1.
Johann Palisa
–
Johann Palisa was an Austrian astronomer, born in Troppau in Austrian Silesia. He was a discoverer of asteroids, discovering 122 in all. Some of his discoveries include 153 Hilda,216 Kleopatra,243 Ida,253 Mathilde,324 Bamberga. He was awarded the Valz Prize from the French Academy of Sciences in 1906, the Phocaea main-belt asteroid 914 Palisana, discovered by Max Wolf in 1919, and the lunar crater Palisa were named in his honour. From 1866 to 1870, Palisa studied mathematics and astronomy at the University of Vienna, however, despite this, by 1870 he was an assistant at the Universitys observatory, and a year later gained a position at the observatory in Geneva. A few years later, in 1872, at the age of 24, while at Pula, he discovered his first asteroid,136 Austria, on March 18,1874. Along with this, he discovered twenty-seven minor planets and one comet, during his stay in Pula he used a small six-inch refractor telescope to aid in his research. Between 1874 and 1923 Palisa discovered 122 asteroids ranging from 136 Austria to 1073 Gellivara and he worked from Pola and Vienna. He also discovered the parabolic comet C/1879 Q1 in the year 1879, one of his discoveries was 253 Mathilde, which was visited by the spacecraft NEAR Shoemaker on June 27,1997. The robotic probe passed within 1200 km of Mathilde at 12,56 UT at 9.93 km/s, returning imaging and other instrument data including over 500 images which covered 60% of Mathildes surface. Portraits of Johann Palisa from the Lick Observatory Records Digital Archive, UC Santa Cruz Librarys Digital Collections von Hepperger, J. Anzeige des Todes von Johann Palisa
2.
Minor planet
–
A minor planet is an astronomical object in direct orbit around the Sun that is neither a planet nor exclusively classified as a comet. Minor planets can be dwarf planets, asteroids, trojans, centaurs, Kuiper belt objects, as of 2016, the orbits of 709,706 minor planets were archived at the Minor Planet Center,469,275 of which had received permanent numbers. The first minor planet to be discovered was Ceres in 1801, the term minor planet has been used since the 19th century to describe these objects. The term planetoid has also used, especially for larger objects such as those the International Astronomical Union has called dwarf planets since 2006. Historically, the asteroid, minor planet, and planetoid have been more or less synonymous. This terminology has become complicated by the discovery of numerous minor planets beyond the orbit of Jupiter. A Minor planet seen releasing gas may be classified as a comet. Before 2006, the IAU had officially used the term minor planet, during its 2006 meeting, the IAU reclassified minor planets and comets into dwarf planets and small Solar System bodies. Objects are called dwarf planets if their self-gravity is sufficient to achieve hydrostatic equilibrium, all other minor planets and comets are called small Solar System bodies. The IAU stated that the minor planet may still be used. However, for purposes of numbering and naming, the distinction between minor planet and comet is still used. Hundreds of thousands of planets have been discovered within the Solar System. The Minor Planet Center has documented over 167 million observations and 729,626 minor planets, of these,20,570 have official names. As of March 2017, the lowest-numbered unnamed minor planet is 1974 FV1, as of March 2017, the highest-numbered named minor planet is 458063 Gustavomuler. There are various broad minor-planet populations, Asteroids, traditionally, most have been bodies in the inner Solar System. Near-Earth asteroids, those whose orbits take them inside the orbit of Mars. Further subclassification of these, based on distance, is used, Apohele asteroids orbit inside of Earths perihelion distance. Aten asteroids, those that have semi-major axes of less than Earths, Apollo asteroids are those asteroids with a semimajor axis greater than Earths, while having a perihelion distance of 1.017 AU or less. Like Aten asteroids, Apollo asteroids are Earth-crossers, amor asteroids are those near-Earth asteroids that approach the orbit of Earth from beyond, but do not cross it
3.
Asteroid belt
–
The asteroid belt is the circumstellar disc in the Solar System located roughly between the orbits of the planets Mars and Jupiter. It is occupied by numerous irregularly shaped bodies called asteroids or minor planets, the asteroid belt is also termed the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System such as near-Earth asteroids and trojan asteroids. About half the mass of the belt is contained in the four largest asteroids, Ceres, Vesta, Pallas, the total mass of the asteroid belt is approximately 4% that of the Moon, or 22% that of Pluto, and roughly twice that of Plutos moon Charon. Ceres, the belts only dwarf planet, is about 950 km in diameter, whereas Vesta, Pallas. The remaining bodies range down to the size of a dust particle, the asteroid material is so thinly distributed that numerous unmanned spacecraft have traversed it without incident. Nonetheless, collisions between large asteroids do occur, and these can form a family whose members have similar orbital characteristics. Individual asteroids within the belt are categorized by their spectra. The asteroid belt formed from the solar nebula as a group of planetesimals. Planetesimals are the precursors of the protoplanets. Between Mars and Jupiter, however, gravitational perturbations from Jupiter imbued the protoplanets with too much energy for them to accrete into a planet. Collisions became too violent, and instead of fusing together, the planetesimals, as a result,99. 9% of the asteroid belts original mass was lost in the first 100 million years of the Solar Systems history. Some fragments eventually found their way into the inner Solar System, Asteroid orbits continue to be appreciably perturbed whenever their period of revolution about the Sun forms an orbital resonance with Jupiter. At these orbital distances, a Kirkwood gap occurs as they are swept into other orbits. Classes of small Solar System bodies in other regions are the objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids. On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on Ceres, the detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding was unexpected because comets, not asteroids, are considered to sprout jets. According to one of the scientists, The lines are becoming more and more blurred between comets and asteroids. This pattern, now known as the Titius–Bode law, predicted the semi-major axes of the six planets of the provided one allowed for a gap between the orbits of Mars and Jupiter
4.
Flora family
–
The Flora or Florian family of asteroids is a large grouping of S-type asteroids in the inner main belt, whose origin and properties are relatively poorly understood at present. Roughly 4–5% of all main belt asteroids belong to this family, the Flora family of asteroids may be the source of the Chicxulub impactor, the likely culprit in the extinction of the dinosaurs. The largest member is 8 Flora, which measures 140 km in diameter, nevertheless, the parent body was almost certainly disrupted by the impact/s that formed the family, and Flora is probably a gravitational aggregate of most of the pieces. 43 Ariadne makes up much of the mass, with the remaining family members being fairly small. A noticeable fraction of the parent body has been lost from the family since the original impact, for example, it has been estimated that Flora contains only about 57% of the parent bodys mass, but about 80% of the mass in the present family. The Flora family is broad and gradually fades into the background population in such a way that its boundaries are very poorly defined. There are also several non-uniformities or lobes within the family, one cause of which may have been later secondary collisions between family members, hence, it is a classical example of a so-called asteroid clan. Curiously, the largest members,8 Flora and 43 Ariadne, are located near the edge of the family, the reason for this unusual mass distribution within the family is unknown at present. 951 Gaspra, a core family member was visited by the Galileo spacecraft on its way to Jupiter. Studies of Gaspra suggests that the age is of the order of 200 million years. The Flora family members are considered candidates for being the parent bodies of the L chondrite meteorites. The Flora family was one of the five original Hirayama families that were first identified and it has a high number of early discovered members both because S-type asteroids tend to have high albedo, and because it is the closest major asteroid grouping to Earth. A HCM numerical analysis determined a large group of family members, whose proper orbital elements lie in the approximate ranges The boundaries of the family are, however. At the present epoch, the range of osculating orbital elements of these members is Zappalas 1995 analysis found 604 core members. A search of a recent proper element database for 96944 minor planets in 2005 yielded 7438 objects lying within the region defined by the first table above. However, this includes parts of the Vesta and Nysa families in the corners so that a more likely membership estimate is 4000–5000 objects. This means that the Flora family represents 4–5% of all main belt asteroids, because of the high background density of asteroids in this part of space, one might expect that a great number of interlopers would be present. This is because interlopers are hard to distinguish family members because the family is of the same spectral type that dominates the inner main belt overall
5.
Perihelion and aphelion
–
The perihelion is the point in the orbit of a celestial body where it is nearest to its orbital focus, generally a star. It is the opposite of aphelion, which is the point in the orbit where the body is farthest from its focus. The word perihelion stems from the Ancient Greek words peri, meaning around or surrounding, aphelion derives from the preposition apo, meaning away, off, apart. According to Keplers first law of motion, all planets, comets. Hence, a body has a closest and a farthest point from its parent object, that is, a perihelion. Each extreme is known as an apsis, orbital eccentricity measures the flatness of the orbit. Because of the distance at aphelion, only 93. 55% of the solar radiation from the Sun falls on a given area of land as does at perihelion. However, this fluctuation does not account for the seasons, as it is summer in the northern hemisphere when it is winter in the southern hemisphere and vice versa. Instead, seasons result from the tilt of Earths axis, which is 23.4 degrees away from perpendicular to the plane of Earths orbit around the sun. Winter falls on the hemisphere where sunlight strikes least directly, and summer falls where sunlight strikes most directly, in the northern hemisphere, summer occurs at the same time as aphelion. Despite this, there are larger land masses in the northern hemisphere, consequently, summers are 2.3 °C warmer in the northern hemisphere than in the southern hemisphere under similar conditions. Apsis Ellipse Solstice Dates and times of Earths perihelion and aphelion, 2000–2025 from the United States Naval Observatory
6.
Astronomical unit
–
The astronomical unit is a unit of length, roughly the distance from Earth to the Sun. However, that varies as Earth orbits the Sun, from a maximum to a minimum. Originally conceived as the average of Earths aphelion and perihelion, it is now defined as exactly 149597870700 metres, the astronomical unit is used primarily as a convenient yardstick for measuring distances within the Solar System or around other stars. However, it is also a component in the definition of another unit of astronomical length. A variety of symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A for the astronomical unit, in 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In 2012, the IAU, noting that various symbols are presently in use for the astronomical unit, in the 2014 revision of the SI Brochure, the BIPM used the unit symbol au. In ISO 80000-3, the symbol of the unit is ua. Earths orbit around the Sun is an ellipse, the semi-major axis of this ellipse is defined to be half of the straight line segment that joins the aphelion and perihelion. The centre of the sun lies on this line segment. In addition, it mapped out exactly the largest straight-line distance that Earth traverses over the course of a year, knowing Earths shift and a stars shift enabled the stars distance to be calculated. But all measurements are subject to some degree of error or uncertainty, improvements in precision have always been a key to improving astronomical understanding. Improving measurements were continually checked and cross-checked by means of our understanding of the laws of celestial mechanics, the expected positions and distances of objects at an established time are calculated from these laws, and assembled into a collection of data called an ephemeris. NASAs Jet Propulsion Laboratory provides one of several ephemeris computation services, in 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition. Equivalently, by definition, one AU is the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass. As with all measurements, these rely on measuring the time taken for photons to be reflected from an object. However, for precision the calculations require adjustment for such as the motions of the probe. In addition, the measurement of the time itself must be translated to a scale that accounts for relativistic time dilation
7.
Orders of magnitude (length)
–
The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Victoria, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake. 2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres. 13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe
8.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction
9.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit
10.
Mean anomaly
–
In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. Define T as the time required for a body to complete one orbit. In time T, the radius vector sweeps out 2π radians or 360°. The average rate of sweep, n, is then n =2 π T or n =360 ∘ T, define τ as the time at which the body is at the pericenter. From the above definitions, a new quantity, M, the mean anomaly can be defined M = n, because the rate of increase, n, is a constant average, the mean anomaly increases uniformly from 0 to 2π radians or 0° to 360° during each orbit. It is equal to 0 when the body is at the pericenter, π radians at the apocenter, if the mean anomaly is known at any given instant, it can be calculated at any later instant by simply adding n δt where δt represents the time difference. Mean anomaly does not measure an angle between any physical objects and it is simply a convenient uniform measure of how far around its orbit a body has progressed since pericenter. The mean anomaly is one of three parameters that define a position along an orbit, the other two being the eccentric anomaly and the true anomaly. Define l as the longitude, the angular distance of the body from the same reference direction. Thus mean anomaly is also M = l − ϖ, mean angular motion can also be expressed, n = μ a 3, where μ is a gravitational parameter which varies with the masses of the objects, and a is the semi-major axis of the orbit. Mean anomaly can then be expanded, M = μ a 3, and here mean anomaly represents uniform angular motion on a circle of radius a
11.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
12.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky
13.
Longitude of the ascending node
–
The longitude of the ascending node is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a direction, called the origin of longitude, to the direction of the ascending node. The ascending node is the point where the orbit of the passes through the plane of reference. Commonly used reference planes and origins of longitude include, For a geocentric orbit, Earths equatorial plane as the plane. In this case, the longitude is called the right ascension of the ascending node. The angle is measured eastwards from the First Point of Aries to the node, for a heliocentric orbit, the ecliptic as the reference plane, and the First Point of Aries as the origin of longitude. The angle is measured counterclockwise from the First Point of Aries to the node, the angle is measured eastwards from north to the node. pp.40,72,137, chap. In the case of a star known only from visual observations, it is not possible to tell which node is ascending. In this case the orbital parameter which is recorded is the longitude of the node, Ω, here, n=<nx, ny, nz> is a vector pointing towards the ascending node. The reference plane is assumed to be the xy-plane, and the origin of longitude is taken to be the positive x-axis, K is the unit vector, which is the normal vector to the xy reference plane. For non-inclined orbits, Ω is undefined, for computation it is then, by convention, set equal to zero, that is, the ascending node is placed in the reference direction, which is equivalent to letting n point towards the positive x-axis. Kepler orbits Equinox Orbital node perturbation of the plane can cause revolution of the ascending node
14.
Argument of periapsis
–
The argument of periapsis, symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the ascending node to its periapsis. For specific types of orbits, words such as perihelion, perigee, periastron, an argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the body will reach periapsis at its northmost distance from the plane of reference. Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis, however, especially in discussions of binary stars and exoplanets, the terms longitude of periapsis or longitude of periastron are often used synonymously with argument of periapsis. In the case of equatorial orbits, the argument is strictly undefined, where, ex and ey are the x- and y-components of the eccentricity vector e. In the case of circular orbits it is assumed that the periapsis is placed at the ascending node. Kepler orbit Orbital mechanics Orbital node
15.
Kilometre
–
The kilometre or kilometer is a unit of length in the metric system, equal to one thousand metres. K is occasionally used in some English-speaking countries as an alternative for the kilometre in colloquial writing. A slang term for the kilometre in the US military is klick, there are two common pronunciations for the word. It is generally preferred by the British Broadcasting Corporation and the Australian Broadcasting Corporation, many scientists and other users, particularly in countries where the metric system is not widely used, use the pronunciation with stress on the second syllable. The latter pronunciation follows the pattern used for the names of measuring instruments. The problem with this reasoning, however, is that the meter in those usages refers to a measuring device. The contrast is more obvious in countries using the British rather than American spelling of the word metre. When Australia introduced the system in 1975, the first pronunciation was declared official by the governments Metric Conversion Board. However, the Australian prime minister at the time, Gough Whitlam, by the 8 May 1790 decree, the Constituent assembly ordered the French Academy of Sciences to develop a new measurement system. In August 1793, the French National Convention decreed the metre as the length measurement system in the French Republic. The first name of the kilometre was Millaire, although the metre was formally defined in 1799, the myriametre was preferred to the kilometre for everyday use. The term myriamètre appeared a number of times in the text of Develeys book Physique dEmile, ou, Principes de la de la nature. French maps published in 1835 had scales showing myriametres and lieues de Poste, the Dutch, on the other hand, adopted the kilometre in 1817 but gave it the local name of the mijl. It was only in 1867 that the term became the only official unit of measure in the Netherlands to represent 1000 metres. In the US, the National Highway System Designation Act of 1995 prohibits the use of highway funds to convert existing signs or purchase new signs with metric units. Although the State DOTs had the option of using metric measurements or dual units, all of them abandoned metric measurements, the Manual on Uniform Traffic Control Devices since 2000 is published in both metric and American Customary Units. Some sporting disciplines feature 1000 m races in major events, but in other disciplines, even though records are catalogued
16.
Mass
–
In physics, mass is a property of a physical body. It is the measure of a resistance to acceleration when a net force is applied. It also determines the strength of its gravitational attraction to other bodies. The basic SI unit of mass is the kilogram, Mass is not the same as weight, even though mass is often determined by measuring the objects weight using a spring scale, rather than comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity and this is because weight is a force, while mass is the property that determines the strength of this force. In Newtonian physics, mass can be generalized as the amount of matter in an object, however, at very high speeds, special relativity postulates that energy is an additional source of mass. Thus, any body having mass has an equivalent amount of energy. In addition, matter is a defined term in science. There are several distinct phenomena which can be used to measure mass, active gravitational mass measures the gravitational force exerted by an object. Passive gravitational mass measures the force exerted on an object in a known gravitational field. The mass of an object determines its acceleration in the presence of an applied force, according to Newtons second law of motion, if a body of fixed mass m is subjected to a single force F, its acceleration a is given by F/m. A bodys mass also determines the degree to which it generates or is affected by a gravitational field and this is sometimes referred to as gravitational mass. The standard International System of Units unit of mass is the kilogram, the kilogram is 1000 grams, first defined in 1795 as one cubic decimeter of water at the melting point of ice. Then in 1889, the kilogram was redefined as the mass of the prototype kilogram. As of January 2013, there are proposals for redefining the kilogram yet again. In this context, the mass has units of eV/c2, the electronvolt and its multiples, such as the MeV, are commonly used in particle physics. The atomic mass unit is 1/12 of the mass of a carbon-12 atom, the atomic mass unit is convenient for expressing the masses of atoms and molecules. Outside the SI system, other units of mass include, the slug is an Imperial unit of mass, the pound is a unit of both mass and force, used mainly in the United States
17.
Density
–
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume, ρ = m V, where ρ is the density, m is the mass, and V is the volume. In some cases, density is defined as its weight per unit volume. For a pure substance the density has the numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity, osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. Thus a relative density less than one means that the floats in water. The density of a material varies with temperature and pressure and this variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object, increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a results in convection of the heat from the bottom to the top. This causes it to rise relative to more dense unheated material, the reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is a property in that increasing the amount of a substance does not increase its density. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass, upon this discovery, he leapt from his bath and ran naked through the streets shouting, Eureka. As a result, the term eureka entered common parlance and is used today to indicate a moment of enlightenment, the story first appeared in written form in Vitruvius books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time, from the equation for density, mass density has units of mass divided by volume. As there are units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per metre and the cgs unit of gram per cubic centimetre are probably the most commonly used units for density.1,000 kg/m3 equals 1 g/cm3. In industry, other larger or smaller units of mass and or volume are often more practical, see below for a list of some of the most common units of density
18.
Hour
–
An hour is a unit of time conventionally reckoned as 1⁄24 of a day and scientifically reckoned as 3, 599–3,601 seconds, depending on conditions. The seasonal, temporal, or unequal hour was established in the ancient Near East as 1⁄12 of the night or daytime, such hours varied by season, latitude, and weather. It was subsequently divided into 60 minutes, each of 60 seconds, the modern English word hour is a development of the Anglo-Norman houre and Middle English ure, first attested in the 13th century. It displaced the Old English tide and stound, the Anglo-Norman term was a borrowing of Old French ure, a variant of ore, which derived from Latin hōra and Greek hṓrā. Like Old English tīd and stund, hṓrā was originally a word for any span of time, including seasons. Its Proto-Indo-European root has been reconstructed as *yeh₁-, making hour distantly cognate with year, the time of day is typically expressed in English in terms of hours. Whole hours on a 12-hour clock are expressed using the contracted phrase oclock, Hours on a 24-hour clock are expressed as hundred or hundred hours. Fifteen and thirty minutes past the hour is expressed as a quarter past or after and half past, respectively, fifteen minutes before the hour may be expressed as a quarter to, of, till, or before the hour. Sumerian and Babylonian hours divided the day and night into 24 equal hours, the ancient Egyptians began dividing the night into wnwt at some time before the compilation of the Dynasty V Pyramid Texts in the 24th century BC. By 2150 BC, diagrams of stars inside Egyptian coffin lids—variously known as diagonal calendars or star clocks—attest that there were exactly 12 of these. The coffin diagrams show that the Egyptians took note of the risings of 36 stars or constellations. Each night, the rising of eleven of these decans were noted, the original decans used by the Egyptians would have fallen noticeably out of their proper places over a span of several centuries. By the time of Amenhotep III, the priests at Karnak were using water clocks to determine the hours and these were filled to the brim at sunset and the hour determined by comparing the water level against one of its twelve gauges, one for each month of the year. During the New Kingdom, another system of decans was used, the later division of the day into 12 hours was accomplished by sundials marked with ten equal divisions. The morning and evening periods when the failed to note time were observed as the first and last hours. The Egyptian hours were closely connected both with the priesthood of the gods and with their divine services, by the New Kingdom, each hour was conceived as a specific region of the sky or underworld through which Ras solar bark travelled. Protective deities were assigned to each and were used as the names of the hours, as the protectors and resurrectors of the sun, the goddesses of the night hours were considered to hold power over all lifespans and thus became part of Egyptian funerary rituals. The Egyptian for astronomer, used as a synonym for priest, was wnwty, the earliest forms of wnwt include one or three stars, with the later solar hours including the determinative hieroglyph for sun
19.
Day
–
In common usage, it is either an interval equal to 24 hours or daytime, the consecutive period of time during which the Sun is above the horizon. The period of time during which the Earth completes one rotation with respect to the Sun is called a solar day, several definitions of this universal human concept are used according to context, need and convenience. In 1960, the second was redefined in terms of the motion of the Earth. The unit of measurement day, redefined in 1960 as 86400 SI seconds and symbolized d, is not an SI unit, but is accepted for use with SI. The word day may also refer to a day of the week or to a date, as in answer to the question. The life patterns of humans and many species are related to Earths solar day. In recent decades the average length of a day on Earth has been about 86400.002 seconds. A day, understood as the span of time it takes for the Earth to make one rotation with respect to the celestial background or a distant star, is called a stellar day. This period of rotation is about 4 minutes less than 24 hours, mainly due to tidal effects, the Earths rotational period is not constant, resulting in further minor variations for both solar days and stellar days. Other planets and moons have stellar and solar days of different lengths to Earths, besides the day of 24 hours, the word day is used for several different spans of time based on the rotation of the Earth around its axis. An important one is the day, defined as the time it takes for the Sun to return to its culmination point. Because the Earth orbits the Sun elliptically as the Earth spins on an inclined axis, on average over the year this day is equivalent to 24 hours. A day, in the sense of daytime that is distinguished from night-time, is defined as the period during which sunlight directly reaches the ground. The length of daytime averages slightly more than half of the 24-hour day, two effects make daytime on average longer than nights. The Sun is not a point, but has an apparent size of about 32 minutes of arc, additionally, the atmosphere refracts sunlight in such a way that some of it reaches the ground even when the Sun is below the horizon by about 34 minutes of arc. So the first light reaches the ground when the centre of the Sun is still below the horizon by about 50 minutes of arc, the difference in time depends on the angle at which the Sun rises and sets, but can amount to around seven minutes. Ancient custom has a new day start at either the rising or setting of the Sun on the local horizon, the exact moment of, and the interval between, two sunrises or sunsets depends on the geographical position, and the time of year. A more constant day can be defined by the Sun passing through the local meridian, the exact moment is dependent on the geographical longitude, and to a lesser extent on the time of the year
20.
Temperature
–
A temperature is an objective comparative measurement of hot or cold. It is measured by a thermometer, several scales and units exist for measuring temperature, the most common being Celsius, Fahrenheit, and, especially in science, Kelvin. Absolute zero is denoted as 0 K on the Kelvin scale, −273.15 °C on the Celsius scale, the kinetic theory offers a valuable but limited account of the behavior of the materials of macroscopic bodies, especially of fluids. Temperature is important in all fields of science including physics, geology, chemistry, atmospheric sciences, medicine. The Celsius scale is used for temperature measurements in most of the world. Because of the 100 degree interval, it is called a centigrade scale.15, the United States commonly uses the Fahrenheit scale, on which water freezes at 32°F and boils at 212°F at sea-level atmospheric pressure. Many scientific measurements use the Kelvin temperature scale, named in honor of the Scottish physicist who first defined it and it is a thermodynamic or absolute temperature scale. Its zero point, 0K, is defined to coincide with the coldest physically-possible temperature and its degrees are defined through thermodynamics. The temperature of zero occurs at 0K = −273. 15°C. For historical reasons, the triple point temperature of water is fixed at 273.16 units of the measurement increment, Temperature is one of the principal quantities in the study of thermodynamics. There is a variety of kinds of temperature scale and it may be convenient to classify them as empirically and theoretically based. Empirical temperature scales are historically older, while theoretically based scales arose in the middle of the nineteenth century, empirically based temperature scales rely directly on measurements of simple physical properties of materials. For example, the length of a column of mercury, confined in a capillary tube, is dependent largely on temperature. Such scales are only within convenient ranges of temperature. For example, above the point of mercury, a mercury-in-glass thermometer is impracticable. A material is of no use as a thermometer near one of its phase-change temperatures, in spite of these restrictions, most generally used practical thermometers are of the empirically based kind. Especially, it was used for calorimetry, which contributed greatly to the discovery of thermodynamics, nevertheless, empirical thermometry has serious drawbacks when judged as a basis for theoretical physics. Theoretically based temperature scales are based directly on theoretical arguments, especially those of thermodynamics, kinetic theory and they rely on theoretical properties of idealized devices and materials
21.
Kelvin
–
The kelvin is a unit of measure for temperature based upon an absolute scale. It is one of the seven units in the International System of Units and is assigned the unit symbol K. The kelvin is defined as the fraction 1⁄273.16 of the temperature of the triple point of water. In other words, it is defined such that the point of water is exactly 273.16 K. The Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Lord Kelvin, unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or typeset as a degree. The kelvin is the unit of temperature measurement in the physical sciences, but is often used in conjunction with the Celsius degree. The definition implies that absolute zero is equivalent to −273.15 °C, Kelvin calculated that absolute zero was equivalent to −273 °C on the air thermometers of the time. This absolute scale is known today as the Kelvin thermodynamic temperature scale, when spelled out or spoken, the unit is pluralised using the same grammatical rules as for other SI units such as the volt or ohm. When reference is made to the Kelvin scale, the word kelvin—which is normally a noun—functions adjectivally to modify the noun scale and is capitalized, as with most other SI unit symbols there is a space between the numeric value and the kelvin symbol. Before the 13th CGPM in 1967–1968, the unit kelvin was called a degree and it was distinguished from the other scales with either the adjective suffix Kelvin or with absolute and its symbol was °K. The latter term, which was the official name from 1948 until 1954, was ambiguous since it could also be interpreted as referring to the Rankine scale. Before the 13th CGPM, the form was degrees absolute. The 13th CGPM changed the name to simply kelvin. Its measured value was 7002273160280000000♠0.01028 °C with an uncertainty of 60 µK, the use of SI prefixed forms of the degree Celsius to express a temperature interval has not been widely adopted. In 2005 the CIPM embarked on a program to redefine the kelvin using a more experimentally rigorous methodology, the current definition as of 2016 is unsatisfactory for temperatures below 20 K and above 7003130000000000000♠1300 K. In particular, the committee proposed redefining the kelvin such that Boltzmanns constant takes the exact value 6977138065049999999♠1. 3806505×10−23 J/K, from a scientific point of view, this will link temperature to the rest of SI and result in a stable definition that is independent of any particular substance. From a practical point of view, the redefinition will pass unnoticed, the kelvin is often used in the measure of the colour temperature of light sources. Colour temperature is based upon the principle that a black body radiator emits light whose colour depends on the temperature of the radiator, black bodies with temperatures below about 7003400000000000000♠4000 K appear reddish, whereas those above about 7003750000000000000♠7500 K appear bluish
22.
S-type asteroid
–
S-type asteroids, or silicaceous asteroids, are of a stony composition, hence the name. Approximately 17% of asteroids are of type, making it the second most common after the C-type. S-types are moderately bright and consist mainly of iron- and magnesium-silicates and they are dominant in the inner asteroid belt within 2.2 AU, common in the central belt within about 3 AU, but become rare farther out. The largest is 15 Eunomia, with the next largest members by diameter being 3 Juno,29 Amphitrite,532 Herculina and 7 Iris. Their spectrum has a steep slope at wavelengths shorter than 0.7 µm. The 1 µm absorption is indicative of the presence of silicates, often there is also a broad but shallow absorption feature centered near 0.63 µm. The composition of asteroids is similar to a variety of stony meteorites which share similar spectral characteristics. This whole S assemblage of asteroids is spectrally quite distinct from the carbonaceous C-group, Asteroid spectral types L-type asteroid K-type asteroid X-type asteroid Bus, S. J. Binzel, R. P. Phase II of the Small Main-belt Asteroid Spectroscopy Survey, A feature-based taxonomy
23.
Asteroid
–
Asteroids are minor planets, especially those of the inner Solar System. The larger ones have also been called planetoids and these terms have historically been applied to any astronomical object orbiting the Sun that did not show the disc of a planet and was not observed to have the characteristics of an active comet. As minor planets in the outer Solar System were discovered and found to have volatile-based surfaces that resemble those of comets, in this article, the term asteroid refers to the minor planets of the inner Solar System including those co-orbital with Jupiter. There are millions of asteroids, many thought to be the remnants of planetesimals. The large majority of known asteroids orbit in the belt between the orbits of Mars and Jupiter, or are co-orbital with Jupiter. However, other orbital families exist with significant populations, including the near-Earth objects, individual asteroids are classified by their characteristic spectra, with the majority falling into three main groups, C-type, M-type, and S-type. These were named after and are identified with carbon-rich, metallic. The size of asteroids varies greatly, some reaching as much as 1000 km across, asteroids are differentiated from comets and meteoroids. In the case of comets, the difference is one of composition, while asteroids are composed of mineral and rock, comets are composed of dust. In addition, asteroids formed closer to the sun, preventing the development of the aforementioned cometary ice, the difference between asteroids and meteoroids is mainly one of size, meteoroids have a diameter of less than one meter, whereas asteroids have a diameter of greater than one meter. Finally, meteoroids can be composed of either cometary or asteroidal materials, only one asteroid,4 Vesta, which has a relatively reflective surface, is normally visible to the naked eye, and this only in very dark skies when it is favorably positioned. Rarely, small asteroids passing close to Earth may be visible to the eye for a short time. As of March 2016, the Minor Planet Center had data on more than 1.3 million objects in the inner and outer Solar System, the United Nations declared June 30 as International Asteroid Day to educate the public about asteroids. The date of International Asteroid Day commemorates the anniversary of the Tunguska asteroid impact over Siberia, the first asteroid to be discovered, Ceres, was found in 1801 by Giuseppe Piazzi, and was originally considered to be a new planet. In the early half of the nineteenth century, the terms asteroid. Asteroid discovery methods have improved over the past two centuries. This task required that hand-drawn sky charts be prepared for all stars in the band down to an agreed-upon limit of faintness. On subsequent nights, the sky would be charted again and any moving object would, hopefully, the expected motion of the missing planet was about 30 seconds of arc per hour, readily discernible by observers
24.
Vienna
–
Vienna is the capital and largest city of Austria and one of the nine states of Austria. Vienna is Austrias primary city, with a population of about 1.8 million, and its cultural, economic and it is the 7th-largest city by population within city limits in the European Union. Today, it has the second largest number of German speakers after Berlin, Vienna is host to many major international organizations, including the United Nations and OPEC. The city is located in the part of Austria and is close to the borders of the Czech Republic, Slovakia. These regions work together in a European Centrope border region, along with nearby Bratislava, Vienna forms a metropolitan region with 3 million inhabitants. In 2001, the city centre was designated a UNESCO World Heritage Site, apart from being regarded as the City of Music because of its musical legacy, Vienna is also said to be The City of Dreams because it was home to the worlds first psycho-analyst – Sigmund Freud. The citys roots lie in early Celtic and Roman settlements that transformed into a Medieval and Baroque city and it is well known for having played an essential role as a leading European music centre, from the great age of Viennese Classicism through the early part of the 20th century. The historic centre of Vienna is rich in architectural ensembles, including Baroque castles and gardens, Vienna is known for its high quality of life. In a 2005 study of 127 world cities, the Economist Intelligence Unit ranked the city first for the worlds most liveable cities, between 2011 and 2015, Vienna was ranked second, behind Melbourne, Australia. Monocles 2015 Quality of Life Survey ranked Vienna second on a list of the top 25 cities in the world to make a base within, the UN-Habitat has classified Vienna as being the most prosperous city in the world in 2012/2013. Vienna regularly hosts urban planning conferences and is used as a case study by urban planners. Between 2005 and 2010, Vienna was the worlds number-one destination for international congresses and it attracts over 3.7 million tourists a year. The English name Vienna is borrowed from the homonymous Italian version of the name or the French Vienne. The etymology of the name is still subject to scholarly dispute. Some claim that the name comes from Vedunia, meaning forest stream, which produced the Old High German Uuenia. A variant of this Celtic name could be preserved in the Czech and Slovak names of the city, the name of the city in Hungarian, Serbo-Croatian and Ottoman Turkish has a different, probably Slavonic origin, and originally referred to an Avar fort in the area. Slovene-speakers call the city Dunaj, which in other Central European Slavic languages means the Danube River, evidence has been found of continuous habitation since 500 BC, when the site of Vienna on the Danube River was settled by the Celts. In 15 BC, the Romans fortified the city they called Vindobona to guard the empire against Germanic tribes to the north
25.
NASA
–
President Dwight D. Eisenhower established NASA in 1958 with a distinctly civilian orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29,1958, disestablishing NASAs predecessor, the new agency became operational on October 1,1958. Since that time, most US space exploration efforts have led by NASA, including the Apollo Moon landing missions, the Skylab space station. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle, the agency is also responsible for the Launch Services Program which provides oversight of launch operations and countdown management for unmanned NASA launches. NASA shares data with various national and international such as from the Greenhouse Gases Observing Satellite. Since 2011, NASA has been criticized for low cost efficiency, from 1946, the National Advisory Committee for Aeronautics had been experimenting with rocket planes such as the supersonic Bell X-1. In the early 1950s, there was challenge to launch a satellite for the International Geophysical Year. An effort for this was the American Project Vanguard, after the Soviet launch of the worlds first artificial satellite on October 4,1957, the attention of the United States turned toward its own fledgling space efforts. This led to an agreement that a new federal agency based on NACA was needed to conduct all non-military activity in space. The Advanced Research Projects Agency was created in February 1958 to develop technology for military application. On July 29,1958, Eisenhower signed the National Aeronautics and Space Act, a NASA seal was approved by President Eisenhower in 1959. Elements of the Army Ballistic Missile Agency and the United States Naval Research Laboratory were incorporated into NASA, earlier research efforts within the US Air Force and many of ARPAs early space programs were also transferred to NASA. In December 1958, NASA gained control of the Jet Propulsion Laboratory, NASA has conducted many manned and unmanned spaceflight programs throughout its history. Some missions include both manned and unmanned aspects, such as the Galileo probe, which was deployed by astronauts in Earth orbit before being sent unmanned to Jupiter, the experimental rocket-powered aircraft programs started by NACA were extended by NASA as support for manned spaceflight. This was followed by a space capsule program, and in turn by a two-man capsule program. This goal was met in 1969 by the Apollo program, however, reduction of the perceived threat and changing political priorities almost immediately caused the termination of most of these plans. NASA turned its attention to an Apollo-derived temporary space laboratory, to date, NASA has launched a total of 166 manned space missions on rockets, and thirteen X-15 rocket flights above the USAF definition of spaceflight altitude,260,000 feet. The X-15 was an NACA experimental rocket-powered hypersonic research aircraft, developed in conjunction with the US Air Force, the design featured a slender fuselage with fairings along the side containing fuel and early computerized control systems
26.
Jet Propulsion Laboratory
–
The Jet Propulsion Laboratory is a federally funded research and development center and NASA field center in La Cañada Flintridge, California and Pasadena, California, United States. The JPL is managed by the nearby California Institute of Technology for NASA, the laboratorys primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASAs Deep Space Network and they are also responsible for managing the JPL Small-Body Database, and provides physical data and lists of publications for all known small Solar System bodies. The JPLs Space Flight Operations Facility and Twenty-Five-Foot Space Simulator are designated National Historic Landmarks, JPL traces its beginnings to 1936 in the Guggenheim Aeronautical Laboratory at the California Institute of Technology when the first set of rocket experiments were carried out in the Arroyo Seco. Malinas thesis advisor was engineer/aerodynamicist Theodore von Kármán, who arranged for U. S. Army financial support for this GALCIT Rocket Project in 1939. In 1941, Malina, Parsons, Forman, Martin Summerfield, in 1943, von Kármán, Malina, Parsons, and Forman established the Aerojet Corporation to manufacture JATO motors. The project took on the name Jet Propulsion Laboratory in November 1943, during JPLs Army years, the laboratory developed two deployed weapon systems, the MGM-5 Corporal and MGM-29 Sergeant intermediate range ballistic missiles. These missiles were the first US ballistic missiles developed at JPL and it also developed a number of other weapons system prototypes, such as the Loki anti-aircraft missile system, and the forerunner of the Aerobee sounding rocket. At various times, it carried out testing at the White Sands Proving Ground, Edwards Air Force Base. A lunar lander was developed in 1938-39 which influenced design of the Apollo Lunar Module in the 1960s. The team lost that proposal to Project Vanguard, and instead embarked on a project to demonstrate ablative re-entry technology using a Jupiter-C rocket. They carried out three successful flights in 1956 and 1957. Using a spare Juno I, the two organizations then launched the United States first satellite, Explorer 1, on February 1,1958, JPL was transferred to NASA in December 1958, becoming the agencys primary planetary spacecraft center. JPL engineers designed and operated Ranger and Surveyor missions to the Moon that prepared the way for Apollo, JPL also led the way in interplanetary exploration with the Mariner missions to Venus, Mars, and Mercury. In 1998, JPL opened the Near-Earth Object Program Office for NASA, as of 2013, it has found 95% of asteroids that are a kilometer or more in diameter that cross Earths orbit. JPL was early to employ women mathematicians, in the 1940s and 1950s, using mechanical calculators, women in an all-female computations group performed trajectory calculations. In 1961, JPL hired Dana Ulery as their first woman engineer to work alongside male engineers as part of the Ranger and Mariner mission tracking teams, when founded, JPLs site was a rocky flood-plain just outside the city limits of Pasadena. Almost all of the 177 acres of the U. S, the city of La Cañada Flintridge, California was incorporated in 1976, well after JPL attained international recognition with a Pasadena address
27.
243 Ida
–
243 Ida is an asteroid in the Koronis family of the asteroid belt. It was discovered on 29 September 1884, by Austrian astronomer Johann Palisa at Vienna Observatory, later telescopic observations categorized Ida as an S-type asteroid, the most numerous type in the inner asteroid belt. On 28 August 1993, Ida was visited by the unmanned Galileo spacecraft and it was the second asteroid visited by a spacecraft and the first found to have a natural satellite. Like all main-belt asteroids, Idas orbit lies between the planets Mars and Jupiter and its orbital period is 4.84 years, and its rotation period is 4.63 hours. Ida has an diameter of 31.4 km. It is irregularly shaped and elongated, and apparently composed of two large objects connected together and its surface is one of the most heavily cratered in the Solar System, featuring a wide variety of crater sizes and ages. Idas moon, Dactyl, was discovered by mission member Ann Harch in images returned from Galileo and it was named after the Dactyls, creatures which inhabited Mount Ida in Greek mythology. Dactyl, being only 1.4 kilometres in diameter, is about one-twentieth the size of Ida and its orbit around Ida could not be determined with much accuracy. However, the constraints of possible orbits allowed a determination of Idas density. Dactyl and Ida share many characteristics, suggesting a common origin, the images returned from Galileo, and the subsequent measurement of Idas mass, provided new insights into the geology of S-type asteroids. Before the Galileo flyby, many different theories had been proposed to explain their mineral composition, determining their composition permits a correlation between meteorites falling to the Earth and their origin in the asteroid belt. Data returned from the flyby pointed to S-type asteroids as the source for the ordinary chondrite meteorites, Ida was discovered on 29 September 1884 by Austrian astronomer Johann Palisa at the Vienna Observatory. It was his 45th asteroid discovery, Ida was named by Moriz von Kuffner, a Viennese brewer and amateur astronomer. In Greek mythology, Ida was a nymph of Crete who raised the god Zeus, Ida was recognized as a member of the Koronis family by Kiyotsugu Hirayama, who proposed in 1918 that the group comprised the remnants of a destroyed precursor body. Idas reflection spectrum was measured on 16 September 1980 by astronomers David J. Tholen and its spectrum matched those of the asteroids in the S-type classification. Many observations of Ida were made in early 1993 by the US Naval Observatory in Flagstaff and these improved the measurement of Idas orbit around the Sun and reduced the uncertainty of its position during the Galileo flyby from 78 to 60 km. Ida was visited in 1993 by the Jupiter-bound space probe Galileo and its encounters of the asteroids Gaspra and Ida were secondary to the Jupiter mission. These were selected as targets in response to a new NASA policy directing mission planners to consider asteroid flybys for all spacecraft crossing the belt, no prior missions had attempted such a flyby
28.
Small Solar System body
–
A Small Solar System Body is an object in the Solar System that is neither a planet, nor a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union, all other objects, except satellites, orbiting the Sun shall be referred to collectively as Small Solar System Bodies. These currently include most of the Solar System asteroids, most Trans-Neptunian Objects, comets and this encompasses all comets and all minor planets other than those that are dwarf planets. Except for the largest, which are in equilibrium, natural satellites differ from small Solar System bodies not in size. The orbits of satellites are not centered on the Sun, but around other Solar System objects such as planets, dwarf planets. Some of the larger small Solar System bodies may be reclassified in future as dwarf planets, the orbits of the vast majority of small Solar System bodies are located in two distinct areas, namely the asteroid belt and the Kuiper belt. These two belts possess some internal structure related to perturbations by the planets, and have fairly loosely defined boundaries. Other areas of the Solar System also encompass small bodies in smaller concentrations and these include the near-Earth asteroids, centaurs, comets, and scattered disc objects
29.
Minor-planet moon
–
A minor-planet moon is an astronomical object that orbits a minor planet as its natural satellite. It is thought that many asteroids and Kuiper belt objects may possess moons, the first modern era mention of the possibility of an asteroid satellite was in connection with an occultation of the bright star Gamma Ceti by the minor planet Hebe in 1977. The observer, amateur astronomer Paul D. Maley, detected an unmistakable 0.5 second disappearance of this naked eye star from a site near Victoria, many hours later, several observations were reported in Mexico attributed to the occultation by Hebe itself. Although not confirmed this documents the first formally documented case of a companion of an asteroid. As of October 2016, there are over 300 minor planets known to have moons, in addition to the terms satellite and moon, the term binary is sometimes used for minor planets with moons, and triple for minor planets with two moons. If one object is much bigger it can be referred to as the primary, when binary minor planets are similar in size, the Minor Planet Center refers to them as binary companions instead of referring to the smaller body as a satellite. A good example of a true binary is the 90 Antiope system, small satellites are often referred to as moonlets. As of February 2017, over 330 moons of planets have been discovered. For example, in 1978, stellar occultation observations were claimed as evidence of a satellite for the asteroid 532 Herculina, however, later more-detailed imaging by the Hubble Telescope did not reveal a satellite, and the current consensus is that Herculina does not have a significant satellite. There were other reports of asteroids having companions in the following years. In 1993, the first asteroid moon was confirmed when the Galileo probe discovered the small Dactyl orbiting 243 Ida in the asteroid belt, the second was discovered around 45 Eugenia in 1998. In 2001,617 Patroclus and its same-sized companion Menoetius became the first known asteroids in the Jupiter trojans. The first trans-Neptunian binary after Pluto–Charon,1998 WW31, was resolved in 2002. Triple asteroids, or trinary asteroids, are known since 2005 and this was followed by the discovery of a second moon orbiting 45 Eugenia. Also in 2005, the Kuiper belt object Haumea was discovered to have two moons, making it the second KBO after Pluto known to have more than one moon, additionally,216 Kleopatra and 93 Minerva were discovered to be trinary asteroids in 2008 and 2009 respectively. Since the first few trinary asteroids were discovered, more continue to be discovered at a rate of one a year. Most recently discovered was a moon orbiting the belt asteroid 130 Elektra. List of multiple planets, The data about the populations of binary objects are still patchy