digits with the last digit odd can be a perfect cube. With even cubes, there is considerable restriction, for only 00, o2, e4, o6, some cube numbers are also square numbers, for example,64 is a square number and a cube number. This happens if and only if the number is a perfect sixth power, the last digits of each 3rd power are, It is, however, easy to show that most numbers are not perfect cubes because all perfect cubes must have digital root 1,8 or 9. That is their values modulo 9 may be only −1,1 and 0, every positive integer can be written as the sum of nine positive cubes. The equation x3 + y3 = z3 has no solutions in integers. In fact, it has none in Eisenstein integers, both of these statements are also true for the equation x3 + y3 = 3z3. The sum of the first n cubes is the nth triangle number squared,13 +23 + ⋯ + n 3 =2 =2. Proofs Charles Wheatstone gives a simple derivation, by expanding each cube in the sum into a set of consecutive odd numbers. Indeed, he begins by giving the identity n 3 = + + + ⋯ + ⏟ n consecutive odd numbers, kanim provides a purely visual proof, Benjamin & Orrison provide two additional proofs, and Nelsen gives seven geometric proofs
18.
Factorial
–
In mathematics, the factorial of a non-negative integer n, denoted by n. is the product of all positive integers less than or equal to n. =5 ×4 ×3 ×2 ×1 =120, the value of 0. is 1, according to the convention for an empty product. The factorial operation is encountered in areas of mathematics, notably in combinatorics, algebra. Its most basic occurrence is the fact there are n. ways to arrange n distinct objects into a sequence. This fact was known at least as early as the 12th century, fabian Stedman, in 1677, described factorials as applied to change ringing. After describing a recursive approach, Stedman gives a statement of a factorial, Now the nature of these methods is such, the factorial function is formally defined by the product n. = ∏ k =1 n k, or by the relation n. = {1 if n =0. The factorial function can also be defined by using the rule as n. All of the above definitions incorporate the instance 0, =1, in the first case by the convention that the product of no numbers at all is 1. This is convenient because, There is exactly one permutation of zero objects, = n. ×, valid for n >0, extends to n =0. It allows for the expression of many formulae, such as the function, as a power series. It makes many identities in combinatorics valid for all applicable sizes, the number of ways to choose 0 elements from the empty set is =0. More generally, the number of ways to choose n elements among a set of n is = n. n, the factorial function can also be defined for non-integer values using more advanced mathematics, detailed in the section below. This more generalized definition is used by advanced calculators and mathematical software such as Maple or Mathematica, although the factorial function has its roots in combinatorics, formulas involving factorials occur in many areas of mathematics. There are n. different ways of arranging n distinct objects into a sequence, often factorials appear in the denominator of a formula to account for the fact that ordering is to be ignored. A classical example is counting k-combinations from a set with n elements, one can obtain such a combination by choosing a k-permutation, successively selecting and removing an element of the set, k times, for a total of n k _ = n ⋯ possibilities. This however produces the k-combinations in an order that one wishes to ignore, since each k-combination is obtained in k. different ways. This number is known as the coefficient, because it is also the coefficient of Xk in n
19.
Power of two
–
In mathematics, a power of two means a number of the form 2n where n is an integer, i. e. the result of exponentiation with number two as the base and integer n as the exponent. In a context where only integers are considered, n is restricted to values, so we have 1,2. Because two is the base of the numeral system, powers of two are common in computer science. Written in binary, a power of two always has the form 100…000 or 0. 00…001, just like a power of ten in the decimal system, a word, interpreted as an unsigned integer, can represent values from 0 to 2n −1 inclusively. Corresponding signed integer values can be positive, negative and zero, either way, one less than a power of two is often the upper bound of an integer in binary computers. As a consequence, numbers of this show up frequently in computer software. For example, in the original Legend of Zelda the main character was limited to carrying 255 rupees at any time. Powers of two are used to measure computer memory. A byte is now considered eight bits (an octet, resulting in the possibility of 256 values, the prefix kilo, in conjunction with byte, may be, and has traditionally been, used, to mean 1,024. However, in general, the term kilo has been used in the International System of Units to mean 1,000, binary prefixes have been standardized, such as kibi meaning 1,024. Nearly all processor registers have sizes that are powers of two,32 or 64 being most common, powers of two occur in a range of other places as well. For many disk drives, at least one of the size, number of sectors per track. The logical block size is almost always a power of two. Numbers that are not powers of two occur in a number of situations, such as video resolutions, but they are often the sum or product of two or three powers of two, or powers of two minus one. For example,640 =512 +128 =128 ×5, put another way, they have fairly regular bit patterns. A prime number that is one less than a power of two is called a Mersenne prime, for example, the prime number 31 is a Mersenne prime because it is 1 less than 32. Similarly, a number that is one more than a positive power of two is called a Fermat prime—the exponent itself is a power of two. A fraction that has a power of two as its denominator is called a dyadic rational, the numbers that can be represented as sums of consecutive positive integers are called polite numbers, they are exactly the numbers that are not powers of two
20.
Power of 10
–
In mathematics, a power of 10 is any of the integer powers of the number ten, in other words, ten multiplied by itself a certain number of times. By definition, the one is a power of ten. The first few powers of ten are,1,10,100,1000,10000,100000,1000000,10000000. In decimal notation the nth power of ten is written as 1 followed by n zeroes and it can also be written as 10n or as 1En in E notation. See order of magnitude and orders of magnitude for named powers of ten, there are two conventions for naming positive powers of ten, called the long and short scales. Where a power of ten has different names in the two conventions, the long scale namme is shown in brackets, googolplex, a much larger power of ten, was also introduced in that book. Scientific notation is a way of writing numbers of very large, a number written in scientific notation has a significand multiplied by a power of ten. Sometimes written in the form, m × 10n Or more compactly as, where n is positive, this indicates the number zeros after the number, and where the n is negative, this indicates the number of decimal places before the number. As an example,105 =100,000 10−5 =0.00001 The notation of mEn, known as E notation, is used in programming, spreadsheets and databases. Power of two SI prefix Cosmic View, inspiration for the film Powers of Ten Video Powers of Ten, US Public Broadcasting Service, made by Charles and Ray Eames. Starting at a picnic by the lakeside in Chicago, this film transports the viewer to the edges of the universe. Every ten seconds we view the point from ten times farther out until our own galaxy is visible only as a speck of light among many others. Returning to Earth with breathtaking speed, we move inward - into the hand of the sleeping picnicker - with ten times more magnification every ten seconds and our journey ends inside a proton of a carbon atom within a DNA molecule in a white blood cell
21.
Fibonacci number
–
The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, known as Fibonacci. His 1202 book Liber Abaci introduced the sequence to Western European mathematics, the sequence described in Liber Abaci began with F1 =1. Fibonacci numbers are related to Lucas numbers L n in that they form a complementary pair of Lucas sequences U n = F n and V n = L n. They are intimately connected with the ratio, for example. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is a journal dedicated to their study. The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody, in the Sanskrit tradition of prosody, there was interest in enumerating all patterns of long syllables that are 2 units of duration, and short syllables that are 1 unit of duration. Counting the different patterns of L and S of a given duration results in the Fibonacci numbers, susantha Goonatilake writes that the development of the Fibonacci sequence is attributed in part to Pingala, later being associated with Virahanka, Gopāla, and Hemachandra. He dates Pingala before 450 BC, however, the clearest exposition of the sequence arises in the work of Virahanka, whose own work is lost, but is available in a quotation by Gopala, Variations of two earlier meters. For example, for four, variations of meters of two three being mixed, five happens, in this way, the process should be followed in all mātrā-vṛttas. The sequence is also discussed by Gopala and by the Jain scholar Hemachandra, outside India, the Fibonacci sequence first appears in the book Liber Abaci by Fibonacci. The puzzle that Fibonacci posed was, how many pairs will there be in one year, at the end of the first month, they mate, but there is still only 1 pair. At the end of the month the female produces a new pair. At the end of the month, the original female produces a second pair. At the end of the month, the original female has produced yet another new pair. At the end of the nth month, the number of pairs of rabbits is equal to the number of new pairs plus the number of pairs alive last month and this is the nth Fibonacci number. The name Fibonacci sequence was first used by the 19th-century number theorist Édouard Lucas, the most common such problem is that of counting the number of compositions of 1s and 2s that sum to a given total n, there are Fn+1 ways to do this. For example, if n =5, then Fn+1 = F6 =8 counts the eight compositions, 1+1+1+1+1 = 1+1+1+2 = 1+1+2+1 = 1+2+1+1 = 2+1+1+1 = 2+2+1 = 2+1+2 = 1+2+2, all of which sum to 5. The Fibonacci numbers can be found in different ways among the set of strings, or equivalently
22.
Heptagonal number
–
A heptagonal number is a figurate number that represents a heptagon. The n-th heptagonal number is given by the formula 5 n 2 −3 n 2, like square numbers, the digital root in base 10 of a heptagonal number can only be 1,4,7 or 9. Five times a number, plus 1 equals a triangular number. A generalized heptagonal number is obtained by the formula T n + T ⌊ n 2 ⌋, where Tn is the nth triangular number. The first few generalized heptagonal numbers are,1,4,7,13,18,27,34,46,55,70,81,99,112, besides 1 and 70, no generalized heptagonal numbers are also Pell numbers. The heptagonal root of x is given by the formula n =40 x +9 +310
23.
Hexagonal number
–
A hexagonal number is a figurate number. The formula for the nth hexagonal number h n =2 n 2 − n = n =2 n ×2. The first few numbers are,1,6,15,28,45,66,91,120,153,190,231,276,325,378,435,496,561,630,703,780,861,946. Every hexagonal number is a number, but only every other triangular number is a hexagonal number. Like a triangular number, the root in base 10 of a hexagonal number can only be 1,3,6. The digital root pattern, repeating every nine terms, is 166193139. Every even perfect number is hexagonal, given by the formula M p 2 p −1 = M p /2 = h /2 = h 2 p −1 where Mp is a Mersenne prime. No odd perfect numbers are known, hence all known perfect numbers are hexagonal, for example, the 2nd hexagonal number is 2×3 =6, the 4th is 4×7 =28, the 16th is 16×31 =496, and the 64th is 64×127 =8128. The largest number that cannot be written as a sum of at most four hexagonal numbers is 130, adrien-Marie Legendre proved in 1830 that any integer greater than 1791 can be expressed in this way. Hexagonal numbers can be rearranged into rectangular numbers of n by. Hexagonal numbers should not be confused with centered hexagonal numbers, which model the standard packaging of Vienna sausages, to avoid ambiguity, hexagonal numbers are sometimes called cornered hexagonal numbers. One can efficiently test whether a positive x is an hexagonal number by computing n =8 x +1 +14. If n is an integer, then x is the nth hexagonal number, if n is not an integer, then x is not hexagonal. The nth number of the sequence can also be expressed by using Sigma notation as h n = ∑ i =0 n −1 where the empty sum is taken to be 0. Centered hexagonal number Mathworld entry on Hexagonal Number
24.
Pell number
–
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1,2,5,12, and 29. The numerators of the sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers, these numbers form a second infinite sequence that begins with 2,6,14,34. As with Pells equation, the name of the Pell numbers stems from Leonhard Eulers mistaken attribution of the equation, the Pell–Lucas numbers are also named after Édouard Lucas, who studied sequences defined by recurrences of this type, the Pell and companion Pell numbers are Lucas sequences. The Pell numbers are defined by the recurrence relation P n = {0 if n =0,1 if n =1,2 P n −1 + P n −2 otherwise. In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number and the Pell number before that. The first few terms of the sequence are 0,1,2,5,12,29,70,169,408,985,2378,5741,13860, …. The Pell numbers can also be expressed by the closed form formula P n = n − n 22, a third definition is possible, from the matrix formula = n. Pell numbers arise historically and most notably in the rational approximation to √2. If two large integers x and y form a solution to the Pell equation x 2 −2 y 2 = ±1 and that is, the solutions have the form P n −1 + P n P n. The approximation 2 ≈577408 of this type was known to Indian mathematicians in the third or fourth century B. C, the Greek mathematicians of the fifth century B. C. also knew of this sequence of approximations, Plato refers to the numerators as rational diameters. In the 2nd century CE Theon of Smyrna used the term the side and these approximations can be derived from the continued fraction expansion of 2,2 =1 +12 +12 +12 +12 +12 + ⋱. As Knuth describes, the fact that Pell numbers approximate √2 allows them to be used for accurate rational approximations to an octagon with vertex coordinates. All vertices are equally distant from the origin, and form uniform angles around the origin. Alternatively, the points, and form approximate octagons in which the vertices are equally distant from the origin. A Pell prime is a Pell number that is prime, the first few Pell primes are 2,5,29,5741, …. The indices of these primes within the sequence of all Pell numbers are 2,3,5,11,13,29,41,53,59,89,97,101,167,181,191, … These indices are all themselves prime. As with the Fibonacci numbers, a Pell number Pn can only be prime if n itself is prime, the only Pell numbers that are squares, cubes, or any higher power of an integer are 0,1, and 169 =132. However, despite having so few squares or other powers, Pell numbers have a connection to square triangular numbers
25.
Triangular number
–
A triangular number or triangle number counts the objects that can form an equilateral triangle, as in the diagram on the right. The nth triangular number is the number of dots composing a triangle with n dots on a side and it represents the number of distinct pairs that can be selected from n +1 objects, and it is read aloud as n plus one choose two. Carl Friedrich Gauss is said to have found this relationship in his early youth, however, regardless of the truth of this story, Gauss was not the first to discover this formula, and some find it likely that its origin goes back to the Pythagoreans 5th century BC. The two formulae were described by the Irish monk Dicuil in about 816 in his Computus, the triangular number Tn solves the handshake problem of counting the number of handshakes if each person in a room with n +1 people shakes hands once with each person. In other words, the solution to the problem of n people is Tn−1. The function T is the analog of the factorial function. In the limit, the ratio between the two numbers, dots and line segments is lim n → ∞ T n L n =13, Triangular numbers have a wide variety of relations to other figurate numbers. Most simply, the sum of two triangular numbers is a square number, with the sum being the square of the difference between the two. Algebraically, T n + T n −1 = + = + = n 2 =2, alternatively, the same fact can be demonstrated graphically, There are infinitely many triangular numbers that are also square numbers, e. g.1,36,1225. Some of them can be generated by a recursive formula. All square triangular numbers are found from the recursion S n =34 S n −1 − S n −2 +2 with S0 =0 and S1 =1. Also, the square of the nth triangular number is the same as the sum of the cubes of the integers 1 to n and this can also be expressed as ∑ k =1 n k 3 =2. The sum of the all triangular numbers up to the nth triangular number is the nth tetrahedral number, more generally, the difference between the nth m-gonal number and the nth -gonal number is the th triangular number. For example, the sixth heptagonal number minus the sixth hexagonal number equals the triangular number,15. Every other triangular number is a hexagonal number, knowing the triangular numbers, one can reckon any centered polygonal number, the nth centered k-gonal number is obtained by the formula C k n = k T n −1 +1 where T is a triangular number. The positive difference of two numbers is a trapezoidal number. Triangular numbers correspond to the case of Faulhabers formula. Alternating triangular numbers are also hexagonal numbers, every even perfect number is triangular, given by the formula M p 2 p −1 = M p 2 = T M p where Mp is a Mersenne prime
26.
Cauchy sequence
–
In mathematics, a Cauchy sequence, named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a number of elements of the sequence are less than that given distance from each other. It is not sufficient for each term to become close to the preceding term. For instance, in the harmonic series ∑1 n a difference between consecutive terms decreases as 1 n, however the series does not converge, rather, it is required that all terms get arbitrarily close to each other, starting from some point. More formally, for any given ε >0 there exists an N such that for any m, n > N. The notions above are not as unfamiliar as they might at first appear, the customary acceptance of the fact that any real number x has a decimal expansion is an implicit acknowledgment that a particular Cauchy sequence of rational numbers has the real limit x. In some cases it may be difficult to describe x independently of such a process involving rational numbers. Generalizations of Cauchy sequences in more abstract uniform spaces exist in the form of Cauchy filters, in a similar way one can define Cauchy sequences of rational or complex numbers. Cauchy formulated such a condition by requiring x m − x n to be infinitesimal for every pair of infinite m, n, to define Cauchy sequences in any metric space X, the absolute value |xm - xn| is replaced by the distance d between xm and xn. A metric space X in which every Cauchy sequence converges to an element of X is called complete, the real numbers are complete under the metric induced by the usual absolute value, and one of the standard constructions of the real numbers involves Cauchy sequences of rational numbers. A rather different type of example is afforded by a metric space X which has the discrete metric, any Cauchy sequence of elements of X must be constant beyond some fixed point, and converges to the eventually repeating term. The rational numbers Q are not complete, There are sequences of rationals that converge to irrational numbers, if one considers this as a sequence of real numbers, however, it converges to the real number φ = /2, the Golden ratio, which is irrational. Every Cauchy sequence of numbers is bounded. Every Cauchy sequence of numbers is bounded, hence by Bolzano-Weierstrass has a convergent subsequence, hence is itself convergent. It should be noted, though, that proof of the completeness of the real numbers implicitly makes use of the least upper bound axiom. The alternative approach, mentioned above, of constructing the real numbers as the completion of the rational numbers, makes the completeness of the real numbers tautological. Such a series ∑ n =1 ∞ x n is considered to be convergent if and only if the sequence of sums is convergent. It is a matter to determine whether the sequence of partial sums is Cauchy or not
27.
Monotonic function
–
In mathematics, a monotonic function is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was generalized to the more abstract setting of order theory. In calculus, a function f defined on a subset of the numbers with real values is called monotonic if. That is, as per Fig.1, a function that increases monotonically does not exclusively have to increase, a function is called monotonically increasing, if for all x and y such that x ≤ y one has f ≤ f, so f preserves the order. Likewise, a function is called monotonically decreasing if, whenever x ≤ y, then f ≥ f, if the order ≤ in the definition of monotonicity is replaced by the strict order <, then one obtains a stronger requirement. A function with this property is called strictly increasing, again, by inverting the order symbol, one finds a corresponding concept called strictly decreasing. The terms non-decreasing and non-increasing should not be confused with the negative qualifications not decreasing, for example, the function of figure 3 first falls, then rises, then falls again. It is therefore not decreasing and not increasing, but it is neither non-decreasing nor non-increasing, the term monotonic transformation can also possibly cause some confusion because it refers to a transformation by a strictly increasing function. Notably, this is the case in economics with respect to the properties of a utility function being preserved across a monotonic transform. A function f is said to be absolutely monotonic over an interval if the derivatives of all orders of f are nonnegative or all nonpositive at all points on the interval, F can only have jump discontinuities, f can only have countably many discontinuities in its domain. The discontinuities, however, do not necessarily consist of isolated points and these properties are the reason why monotonic functions are useful in technical work in analysis. In addition, this result cannot be improved to countable, see Cantor function, if f is a monotonic function defined on an interval, then f is Riemann integrable. An important application of functions is in probability theory. If X is a variable, its cumulative distribution function F X = Prob is a monotonically increasing function. A function is unimodal if it is monotonically increasing up to some point, when f is a strictly monotonic function, then f is injective on its domain, and if T is the range of f, then there is an inverse function on T for f. A map f, X → Y is said to be if each of its fibers is connected i. e. for each element y in Y the set f−1 is connected. A subset G of X × X∗ is said to be a set if for every pair. G is said to be monotone if it is maximal among all monotone sets in the sense of set inclusion
28.
Convergent series
–
In mathematics, a limit is the value that a function or sequence approaches as the input or index approaches some value. Limits are essential to calculus and are used to define continuity, derivatives, the concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. In formulas, a limit is usually written as lim n → c f = L and is read as the limit of f of n as n approaches c equals L. Here lim indicates limit, and the fact that function f approaches the limit L as n approaches c is represented by the right arrow, suppose f is a real-valued function and c is a real number. Intuitively speaking, the lim x → c f = L means that f can be made to be as close to L as desired by making x sufficiently close to c. The first inequality means that the distance x and c is greater than 0 and that x ≠ c, while the second indicates that x is within distance δ of c. Note that the definition of a limit is true even if f ≠ L. Indeed. Now since x +1 is continuous in x at 1, we can now plug in 1 for x, in addition to limits at finite values, functions can also have limits at infinity. In this case, the limit of f as x approaches infinity is 2, in mathematical notation, lim x → ∞2 x −1 x =2. Consider the following sequence,1.79,1.799,1.7999 and it can be observed that the numbers are approaching 1.8, the limit of the sequence. Formally, suppose a1, a2. is a sequence of real numbers, intuitively, this means that eventually all elements of the sequence get arbitrarily close to the limit, since the absolute value | an − L | is the distance between an and L. Not every sequence has a limit, if it does, it is called convergent, one can show that a convergent sequence has only one limit. The limit of a sequence and the limit of a function are closely related, on one hand, the limit as n goes to infinity of a sequence a is simply the limit at infinity of a function defined on the natural numbers n. On the other hand, a limit L of a function f as x goes to infinity, if it exists, is the same as the limit of any sequence a that approaches L. Note that one such sequence would be L + 1/n, in non-standard analysis, the limit of a sequence can be expressed as the standard part of the value a H of the natural extension of the sequence at an infinite hypernatural index n=H. Thus, lim n → ∞ a n = st , here the standard part function st rounds off each finite hyperreal number to the nearest real number. This formalizes the intuition that for very large values of the index. Conversely, the part of a hyperreal a = represented in the ultrapower construction by a Cauchy sequence, is simply the limit of that sequence
29.
Uniform convergence
–
In the mathematical field of analysis, uniform convergence is a type of convergence stronger than pointwise convergence. Loosely speaking, this means that f n converges to f at a speed on its entire domain. In contrast, we say that f n converges to f pointwise, if exists a N. It is clear from these definitions that uniform convergence of f n to f on E implies pointwise convergence for every x ∈ E, frequently, no special symbol is used, and authors simply write f n → f u n i f o r m l y. The difference between the two types of convergence was not fully appreciated early in the history of calculus, leading to instances of faulty reasoning, Uniform convergence to a function on a given interval can be defined in terms of the uniform norm. Completely standard notions of convergence did not exist at the time, when put into the modern language, what Cauchy proved is that a uniformly convergent sequence of continuous functions has a continuous limit. While he thought it a fact when a series converged in this way, he did not give a formal definition. Independently, similar concepts were articulated by Philipp Ludwig von Seidel, suppose E is a set and f n, E → R are real-valued functions. This is the Cauchy criterion for uniform convergence, in another equivalent formulation, if we define a n = sup x ∈ E | f n − f |, then f n converges to f uniformly if and only if a n →0 as n → ∞. The sequence n ∈ N is said to be uniformly convergent with limit f if E is a metric space and for every x in E. It is easy to see that local uniform convergence implies pointwise convergence and it is also clear that uniform convergence implies local uniform convergence. Note that interchanging the order of there exists N and for all x in the definition above results in a statement equivalent to the convergence of the sequence. In explicit terms, in the case of convergence, N can only depend on ϵ, while in the case of pointwise convergence. It is therefore plain that uniform convergence implies pointwise convergence, the converse is not true, as the example in the section below illustrates. One may straightforwardly extend the concept to functions S → M, the most general setting is the uniform convergence of nets of functions S → X, where X is a uniform space. The above-mentioned theorem, stating that the limit of continuous functions is continuous. Uniform convergence admits a simplified definition in a hyperreal setting, thus, a sequence f n converges to f uniformly if for all x in the domain of f* and all infinite n, f n ∗ is infinitely close to f ∗. Then uniform convergence simply means convergence in the norm topology