1.
Chad Trujillo
–
Chadwick A. Chad Trujillo is an American astronomer, discoverer of minor planets and the co-discoverer of Eris, the most massive dwarf planet known in the Solar System. Trujillo works with software and has examined the orbits of the numerous trans-Neptunian objects. In late August 2005, it was announced that Trujillo, along with Michael E. Brown, as a result of the discovery of the satellite Dysnomia, Eris was the first TNO known to be more massive than Pluto. Trujillo attended Oak Park and River Forest High School in Oak Park, Trujillo was later a postdoctoral scholar at Caltech, and is currently an astronomer at the Gemini Observatory in Hawaii. He studies the Kuiper belt and the outer Solar System, the main-belt asteroid 12101 Trujillo is named for him. Trujillo is credited by the Minor Planet Center with the discovery and co-discovery of 50 numbered minor planets between 1996 and 2007, including many trans-Neptunian objects from the Kuiper belt, makemake, co-discovered with Brown and Rabinowitz in 2005, one of the first 5 official dwarf planets
2.
Minor planet
–
A minor planet is an astronomical object in direct orbit around the Sun that is neither a planet nor exclusively classified as a comet. Minor planets can be dwarf planets, asteroids, trojans, centaurs, Kuiper belt objects, as of 2016, the orbits of 709,706 minor planets were archived at the Minor Planet Center,469,275 of which had received permanent numbers. The first minor planet to be discovered was Ceres in 1801, the term minor planet has been used since the 19th century to describe these objects. The term planetoid has also used, especially for larger objects such as those the International Astronomical Union has called dwarf planets since 2006. Historically, the asteroid, minor planet, and planetoid have been more or less synonymous. This terminology has become complicated by the discovery of numerous minor planets beyond the orbit of Jupiter. A Minor planet seen releasing gas may be classified as a comet. Before 2006, the IAU had officially used the term minor planet, during its 2006 meeting, the IAU reclassified minor planets and comets into dwarf planets and small Solar System bodies. Objects are called dwarf planets if their self-gravity is sufficient to achieve hydrostatic equilibrium, all other minor planets and comets are called small Solar System bodies. The IAU stated that the minor planet may still be used. However, for purposes of numbering and naming, the distinction between minor planet and comet is still used. Hundreds of thousands of planets have been discovered within the Solar System. The Minor Planet Center has documented over 167 million observations and 729,626 minor planets, of these,20,570 have official names. As of March 2017, the lowest-numbered unnamed minor planet is 1974 FV1, as of March 2017, the highest-numbered named minor planet is 458063 Gustavomuler. There are various broad minor-planet populations, Asteroids, traditionally, most have been bodies in the inner Solar System. Near-Earth asteroids, those whose orbits take them inside the orbit of Mars. Further subclassification of these, based on distance, is used, Apohele asteroids orbit inside of Earths perihelion distance. Aten asteroids, those that have semi-major axes of less than Earths, Apollo asteroids are those asteroids with a semimajor axis greater than Earths, while having a perihelion distance of 1.017 AU or less. Like Aten asteroids, Apollo asteroids are Earth-crossers, amor asteroids are those near-Earth asteroids that approach the orbit of Earth from beyond, but do not cross it
3.
Trans-Neptunian object
–
A trans-Neptunian object is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune,30 astronomical units. Twelve minor planets with a semi-major axis greater than 150 AU and perihelion greater than 30 AU are known, the first trans-Neptunian object to be discovered was Pluto in 1930. It took until 1992 to discover a second trans-Neptunian object orbiting the Sun directly,1992 QB1, as of February 2017 over 2,300 trans-Neptunian objects appear on the Minor Planet Centers List of Transneptunian Objects. Of these TNOs,2,000 have a perihelion farther out than Neptune, as of November 2016,242 of these have their orbits well-enough determined that they have been given a permanent minor planet designation. The largest known object is Pluto, followed by Eris,2007 OR10, Makemake. The Kuiper belt, scattered disk, and Oort cloud are three divisions of this volume of space, though treatments vary and a few objects such as Sedna do not fit easily into any division. The orbit of each of the planets is slightly affected by the influences of the other planets. Discrepancies in the early 1900s between the observed and expected orbits of Uranus and Neptune suggested that there were one or more additional planets beyond Neptune, the search for these led to the discovery of Pluto in February 1930, which was too small to explain the discrepancies. Revised estimates of Neptunes mass from the Voyager 2 flyby in 1989 showed that the problem was spurious, Pluto was easiest to find because it has the highest apparent magnitude of all known trans-Neptunian objects. It also has an inclination to the ecliptic than most other large TNOs. After Plutos discovery, American astronomer Clyde Tombaugh continued searching for years for similar objects. For a long time, no one searched for other TNOs as it was believed that Pluto. Only after the 1992 discovery of a second TNO,1992 QB1, a broad strip of the sky around the ecliptic was photographed and digitally evaluated for slowly moving objects. Hundreds of TNOs were found, with diameters in the range of 50 to 2,500 kilometers, Pluto and Eris were eventually classified as dwarf planets by the International Astronomical Union. Kuiper belt objects are classified into the following two groups, Resonant objects are locked in an orbital resonance with Neptune. Objects with a 1,2 resonance are called twotinos, and objects with a 2,3 resonance are called plutinos, after their most prominent member, classical Kuiper belt objects have no such resonance, moving on almost circular orbits, unperturbed by Neptune. Examples are 1992 QB1,50000 Quaoar and Makemake, the scattered disc contains objects farther from the Sun, usually with very irregular orbits. A typical example is the most massive known TNO, Eris, scattered-extended —Scattered-extended objects have a Tisserand parameter greater than 3 and have a time-averaged eccentricity greater than 0
4.
Scattered disc
–
The scattered disc is a distant circumstellar disc in the Solar System that is sparsely populated by icy minor planets, a subset of the broader family of trans-Neptunian objects. The scattered-disc objects have orbital eccentricities ranging as high as 0.8, inclinations as high as 40° and these extreme orbits are thought to be the result of gravitational scattering by the gas giants, and the objects continue to be subject to perturbation by the planet Neptune. Although the closest scattered-disc objects approach the Sun at about 30–35 AU and this makes scattered objects among the most distant and coldest objects in the Solar System. Eventually, perturbations from the giant planets send such objects towards the Sun, many Oort cloud objects are also thought to have originated in the scattered disc. Detached objects are not sharply distinct from scattered disc objects, during the 1980s, the use of CCD-based cameras in telescopes made it possible to directly produce electronic images that could then be readily digitized and transferred to digital images. Because the CCD captured more light than film and the blinking could now be done at a computer screen. A flood of new discoveries was the result, over a thousand objects were detected between 1992 and 2006. The first scattered-disc object to be recognised as such was 1996 TL66, three more were identified by the same survey in 1999,1999 CV118,1999 CY118, and 1999 CF119. The first object presently classified as an SDO to be discovered was 1995 TL8, as of 2011, over 200 SDOs have been identified, including 2007 UK126,2002 TC302, Eris, Sedna and 2004 VN112. Known trans-Neptunian objects are divided into two subpopulations, the Kuiper belt and the scattered disc. A third reservoir of trans-Neptunian objects, the Oort cloud, has been hypothesized, some researchers further suggest a transitional space between the scattered disc and the inner Oort cloud, populated with detached objects. Those in 3,2 resonances are known as plutinos, because Pluto is the largest member of their group, in contrast to the Kuiper belt, the scattered-disc population can be disturbed by Neptune. Scattered-disc objects come within range of Neptune at their closest approaches. Some objects, like 1999 TD10, blur the distinction and the Minor Planet Center, the MPC also makes a clear distinction between the Kuiper belt and the scattered disc, separating those objects in stable orbits from those in scattered orbits. Another term used is scattered Kuiper-belt object for bodies of the scattered disc and this delineation is inadequate over the age of the Solar System, since bodies trapped in resonances could pass from a scattering phase to a non-scattering phase numerous times. That is, trans-Neptunian objects could travel back and forth between the Kuiper belt and the disc over time. In the a >30 AU region, the region of the Solar System populated by objects with semi-major axes greater than 30 AU, the Minor Planet Center classifies the trans-Neptunian object 90377 Sedna as a scattered-disc object. Under this definition, an object with a greater than 40 AU could be classified as outside the scattered disc
5.
Perihelion and aphelion
–
The perihelion is the point in the orbit of a celestial body where it is nearest to its orbital focus, generally a star. It is the opposite of aphelion, which is the point in the orbit where the body is farthest from its focus. The word perihelion stems from the Ancient Greek words peri, meaning around or surrounding, aphelion derives from the preposition apo, meaning away, off, apart. According to Keplers first law of motion, all planets, comets. Hence, a body has a closest and a farthest point from its parent object, that is, a perihelion. Each extreme is known as an apsis, orbital eccentricity measures the flatness of the orbit. Because of the distance at aphelion, only 93. 55% of the solar radiation from the Sun falls on a given area of land as does at perihelion. However, this fluctuation does not account for the seasons, as it is summer in the northern hemisphere when it is winter in the southern hemisphere and vice versa. Instead, seasons result from the tilt of Earths axis, which is 23.4 degrees away from perpendicular to the plane of Earths orbit around the sun. Winter falls on the hemisphere where sunlight strikes least directly, and summer falls where sunlight strikes most directly, in the northern hemisphere, summer occurs at the same time as aphelion. Despite this, there are larger land masses in the northern hemisphere, consequently, summers are 2.3 °C warmer in the northern hemisphere than in the southern hemisphere under similar conditions. Apsis Ellipse Solstice Dates and times of Earths perihelion and aphelion, 2000–2025 from the United States Naval Observatory
6.
Astronomical unit
–
The astronomical unit is a unit of length, roughly the distance from Earth to the Sun. However, that varies as Earth orbits the Sun, from a maximum to a minimum. Originally conceived as the average of Earths aphelion and perihelion, it is now defined as exactly 149597870700 metres, the astronomical unit is used primarily as a convenient yardstick for measuring distances within the Solar System or around other stars. However, it is also a component in the definition of another unit of astronomical length. A variety of symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A for the astronomical unit, in 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In 2012, the IAU, noting that various symbols are presently in use for the astronomical unit, in the 2014 revision of the SI Brochure, the BIPM used the unit symbol au. In ISO 80000-3, the symbol of the unit is ua. Earths orbit around the Sun is an ellipse, the semi-major axis of this ellipse is defined to be half of the straight line segment that joins the aphelion and perihelion. The centre of the sun lies on this line segment. In addition, it mapped out exactly the largest straight-line distance that Earth traverses over the course of a year, knowing Earths shift and a stars shift enabled the stars distance to be calculated. But all measurements are subject to some degree of error or uncertainty, improvements in precision have always been a key to improving astronomical understanding. Improving measurements were continually checked and cross-checked by means of our understanding of the laws of celestial mechanics, the expected positions and distances of objects at an established time are calculated from these laws, and assembled into a collection of data called an ephemeris. NASAs Jet Propulsion Laboratory provides one of several ephemeris computation services, in 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition. Equivalently, by definition, one AU is the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass. As with all measurements, these rely on measuring the time taken for photons to be reflected from an object. However, for precision the calculations require adjustment for such as the motions of the probe. In addition, the measurement of the time itself must be translated to a scale that accounts for relativistic time dilation
7.
Orders of magnitude (length)
–
The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Victoria, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake. 2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres. 13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe
8.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction
9.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit
10.
Mean anomaly
–
In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. Define T as the time required for a body to complete one orbit. In time T, the radius vector sweeps out 2π radians or 360°. The average rate of sweep, n, is then n =2 π T or n =360 ∘ T, define τ as the time at which the body is at the pericenter. From the above definitions, a new quantity, M, the mean anomaly can be defined M = n, because the rate of increase, n, is a constant average, the mean anomaly increases uniformly from 0 to 2π radians or 0° to 360° during each orbit. It is equal to 0 when the body is at the pericenter, π radians at the apocenter, if the mean anomaly is known at any given instant, it can be calculated at any later instant by simply adding n δt where δt represents the time difference. Mean anomaly does not measure an angle between any physical objects and it is simply a convenient uniform measure of how far around its orbit a body has progressed since pericenter. The mean anomaly is one of three parameters that define a position along an orbit, the other two being the eccentric anomaly and the true anomaly. Define l as the longitude, the angular distance of the body from the same reference direction. Thus mean anomaly is also M = l − ϖ, mean angular motion can also be expressed, n = μ a 3, where μ is a gravitational parameter which varies with the masses of the objects, and a is the semi-major axis of the orbit. Mean anomaly can then be expanded, M = μ a 3, and here mean anomaly represents uniform angular motion on a circle of radius a
11.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
12.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky
13.
Longitude of the ascending node
–
The longitude of the ascending node is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a direction, called the origin of longitude, to the direction of the ascending node. The ascending node is the point where the orbit of the passes through the plane of reference. Commonly used reference planes and origins of longitude include, For a geocentric orbit, Earths equatorial plane as the plane. In this case, the longitude is called the right ascension of the ascending node. The angle is measured eastwards from the First Point of Aries to the node, for a heliocentric orbit, the ecliptic as the reference plane, and the First Point of Aries as the origin of longitude. The angle is measured counterclockwise from the First Point of Aries to the node, the angle is measured eastwards from north to the node. pp.40,72,137, chap. In the case of a star known only from visual observations, it is not possible to tell which node is ascending. In this case the orbital parameter which is recorded is the longitude of the node, Ω, here, n=<nx, ny, nz> is a vector pointing towards the ascending node. The reference plane is assumed to be the xy-plane, and the origin of longitude is taken to be the positive x-axis, K is the unit vector, which is the normal vector to the xy reference plane. For non-inclined orbits, Ω is undefined, for computation it is then, by convention, set equal to zero, that is, the ascending node is placed in the reference direction, which is equivalent to letting n point towards the positive x-axis. Kepler orbits Equinox Orbital node perturbation of the plane can cause revolution of the ascending node
14.
Argument of periapsis
–
The argument of periapsis, symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the ascending node to its periapsis. For specific types of orbits, words such as perihelion, perigee, periastron, an argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the body will reach periapsis at its northmost distance from the plane of reference. Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis, however, especially in discussions of binary stars and exoplanets, the terms longitude of periapsis or longitude of periastron are often used synonymously with argument of periapsis. In the case of equatorial orbits, the argument is strictly undefined, where, ex and ey are the x- and y-components of the eccentricity vector e. In the case of circular orbits it is assumed that the periapsis is placed at the ascending node. Kepler orbit Orbital mechanics Orbital node
15.
Minimum orbit intersection distance
–
Minimum orbit intersection distance is a measure used in astronomy to assess potential close approaches and collision risks between astronomical objects. It is defined as the distance between the closest points of the orbits of two bodies. Of greatest interest is the risk of a collision with Earth, Earth MOID is often listed on comet and asteroid databases such as the JPL Small-Body Database. MOID values are defined with respect to other bodies as well, Jupiter MOID, Venus MOID. An object is classified as a hazardous object – that is, posing a possible risk to Earth – if, among other conditions. A low MOID does not mean that a collision is inevitable as the planets frequently perturb the orbit of small bodies. It is also necessary that the two bodies reach that point in their orbits at the time before the smaller body is perturbed into a different orbit with a different MOID value. Two Objects gravitationally locked in orbital resonance may never approach one another, numerical integrations become increasingly divergent as trajectories are projected further forward in time, especially beyond times where the smaller body is repeatedly perturbed by other planets. MOID has the convenience that it is obtained directly from the elements of the body. The only object that has ever been rated at 4 on the Torino Scale and this is not the smallest Earth MOID in the catalogues, many bodies with a small Earth MOID are not classed as PHOs because the objects are less than roughly 140 meters in diameter. Earth MOID values are more practical for asteroids less than 140 meters in diameter as those asteroids are very dim. It is even smaller at the more precise JPL Small Body Database
16.
Kilometre
–
The kilometre or kilometer is a unit of length in the metric system, equal to one thousand metres. K is occasionally used in some English-speaking countries as an alternative for the kilometre in colloquial writing. A slang term for the kilometre in the US military is klick, there are two common pronunciations for the word. It is generally preferred by the British Broadcasting Corporation and the Australian Broadcasting Corporation, many scientists and other users, particularly in countries where the metric system is not widely used, use the pronunciation with stress on the second syllable. The latter pronunciation follows the pattern used for the names of measuring instruments. The problem with this reasoning, however, is that the meter in those usages refers to a measuring device. The contrast is more obvious in countries using the British rather than American spelling of the word metre. When Australia introduced the system in 1975, the first pronunciation was declared official by the governments Metric Conversion Board. However, the Australian prime minister at the time, Gough Whitlam, by the 8 May 1790 decree, the Constituent assembly ordered the French Academy of Sciences to develop a new measurement system. In August 1793, the French National Convention decreed the metre as the length measurement system in the French Republic. The first name of the kilometre was Millaire, although the metre was formally defined in 1799, the myriametre was preferred to the kilometre for everyday use. The term myriamètre appeared a number of times in the text of Develeys book Physique dEmile, ou, Principes de la de la nature. French maps published in 1835 had scales showing myriametres and lieues de Poste, the Dutch, on the other hand, adopted the kilometre in 1817 but gave it the local name of the mijl. It was only in 1867 that the term became the only official unit of measure in the Netherlands to represent 1000 metres. In the US, the National Highway System Designation Act of 1995 prohibits the use of highway funds to convert existing signs or purchase new signs with metric units. Although the State DOTs had the option of using metric measurements or dual units, all of them abandoned metric measurements, the Manual on Uniform Traffic Control Devices since 2000 is published in both metric and American Customary Units. Some sporting disciplines feature 1000 m races in major events, but in other disciplines, even though records are catalogued
17.
Apparent magnitude
–
The apparent magnitude of a celestial object is a number that is a measure of its brightness as seen by an observer on Earth. The brighter an object appears, the lower its magnitude value, the Sun, at apparent magnitude of −27, is the brightest object in the sky. It is adjusted to the value it would have in the absence of the atmosphere, furthermore, the magnitude scale is logarithmic, a difference of one in magnitude corresponds to a change in brightness by a factor of 5√100, or about 2.512. The measurement of apparent magnitudes or brightnesses of celestial objects is known as photometry, apparent magnitudes are used to quantify the brightness of sources at ultraviolet, visible, and infrared wavelengths. An apparent magnitude is measured in a specific passband corresponding to some photometric system such as the UBV system. In standard astronomical notation, an apparent magnitude in the V filter band would be denoted either as mV or often simply as V, the scale used to indicate magnitude originates in the Hellenistic practice of dividing stars visible to the naked eye into six magnitudes. The brightest stars in the sky were said to be of first magnitude, whereas the faintest were of sixth magnitude. Each grade of magnitude was considered twice the brightness of the following grade and this rather crude scale for the brightness of stars was popularized by Ptolemy in his Almagest, and is generally believed to have originated with Hipparchus. This implies that a star of magnitude m is 2.512 times as bright as a star of magnitude m +1 and this figure, the fifth root of 100, became known as Pogsons Ratio. The zero point of Pogsons scale was defined by assigning Polaris a magnitude of exactly 2. However, with the advent of infrared astronomy it was revealed that Vegas radiation includes an Infrared excess presumably due to a disk consisting of dust at warm temperatures. At shorter wavelengths, there is negligible emission from dust at these temperatures, however, in order to properly extend the magnitude scale further into the infrared, this peculiarity of Vega should not affect the definition of the magnitude scale. Therefore, the scale was extrapolated to all wavelengths on the basis of the black body radiation curve for an ideal stellar surface at 11000 K uncontaminated by circumstellar radiation. On this basis the spectral irradiance for the zero magnitude point, with the modern magnitude systems, brightness over a very wide range is specified according to the logarithmic definition detailed below, using this zero reference. In practice such apparent magnitudes do not exceed 30, astronomers have developed other photometric zeropoint systems as alternatives to the Vega system. The AB magnitude zeropoint is defined such that an objects AB, the dimmer an object appears, the higher the numerical value given to its apparent magnitude, with a difference of 5 magnitudes corresponding to a brightness factor of exactly 100. Since an increase of 5 magnitudes corresponds to a decrease in brightness by a factor of exactly 100, each magnitude increase implies a decrease in brightness by the factor 5√100 ≈2.512. Inverting the above formula, a magnitude difference m1 − m2 = Δm implies a brightness factor of F2 F1 =100 Δ m 5 =100.4 Δ m ≈2.512 Δ m
18.
Eris (dwarf planet)
–
Eris is the most massive and second-largest dwarf planet known in the Solar System. It is also the known body directly orbiting the Sun. It is measured to be 2,326 ±12 kilometers in diameter, Eris is 27% more massive than dwarf planet Pluto, though Pluto is slightly larger by volume. Eris mass is about 0. 27% of the Earths mass, Eris was discovered in January 2005 by a Palomar Observatory-based team led by Mike Brown, and its identity was verified later that year. It is an object and a member of a high-eccentricity population known as the scattered disk. It has one moon, Dysnomia. As of February 2016, its distance from the Sun is 96.3 astronomical units, because Eris appeared to be larger than Pluto, NASA initially described it as the Solar Systems tenth planet. This, along with the prospect of other objects of similar size being discovered in the future, motivated the International Astronomical Union to define the term planet for the first time. Observations of an occultation by Eris in 2010 showed that its diameter was 2,326 ±12 kilometers, very slightly less than Pluto. Eris was discovered by the team of Mike Brown, Chad Trujillo, the discovery was announced on July 29,2005, the same day as Makemake and two days after Haumea, due in part to events that would later lead to controversy about Haumea. Routine observations were taken by the team on October 21,2003, in January 2005, the re-analysis revealed Eriss slow motion against the background stars. Follow-up observations were carried out to make a preliminary determination of Eriss orbit. More observations released in October 2005 revealed that Eris has a moon, observations of Dysnomias orbit permitted scientists to determine the mass of Eris, which in June 2007 they calculated to be ×1022 kg, 27%±2% greater than Plutos. Eris is named after the Greek goddess Eris, a personification of strife, the regular adjectival form of Eris is Eridian. As a result, for a time the object known to the wider public as Xena. Xena was a name used internally by the discovery team. It was inspired by the character of the television series Xena. The discovery team had saved the nickname Xena for the first body they discovered that was larger than Pluto
19.
Albedo
–
Albedo is a measure for reflectance or optical brightness. It is dimensionless and measured on a scale from zero to one, surface albedo is defined as the ratio of radiation reflected to the radiation incident on a surface. The proportion reflected is not only determined by properties of the surface itself and these factors vary with atmospheric composition, geographic location and time. While bi-hemispherical reflectance is calculated for an angle of incidence. The temporal resolution may range from seconds to daily, seasonal or annual averages, unless given for a specific wavelength, albedo refers to the entire spectrum of solar radiation. Due to measurement constraints, it is given for the spectrum in which most solar energy reaches the surface. This spectrum includes visible light, which explains why surfaces with a low albedo appear dark, albedo is an important concept in climatology, astronomy, and environmental management. The term albedo was introduced into optics by Johann Heinrich Lambert in his 1760 work Photometria, any albedo in visible light falls within a range of about 0.9 for fresh snow to about 0.04 for charcoal, one of the darkest substances. Deeply shadowed cavities can achieve an effective albedo approaching the zero of a black body, when seen from a distance, the ocean surface has a low albedo, as do most forests, whereas desert areas have some of the highest albedos among landforms. Most land areas are in a range of 0.1 to 0.4. The average albedo of Earth is about 0.3 and this is far higher than for the ocean primarily because of the contribution of clouds. Earths surface albedo is regularly estimated via Earth observation satellite sensors such as NASAs MODIS instruments on board the Terra, thereby, the BRDF allows to translate observations of reflectance into albedo. Earths average surface temperature due to its albedo and the effect is currently about 15 °C. If Earth were frozen entirely, the temperature of the planet would drop below −40 °C. If only the land masses became covered by glaciers, the mean temperature of the planet would drop to about 0 °C. In contrast, if the entire Earth was covered by water — a so-called aquaplanet — the average temperature on the planet would rise to almost 27 °C, hence, the actual albedo α can then be given as, α = α ¯ + D α ¯ ¯. Directional-hemispherical reflectance is sometimes referred to as black-sky albedo and bi-hemispherical reflectance as white-sky albedo and these terms are important because they allow the albedo to be calculated for any given illumination conditions from a knowledge of the intrinsic properties of the surface. The albedos of planets, satellites and asteroids can be used to infer much about their properties, the study of albedos, their dependence on wavelength, lighting angle, and variation in time comprises a major part of the astronomical field of photometry
20.
Apsis
–
An apsis is an extreme point in an objects orbit. The word comes via Latin from Greek and is cognate with apse, for elliptic orbits about a larger body, there are two apsides, named with the prefixes peri- and ap-, or apo- added to a reference to the thing being orbited. For a body orbiting the Sun, the point of least distance is the perihelion, the terms become periastron and apastron when discussing orbits around other stars. For any satellite of Earth including the Moon the point of least distance is the perigee, for objects in Lunar orbit, the point of least distance is the pericynthion and the greatest distance the apocynthion. For any orbits around a center of mass, there are the terms pericenter and apocenter, periapsis and apoapsis are equivalent alternatives. A straight line connecting the pericenter and apocenter is the line of apsides and this is the major axis of the ellipse, its greatest diameter. For a two-body system the center of mass of the lies on this line at one of the two foci of the ellipse. When one body is larger than the other it may be taken to be at this focus. Historically, in systems, apsides were measured from the center of the Earth. In orbital mechanics, the apsis technically refers to the distance measured between the centers of mass of the central and orbiting body. However, in the case of spacecraft, the family of terms are used to refer to the orbital altitude of the spacecraft from the surface of the central body. The arithmetic mean of the two limiting distances is the length of the axis a. The geometric mean of the two distances is the length of the semi-minor axis b, the geometric mean of the two limiting speeds is −2 ε = μ a which is the speed of a body in a circular orbit whose radius is a. The words pericenter and apocenter are often seen, although periapsis/apoapsis are preferred in technical usage, various related terms are used for other celestial objects. The -gee, -helion and -astron and -galacticon forms are used in the astronomical literature when referring to the Earth, Sun, stars. The suffix -jove is occasionally used for Jupiter, while -saturnium has very rarely used in the last 50 years for Saturn. The -gee form is used as a generic closest approach to planet term instead of specifically applying to the Earth. During the Apollo program, the terms pericynthion and apocynthion were used when referring to the Moon, regarding black holes, the term peri/apomelasma was used by physicist Geoffrey A. Landis in 1998 before peri/aponigricon appeared in the scientific literature in 2002
21.
Sun
–
The Sun is the star at the center of the Solar System. It is a perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. It is by far the most important source of energy for life on Earth. Its diameter is about 109 times that of Earth, and its mass is about 330,000 times that of Earth, accounting for about 99. 86% of the total mass of the Solar System. About three quarters of the Suns mass consists of hydrogen, the rest is mostly helium, with smaller quantities of heavier elements, including oxygen, carbon, neon. The Sun is a G-type main-sequence star based on its spectral class and it formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the center, whereas the rest flattened into a disk that became the Solar System. The central mass became so hot and dense that it eventually initiated nuclear fusion in its core and it is thought that almost all stars form by this process. The Sun is roughly middle-aged, it has not changed dramatically for more than four billion years and it is calculated that the Sun will become sufficiently large enough to engulf the current orbits of Mercury, Venus, and probably Earth. The enormous effect of the Sun on Earth has been recognized since prehistoric times, the synodic rotation of Earth and its orbit around the Sun are the basis of the solar calendar, which is the predominant calendar in use today. The English proper name Sun developed from Old English sunne and may be related to south, all Germanic terms for the Sun stem from Proto-Germanic *sunnōn. The English weekday name Sunday stems from Old English and is ultimately a result of a Germanic interpretation of Latin dies solis, the Latin name for the Sun, Sol, is not common in general English language use, the adjectival form is the related word solar. The term sol is used by planetary astronomers to refer to the duration of a solar day on another planet. A mean Earth solar day is approximately 24 hours, whereas a mean Martian sol is 24 hours,39 minutes, and 35.244 seconds. From at least the 4th Dynasty of Ancient Egypt, the Sun was worshipped as the god Ra, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the New Empire period, the Sun became identified with the dung beetle, in the form of the Sun disc Aten, the Sun had a brief resurgence during the Amarna Period when it again became the preeminent, if not only, divinity for the Pharaoh Akhenaton. The Sun is viewed as a goddess in Germanic paganism, Sól/Sunna, in ancient Roman culture, Sunday was the day of the Sun god. It was adopted as the Sabbath day by Christians who did not have a Jewish background, the symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions
22.
Opposition (planets)
–
In positional astronomy, two celestial bodies are said to be in opposition when they are on opposite sides of the sky, viewed from a given place. A planet is said to be in opposition when it is in opposition to the Sun, opposition occurs only in superior planets. The instant of opposition is defined as that when the apparent geocentric longitude of the body differs by 180° from the apparent geocentric longitude of the Sun. When it is in opposition, a lunar eclipse occurs. The astronomical symbol for opposition is ☍, handwritten, As seen from a planet that is superior, an inferior planet on the opposite side of the Sun is in superior conjunction with the Sun. An inferior conjunction occurs when the two lie in a line on the same side of the Sun. At inferior conjunction, the planet is in opposition to the Sun as seen from the inferior planet. Conjunction Positional astronomy Syzygy Asteroids around opposition – British Astronomical Association - Computing Section
23.
Sednoid
–
A sednoid is a trans-Neptunian object with a perihelion greater than 50 AU and a semi-major axis greater than 150 AU. Only two objects are known from this population,90377 Sedna and 2012 VP113, both of which have greater than 75 AU, but it is suspected that there are many more. These objects lie outside an apparently nearly empty gap in the Solar System starting at about 50 AU and they are usually grouped with the detached objects. The sednoids orbits cannot be explained by perturbations from the giant planets and their orbits could have been disrupted by an as-yet-unknown planet-sized body beyond the Kuiper belt such as the hypothesized Planet Nine. They could have captured from around passing stars, most likely in the Suns birth cluster. The two sednoids, like all of the more extreme detached objects, have an orientation of ≈ 0°.5 Gyr for Sedna. This suggests that one or more undiscovered massive perturbers may exist in the outer Solar System, a super-Earth at 250 AU would cause these objects to librate around ω = 0°±60° for billions of years. There are multiple possible configurations and a low-albedo super-Earth at that distance would have an apparent magnitude below the current all-sky-survey detection limits and this hypothetical super-Earth has been dubbed Telisto and Planet Nine. Larger, more-distant perturbers would also be too faint to be detected, fourteen known objects have a semi-major axis greater than 150 AU, a perihelion beyond Neptune, an argument of perihelion of 340°±55°, and an observation arc of more than 1 year. Each of the mechanisms for Sednas extreme orbit would leave a distinct mark on the structure. If a trans-Neptunian planet was responsible, all such objects would share roughly the same perihelion, if it rotated in the opposite direction, then two populations would form, one with low and one with high inclinations. The perturbations from passing stars would produce a variety of perihelia and inclinations, each dependent on the number. Acquiring a larger sample of objects would therefore help in determining which scenario is most likely. I call Sedna a fossil record of the earliest Solar System, eventually, when other fossil records are found, Sedna will help tell us how the Sun formed and the number of stars that were close to the Sun when it formed. A 2007–2008 survey by Brown, Rabinowitz and Schwamb attempted to locate another member of Sednas hypothetical population, although the survey was sensitive to movement out to 1,000 AU and discovered the likely dwarf planet 2007 OR10, it detected no new sednoids. Subsequent simulations incorporating the new data suggested about 40 Sedna-sized objects probably exist in this region, new icy body hints at planet lurking beyond Pluto
24.
2012 VP113
–
2012 VP113 is a planetoid in the outer reaches of the Solar System. It is the object with the farthest known perihelion in the Solar System and its discovery was announced on 26 March 2014. It has a magnitude of 4.0, which makes it likely to be a dwarf planet. It is expected to be half the size of Sedna. Its surface is thought to have a pink tinge, resulting from chemical changes produced by the effect of radiation on frozen water, methane and this optical color is consistent with formation in the gas-giant region and not the classical Kuiper belt, which is dominated by ultra-red colored objects. 2012 VP113 was first observed on 5 November 2012 with NOAOs 4-meter Víctor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory, carnegie’s 6. 5-meter Magellan telescope at Las Campanas Observatory in Chile was used to determine its orbit and surface properties. Before being announced to the public, it was tracked by Cerro Tololo Inter-American Observatory. It has an arc of about 2 years. Two precovery measurements from 22 October 2011 have been reported, a primary issue with observing it and finding precovery observations of it is that at an apparent magnitude of 23, it is too faint for most telescopes to easily observe. 2012 VP113 was abbreviated VP and nicknamed Biden by the team, after Joe Biden. 2012 VP113 has the largest perihelion distance of any object in the Solar System. Its last perihelion was around 1979, at a distance of 80 AU, it is currently 83 AU from the Sun. Only eight other Solar System objects are known to have larger than 47 AU. The paucity of bodies with perihelia at 50–75 AU appears not to be an observational artifact and it is possibly a member of a hypothesized Hills cloud. It has a perihelion, argument of perihelion, and current position in the sky similar to those of Sedna, in fact, all known Solar System bodies with semi-major axes over 150 AU and perihelia greater than Neptunes have arguments of perihelion clustered near 340 ± 55°. This could indicate a similar mechanism for these bodies. 2000 CR105 was the first such object discovered and it is currently unknown how 2012 VP113 acquired a perihelion distance beyond the Kuiper belt. The orbital architecture of the region may signal the presence of more than one planet
25.
2013 FZ27
–
2013 FZ27, also written 2013 FZ27, is a trans-Neptunian object that, as of 2014, is located near the edge of the Kuiper belt. Its discovery was announced on 2 April 2014 and it has an absolute magnitude of 4.0, which makes it likely to be a dwarf planet. Assuming an albedo of 0.15, it would be approximately 500 kilometres in diameter,2013 FZ27 will come to perihelion in September 2090, at a distance of 37. 98AU. As of 2014, it is 49 AU from the Sun and has an apparent magnitude of 21.1, first detected on 16 March 2013, it had an observation arc of about one year when announced. It came to opposition in late February 2014, four precovery images, by Pan-STARRS from 21 February 2013, were quickly located. Eight more precovery images, by Pan-STARRS from January and February 2011, have been located, later, three precovery observations by the Sloan Digital Sky Survey in February 2001 were also found, giving it a well-defined 13-year observation arc. The sednoid 2012 VP113 and the scattered-disc object 2013 FY27 were discovered by the survey as 2013 FZ27 and were announced a few days before
26.
Solar System
–
The Solar System is the gravitationally bound system comprising the Sun and the objects that orbit it, either directly or indirectly. Of those objects that orbit the Sun directly, the largest eight are the planets, with the remainder being significantly smaller objects, such as dwarf planets, of the objects that orbit the Sun indirectly, the moons, two are larger than the smallest planet, Mercury. The Solar System formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. The vast majority of the mass is in the Sun. The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being composed of rock. The four outer planets are giant planets, being more massive than the terrestrials. All planets have almost circular orbits that lie within a flat disc called the ecliptic. The Solar System also contains smaller objects, the asteroid belt, which lies between the orbits of Mars and Jupiter, mostly contains objects composed, like the terrestrial planets, of rock and metal. Beyond Neptunes orbit lie the Kuiper belt and scattered disc, which are populations of trans-Neptunian objects composed mostly of ices, within these populations are several dozen to possibly tens of thousands of objects large enough that they have been rounded by their own gravity. Such objects are categorized as dwarf planets, identified dwarf planets include the asteroid Ceres and the trans-Neptunian objects Pluto and Eris. In addition to two regions, various other small-body populations, including comets, centaurs and interplanetary dust clouds. Six of the planets, at least four of the dwarf planets, each of the outer planets is encircled by planetary rings of dust and other small objects. The solar wind, a stream of charged particles flowing outwards from the Sun, the heliopause is the point at which pressure from the solar wind is equal to the opposing pressure of the interstellar medium, it extends out to the edge of the scattered disc. The Oort cloud, which is thought to be the source for long-period comets, the Solar System is located in the Orion Arm,26,000 light-years from the center of the Milky Way. For most of history, humanity did not recognize or understand the concept of the Solar System, the invention of the telescope led to the discovery of further planets and moons. The principal component of the Solar System is the Sun, a G2 main-sequence star that contains 99. 86% of the known mass. The Suns four largest orbiting bodies, the giant planets, account for 99% of the mass, with Jupiter. The remaining objects of the Solar System together comprise less than 0. 002% of the Solar Systems total mass, most large objects in orbit around the Sun lie near the plane of Earths orbit, known as the ecliptic
27.
(225088) 2007 OR10
–
2007 OR10 is a trans-Neptunian object orbiting the Sun in the scattered disc, approximately 1500 kilometers in diameter. It is the third-largest known body in the Solar System past the orbit of Neptune, according to current estimates as of May 2016, it is slightly larger than Makemake or Haumea, and is hence almost certainly a dwarf planet. 2007 OR10 was discovered by California Institute of Technology astronomers as part of the PhD thesis of Megan E. Schwamb, Brown nicknamed the object Snow White for its presumed white color, because it would have to be very large or very bright to be detected by their survey. It was also the seventh dwarf discovered by Browns team, after Quaoar in 2002, Sedna in 2003, Haumea and Orcus in 2004, and Makemake and Eris in 2005. However,2007 OR10 turned out to be one of the reddest objects in the Kuiper belt, comparable only to Quaoar,2007 OR10 is currently the largest known object in the Solar System without an official name. However, as of 2015, Brown had yet to propose a name,2007 OR10 came to perihelion around 1857. As of February 2016 it is located 87.5 AU from the Sun and this makes it the third-farthest known large body in the Solar System, after V774104 and Eris, and farther out than Sedna. It has been farther from the Sun than Sedna since 2013,2007 OR10 will be farther than both Sedna and Eris by 2045, and it will reach aphelion in 2130. The size of an object can be calculated from its absolute magnitude,2007 OR10 has an absolute magnitude of 1.92, which makes it the fifth-brightest TNO known, a little less bright than Sedna and brighter than Orcus. 2007 OR10 is among the reddest objects known and this is probably in part due to methane frosts, which turn red when bombarded by sunlight and cosmic rays. The spectrum of 2007 OR10 shows signatures for both ice and methane, which makes it similar in composition to Quaoar. The presence of red methane frost on the surfaces of both 2007 OR10 and Quaoar implies the existence of a methane atmosphere on both objects, slowly evaporating into space. Although 2007 OR10 comes closer to the Sun than Quaoar, and is warm enough that a methane atmosphere should evaporate. In particular,2007 OR10s large size means that it is likely to retain even nitrogen, the presence of water ice on the surface of 2007 OR10 implies a brief period of cryovolcanism in its distant past. The Deep Ecliptic Survey shows the orbit to be in a 3,10 resonance with Neptune, the MPC lists it as a scattered-disc object. 2007 OR10 was discovered when searching for objects in the region of Sedna,2007 OR10 has been observed 46 times over seven oppositions with a precovery image from 1985. It was formally announced on 7 January 2009, the IAU has not addressed the possibility of accepting additional dwarf planets since before the discovery of 2007 OR10 was announced. If the orbit of OR10s small satellite can be determined, its mass could be calculated directly
28.
90377 Sedna
–
90377 Sedna is a large minor planet in the outer reaches of the Solar System that was, as of 2015, at a distance of about 86 astronomical units from the Sun, about three times as far as Neptune. Spectroscopy has revealed that Sednas surface composition is similar to that of some other objects, being largely a mixture of water, methane. Its surface is one of the reddest among Solar System objects and it is most likely a dwarf planet. Sedna has a long and elongated orbit, taking approximately 11,400 years to complete. These facts have led to speculation about its origin. The Minor Planet Center currently places Sedna in the scattered disc, others speculate that it might have been tugged into its current orbit by a passing star, perhaps one within the Suns birth cluster, or even that it was captured from another star system. Another hypothesis suggests that its orbit may be evidence for a planet beyond the orbit of Neptune. Astronomer Michael E. Sedna was discovered by Michael Brown, Chad Trujillo, the discovery formed part of a survey begun in 2001 with the Samuel Oschin telescope at Palomar Observatory near San Diego, California using Yales 160 megapixel Palomar Quest camera. On that day, an object was observed to move by 4.6 arcseconds over 3.1 hours relative to stars, later, the object was precovered on older images made by the Samuel Oschin telescope as well as on images from the Near-Earth Asteroid Tracking consortium. These previous positions expanded its known orbital arc and allowed a precise calculation of its orbit. The team made the name Sedna public before the object had been officially numbered, brian Marsden, the head of the Minor Planet Center, said that such an action was a violation of protocol, and that some members of the IAU might vote against it. However, no objection was raised to the name, and no competing names were suggested, Sedna has the longest orbital period of any known object in the Solar System of comparable size or larger, calculated at around 11,400 years. Its orbit is eccentric, with an aphelion estimated at 937 AU. This perihelion was the largest of that of any known Solar System object until the discovery of 2012 VP113, at its aphelion, Sedna orbits the Sun at a mere 4% of Earths orbital speed. When Sedna was discovered it was 89.6 AU from the Sun approaching perihelion, Eris was later detected by the same survey near aphelion at 97 AU. Only the orbits of some long-period comets extend farther than that of Sedna, when first discovered, Sedna was thought to have an unusually long rotational period. It was initially speculated that Sednas rotation was slowed by the pull of a large binary companion. Sedna has a V-band absolute magnitude of about 1.8, at the time of its discovery it was the intrinsically brightest object found in the Solar System since Pluto in 1930
29.
2010 GB174
–
2010 GB174 is a detached object. It never gets closer than 48.5 AU from the Sun and its large eccentricity strongly suggests that it was gravitationally scattered onto its current orbit. It is, like all detached objects, outside the current influence of Neptune,2010 GB174 has the third highest Tisserand parameter relative to Jupiter of any Trans-Neptunian object, after Sedna and 2012 VP113. It has not been observed since 2012 and it comes to opposition 27 March 2016 in the constellation of Virgo. It reached perihelion around 1952 and has moved beyond 70 AU in September 2014 and it is possibly a dwarf planet. List of Solar System objects most distant from the Sun in 20152010 GB174 at the JPL Small-Body Database Discovery · Orbit diagram · Orbital elements · Physical parameters