1.
25 (number)
–
25 is the natural number following 24 and preceding 26. It is a number, being 52 =5 ×5. It is one of two numbers whose square and higher powers of the number also ends in the same last two digits, e. g.252 =625, the other is 76. It is the smallest square that is also a sum of two squares,25 =32 +42, hence it often appears in illustrations of the Pythagorean theorem. 25 is the sum of the odd natural numbers 1,3,5,7 and 9. 25 is an octagonal number, a centered square number. 25 percent is equal to 1/4,25 has an aliquot sum of 6 and number 6 is the first number to have an aliquot sequence that does not culminate in 0 through a prime. 25 is the sum of three integers,95,119, and 143. Twenty-five is the second member of the 6-aliquot tree. It is the smallest base 10 Friedman number as it can be expressed by its own digits,52 and it is also a Cullen number. 25 is the smallest pseudoprime satisfying the congruence 7n =7 mod n.25 is the smallest aspiring number — a composite non-sociable number whose aliquot sequence does not terminate. Within base 10 one can readily test for divisibility by 25 by seeing if the last two digits of the number match 00,25,50 or 75. 25 and 49 are the perfect squares in the following list,13,25,37,49,511,613,715,817,919,1021,1123,1225,1327,1429. The formula in this list can be described as 10nZ + where n depends on the number of digits in Z, in base 30,25 is a 1-automorphic number, and in base 10 a 2-automorphic number. The percent DNA overlap of a half-sibling, grandparent, grandchild, aunt, uncle, niece, nephew, identical twin cousin, in Ezekiels vision of a new temple, The number twenty-five is of cardinal importance in Ezekiels Temple Vision. In The Book of Revelations New International Version, Surrounding the throne were twenty-four other thrones and they were dressed in white and had crowns of gold on their heads. In Islam, there are 25 prophets mentioned in the Quran, the size of the full roster on a Major League Baseball team for most of the season, except for regular-season games on or after September 1, when teams expand their roster to 40 players. The size of the roster on a Nippon Professional Baseball team for a particular game
2.
19 (number)
–
19 is the natural number following 18 and preceding 20. In a 24-hour clock, the hour is in conventional language called seven or seven oclock. 19 is the 8th prime number, the sequence continues 23,29,31,37. 19 is the seventh Mersenne prime exponent,19 is the fifth happy number and the third happy prime. 19 is the sum of two odd discrete semiprimes,65 and 77 and is the base of the 19-aliquot tree. 19 is the number of fourth powers needed to sum up to any natural number. It is the value of g.19 is the lowest prime centered triangular number, a centered hexagonal number. The only non-trivial normal magic hexagon contains 19 hexagons,19 is the first number with more than one digit that can be written from base 2 to base 19 using only the digits 0 to 9, the other number is 20. 19 is The TCP/IP port used for chargen, astronomy, Every 19 years, the solar year and the lunar year align in whats known as the metonic cycle. Quran code, There have been claims that patterns of the number 19 are present a number of times in the Quran. The Number of Verse and Sura together in the Quran which announces Jesus son of Maryams birth, in the Bábí and Baháí faiths, a group of 19 is called a Váhid, a Unity. The numerical value of this word in the Abjad numeral system is 19, the Baháí calendar is structured such that a year contains 19 months of 19 days each, as well as a 19-year cycle and a 361-year supercycle. The Báb and his disciples formed a group of 19, There were 19 Apostles of Baháulláh. With a similar name and anti-Vietnam War theme, I Was Only Nineteen by the Australian group Redgum reached number one on the Australian charts in 1983, in 2005 a hip hop version of the song was produced by The Herd. 19 is the name of Adeles 2008 debut album, so named since she was 19 years old at the time, hey Nineteen is a song by American jazz rock band Steely Dan, written by members Walter Becker and Donald Fagen, and released on their 1980 album Gaucho. Nineteen has been used as an alternative to twelve for a division of the octave into equal parts and this idea goes back to Salinas in the sixteenth century, and is interesting in part because it gives a system of meantone tuning, being close to 1/3 comma meantone. Some organs use the 19th harmonic to approximate a minor third and they refer to the ka-tet of 19, Directive Nineteen, many names add up to 19,19 seems to permeate every aspect of Roland and his travelers lives. In addition, the ends up being a powerful key
3.
20 (number)
–
20 is the natural number following 19 and preceding 21. A group of twenty units may also be referred to as a score,20 is a tetrahedral number as 1,4,10,20. 20 is the basis for vigesimal number systems,20 is the third composite number comprising the product of a squared prime and a prime, and also the second member of the q family in this form. 20 has a sum of 22. Accordingly,20 is the abundant number and demonstrates an 8-member aliquot sequence. 20 is the smallest primitive abundant number,20 is the 4th composite number in the 7-aliquot tree. Two numbers have 20 as their sum, the discrete semiprime 34. Only 2 other square primes are abundant 12 and 18,20 can be written as the sum of three Fibonacci numbers uniquely, i. e.20 =13 +5 +2. The product of the number of divisors and the number of divisors of 20 is exactly 20. 20 is the number of required to optimally solve a Rubiks Cube in the worst case. 20 is the number with more than one digit that can be written from base 2 to base 20 using only the digits 0 to 9. The third magic number in physics, the IAU shower number for Coma Berenicids. The number of amino acids that are encoded by the standard genetic code. In some countries, the number 20 is used as an index in measuring visual acuity, 20/20 indicates normal vision at 20 feet, although it is commonly used to mean perfect vision. When someone is able to see only after an event how things turned out, the Baltimore Orioles and Cincinnati Reds, both for Hall of Famer Frank Robinson. The Kansas City Royals, for Frank White, the Los Angeles Dodgers, for Hall of Famer Don Sutton. The Philadelphia Phillies, for Hall of Famer Mike Schmidt, the Pittsburgh Pirates, for Hall of Famer Pie Traynor. The St. Louis Cardinals, for Hall of Famer Lou Brock, the San Francisco Giants, for Hall of Famer Monte Irvin, who played for the team when it was the New York Giants
4.
21 (number)
–
21 is the natural number following 20 and preceding 22. In a 24-hour clock, the twenty-first hour is in conventional language called nine or nine oclock,21 is, the fifth discrete semiprime and the second in the family. With 22 it forms the second discrete semiprime pair, a Blum integer, since it is a semiprime with both its prime factors being Gaussian primes. A composite number, its divisors being 1,3 and 7. The sum of the first six numbers, making it a triangular number. The sum of the sum of the divisors of the first 5 positive integers, the smallest non-trivial example of a Fibonacci number whose digits are Fibonacci numbers and whose digit sum is also a Fibonacci number. The smallest natural number that is not close to a power of 2, 2n,21 has an aliquot sum of 11 though it is the second composite number found in the 11-aliquot tree with the abundant square prime 18 being the first such member. Twenty-one is the first number to be the sum of three numbers 18,51,91. 21 appears in the Padovan sequence, preceded by the terms 9,12,16, in several countries 21 is the age of majority. In most US states,21 is the drinking age, however, in Puerto Rico and U. S. Virgin Island, the drinking age is 18. In Hawaii and New York,21 is the age that one person may purchase cigarettes. In some countries it is the voting age, in the United States,21 is the age at which one can purchase multiple tickets to an R-rated film without providing Identifications. It is also the age to one under the age of 17 as their parent or adult guardian for an R-rated movie. In some states,21 is the age, persons may gamble or enter casinos. In 2011, Adele named her second studio album 21, because of her age at the time, the Milwaukee Braves, for Hall of Famer Warren Spahn, the number continues to be honored by the team in its current home of Atlanta. The Pittsburgh Pirates, for Hall of Famer Roberto Clemente, following his death in a crash while attempting to deliver humanitarian aid to victims of an earthquake in Nicaragua. In the NBA, The Atlanta Hawks, for Hall of Famer Dominique Wilkins, the Boston Celtics, for Hall of Famer Bill Sharman. The Detroit Pistons, for Hall of Famer Dave Bing, the Sacramento Kings, for Vlade Divac
5.
30 (number)
–
30 is the natural number following 29 and preceding 31. Thirty is the sum of the first four squares, which makes it a square pyramidal number and it is a primorial and is the smallest Giuga number. 30 is the smallest sphenic number, and the smallest of the form 2 ×3 × r,30 has an aliquot sum of 42, the second sphenic number and all sphenic numbers of this form have an aliquot sum 12 greater than themselves. The aliquot sequence of 30 is 16 members long, it comprises Thirty has but one number for which it is the aliquot sum, adding up some subsets of its divisors gives 30, hence 30 is a semiperfect number. 30 is the largest number such that all smaller than itself. A polygon with thirty sides is called a triacontagon, the icosahedron and the dodecahedron are Platonic solids with 30 edges. The icosidodecahedron is an Archimedean solid with 30 vertices, and the Tutte–Coxeter graph is a graph with 30 vertices. The atomic number of zinc is 30 Messier object M30, a magnitude 8, the duration of Saros series 30 was 1496.5 years, and it contained 84 solar eclipses. Further, the Saros number of the lunar eclipse series began on June 19,1803 BC. The duration of Saros series 30 was 1316.2 years, Thirty is, Used to indicate the end of a newspaper story, a copy editors typographical notation. S. Judas Iscariot betrayed Jesus for 30 pieces of silver, one of the rallying-cries of the 1960s student/youth protest movement was the slogan, Dont trust anyone over thirty. In Franz Kafkas novel The Trial Joseph wakes up on the morning of his birthday to find himself under arrest for an unspecified crime. After making many attempts to find the nature of the crime or the name of his accuser. The number of uprights that formed the Sarsen Circle at Stonehenge, western Christianitys most prolific 20th century essayist, F. W. Also in that essay Boreham writes It was said of Keats, in tennis, the number 30 represents the second point gained in a game. Under NCAA rules for basketball, the offensive team has 30 seconds to attempt a shot. As of 2012, three of the four major leagues in the United States and Canada have 30 teams each. The California Angels baseball team retired the number in honor of its most notable wearer, Nolan Ryan, the San Francisco Giants extended the same honor to Orlando Cepeda
6.
Integer
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain
7.
Negative number
–
In mathematics, a negative number is a real number that is less than zero. If positive represents movement to the right, negative represents movement to the left, if positive represents above sea level, then negative represents below level. If positive represents a deposit, negative represents a withdrawal and they are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset, if a quantity may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. In the medical context of fighting a tumor, an expansion could be thought of as a negative shrinkage, negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common idea of an opposite is reflected in arithmetic. For example, − −3 =3 because the opposite of an opposite is the original thing, negative numbers are usually written with a minus sign in front. For example, −3 represents a quantity with a magnitude of three, and is pronounced minus three or negative three. To help tell the difference between a subtraction operation and a number, occasionally the negative sign is placed slightly higher than the minus sign. Conversely, a number that is greater than zero is called positive, the positivity of a number may be emphasized by placing a plus sign before it, e. g. +3. In general, the negativity or positivity of a number is referred to as its sign, every real number other than zero is either positive or negative. The positive whole numbers are referred to as natural numbers, while the positive and negative numbers are referred to as integers. In bookkeeping, amounts owed are often represented by red numbers, or a number in parentheses, Liu Hui established rules for adding and subtracting negative numbers. By the 7th century, Indian mathematicians such as Brahmagupta were describing the use of negative numbers, islamic mathematicians further developed the rules of subtracting and multiplying negative numbers and solved problems with negative coefficients. Western mathematicians accepted the idea of numbers by the 17th century. Prior to the concept of numbers, mathematicians such as Diophantus considered negative solutions to problems false. Negative numbers can be thought of as resulting from the subtraction of a number from a smaller. For example, negative three is the result of subtracting three from zero,0 −3 = −3, in general, the subtraction of a larger number from a smaller yields a negative result, with the magnitude of the result being the difference between the two numbers
8.
40 (number)
–
Despite being related to the word four, the modern spelling of 40 is forty. The archaic form fourty is now considered a misspelling, the modern spelling possibly reflects a pronunciation change due to the horse–hoarse merger. Forty is a number, an octagonal number, and as the sum of the first four pentagonal numbers. Adding up some subsets of its divisors gives 40, hence 40 is a semiperfect number, given 40, the Mertens function returns 0. 40 is the smallest number n with exactly 9 solutions to the equation φ = n, Forty is the number of n-queens problem solutions for n =7. Since 402 +1 =1601 is prime,40 is a Størmer number,40 is a repdigit in base 3 and a Harshad number in base 10. Negative forty is the temperature at which the Fahrenheit and Celsius scales correspond. It is referred to as either minus forty or forty below, the planet Venus forms a pentagram in the night sky every eight years with it returning to its original point every 40 years with a 40-day regression. The duration of Saros series 40 was 1280.1 years, lunar eclipse series which began on -1387 February 12 and ended on -71 April 12. The duration of Saros series 40 was 1316.2 years, the number 40 is used in Jewish, Christian, Islamic, and other Middle Eastern traditions to represent a large, approximate number, similar to umpteen. In the Hebrew Bible, forty is often used for periods, forty days or forty years. Rain fell for forty days and forty nights during the Flood, spies explored the land of Israel for forty days. The Hebrew people lived in the Sinai desert for forty years and this period of years represents the time it takes for a new generation to arise. Moses life is divided into three 40-year segments, separated by his growing to adulthood, fleeing from Egypt, and his return to lead his people out, several Jewish leaders and kings are said to have ruled for forty years, that is, a generation. Examples include Eli, Saul, David, and Solomon, goliath challenged the Israelites twice a day for forty days before David defeated him. He went up on the day of Tammuz to beg forgiveness for the peoples sin. He went up on the first day of Elul and came down on the day of Tishrei. A mikvah consists of 40 seah of water 40 lashes is one of the punishments meted out by the Sanhedrin, One of the prerequisites for a man to study Kabbalah is that he is forty years old
9.
60 (number)
–
60 is the natural number following 59 and preceding 61. Being three times 20, it is called three score in older literature. It is a number, with divisors 1,2,3,4,5,6,10,12,15,20,30. Because it is the sum of its divisors, it is a unitary perfect number. Being ten times a number, it is a semiperfect number. It is the smallest number divisible by the numbers 1 to 6 and it is the smallest number with exactly 12 divisors. It is the sum of a pair of twin primes and the sum of four consecutive primes and it is adjacent to two primes. It is the smallest number that is the sum of two odd primes in six ways, the smallest non-solvable group has order 60. There are four Archimedean solids with 60 vertices, the icosahedron, the rhombicosidodecahedron, the snub dodecahedron. The skeletons of these polyhedra form 60-node vertex-transitive graphs, there are also two Archimedean solids with 60 edges, the snub cube and the icosidodecahedron. The skeleton of the forms a 60-edge symmetric graph. There are 60 one-sided hexominoes, the polyominoes made from six squares, in geometry, it is the number of seconds in a minute, and the number of minutes in a degree. In normal space, the three angles of an equilateral triangle each measure 60 degrees, adding up to 180 degrees. Because it is divisible by the sum of its digits in base 10, a number system with base 60 is called sexagesimal. It is the smallest positive integer that is written only the smallest. The first fullerene to be discovered was buckminsterfullerene C60, an allotrope of carbon with 60 atoms in each molecule and this ball is known as a buckyball, and looks like a soccer ball. The atomic number of neodymium is 60, and cobalt-60 is an isotope of cobalt. The electrical utility frequency in western Japan, South Korea, Taiwan, the Philippines, Saudi Arabia, the United States, and several other countries in the Americas is 60 Hz
10.
80 (number)
–
80 is the natural number following 79 and preceding 81. 80 is, the sum of Eulers totient function φ over the first sixteen integers, a semiperfect number, since adding up some subsets of its divisors gives 80. Palindromic in bases 3,6,9,15,19 and 39, a repdigit in bases 3,9,15,19 and 39. A Harshad number in bases 2,3,4,5,6,7,9,10,11,13,15 and 16 The Pareto principle states that, for many events, roughly 80% of the effects come from 20% of the causes. Every solvable configuration of the Fifteen puzzle can be solved in no more than 80 single-tile moves, the atomic number of mercury According to Exodus 7,7, Moses was 80 years old when he initially spoke to Pharaoh on behalf of his people. Today,80 years of age is the age limit for cardinals to vote in papal elections. Jerry Rice wore the number 80 for the majority of his NFL career
11.
90 (number)
–
90 is the natural number preceded by 89 and followed by 91. In English speech, the numbers 90 and 19 are often confused, when carefully enunciated, they differ in which syllable is stressed,19 /naɪnˈtiːn/ vs 90 /ˈnaɪnti/. However, in such as 1999, and when contrasting numbers in the teens and when counting, such as 17,18,19. 90 is, a perfect number because it is the sum of its unitary divisors. A semiperfect number because it is equal to the sum of a subset of its divisors, a Perrin number, preceded in the sequence by 39,51,68. Palindromic and a repdigit in bases 14,17,29, a Harshad number since 90 is divisible by the sum of its base 10 digits. In normal space, the angles of a rectangle measure 90 degrees each. Also, in a triangle, the angle opposing the hypotenuse measures 90 degrees. Thus, an angle measuring 90 degrees is called a right angle, ninety is, the atomic number of thorium, an actinide. As an atomic weight,90 identifies an isotope of strontium, the latitude in degrees of the North and the South geographical poles. NFL, New York Jets Dennis Byrds #90 is retired +90 is the code for international direct dial phone calls to Turkey,90 is the code for the French département Belfort
12.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number
13.
Numeral system
–
A numeral system is a writing system for expressing numbers, that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. It can be seen as the context that allows the symbols 11 to be interpreted as the symbol for three, the decimal symbol for eleven, or a symbol for other numbers in different bases. The number the numeral represents is called its value, ideally, a numeral system will, Represent a useful set of numbers Give every number represented a unique representation Reflect the algebraic and arithmetic structure of the numbers. For example, the decimal representation of whole numbers gives every nonzero whole number a unique representation as a finite sequence of digits. Etc. all of which have the same meaning except for some scientific, such systems are, however, not the topic of this article. The most commonly used system of numerals is the Hindu–Arabic numeral system, two Indian mathematicians are credited with developing it. Aryabhata of Kusumapura developed the notation in the 5th century. The numeral system and the concept, developed by the Hindus in India, slowly spread to other surrounding countries due to their commercial. The Arabs adopted and modified it, even today, the Arabs call the numerals which they use Rakam Al-Hind or the Hindu numeral system. The Arabs translated Hindu texts on numerology and spread them to the world due to their trade links with them. The Western world modified them and called them the Arabic numerals, hence the current western numeral system is the modified version of the Hindu numeral system developed in India. It also exhibits a great similarity to the Sanskrit–Devanagari notation, which is used in India. The simplest numeral system is the numeral system, in which every natural number is represented by a corresponding number of symbols. If the symbol / is chosen, for example, then the seven would be represented by ///////. Tally marks represent one such system still in common use, the unary system is only useful for small numbers, although it plays an important role in theoretical computer science. Elias gamma coding, which is used in data compression. The unary notation can be abbreviated by introducing different symbols for new values. The ancient Egyptian numeral system was of type, and the Roman numeral system was a modification of this idea
14.
Factorization
–
In mathematics, factorization or factoring is the decomposition of an object into a product of other objects, or factors, which when multiplied together give the original. For example, the number 15 factors into primes as 3 ×5, in all cases, a product of simpler objects is obtained. The aim of factoring is usually to reduce something to “basic building blocks”, such as numbers to prime numbers, factoring integers is covered by the fundamental theorem of arithmetic and factoring polynomials by the fundamental theorem of algebra. Viètes formulas relate the coefficients of a polynomial to its roots, the opposite of polynomial factorization is expansion, the multiplying together of polynomial factors to an “expanded” polynomial, written as just a sum of terms. Integer factorization for large integers appears to be a difficult problem, there is no known method to carry it out quickly. Its complexity is the basis of the security of some public key cryptography algorithms. A matrix can also be factorized into a product of matrices of special types, One major example of this uses an orthogonal or unitary matrix, and a triangular matrix. There are different types, QR decomposition, LQ, QL, RQ and this situation is generalized by factorization systems. By the fundamental theorem of arithmetic, every integer greater than 1 has a unique prime factorization. Given an algorithm for integer factorization, one can factor any integer down to its constituent primes by repeated application of this algorithm, for very large numbers, no efficient classical algorithm is known. Modern techniques for factoring polynomials are fast and efficient, but use sophisticated mathematical ideas and these techniques are used in the construction of computer routines for carrying out polynomial factorization in Computer algebra systems. This article is concerned with classical techniques. While the general notion of factoring just means writing an expression as a product of simpler expressions, when factoring polynomials this means that the factors are to be polynomials of smaller degree. Thus, while x 2 − y = is a factorization of the expression, another issue concerns the coefficients of the factors. It is not always possible to do this, and a polynomial that can not be factored in this way is said to be irreducible over this type of coefficient, thus, x2 -2 is irreducible over the integers and x2 +4 is irreducible over the reals. In the first example, the integers 1 and -2 can also be thought of as real numbers, and if they are, then x 2 −2 = shows that this polynomial factors over the reals. Similarly, since the integers 1 and 4 can be thought of as real and hence complex numbers, x2 +4 splits over the complex numbers, i. e. x 2 +4 =. The fundamental theorem of algebra can be stated as, Every polynomial of n with complex number coefficients splits completely into n linear factors
15.
Divisor
–
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some other integer to produce n. In this case one says also that n is a multiple of m, an integer n is divisible by another integer m if m is a divisor of n, this implies dividing n by m leaves no remainder. Under this definition, the statement m ∣0 holds for every m, as before, but with the additional constraint k ≠0. Under this definition, the statement m ∣0 does not hold for m ≠0, in the remainder of this article, which definition is applied is indicated where this is significant. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4, they are 1,2,4, −1, −2, and −4,1 and −1 divide every integer. Every integer is a divisor of itself, every integer is a divisor of 0. Integers divisible by 2 are called even, and numbers not divisible by 2 are called odd,1, −1, n and −n are known as the trivial divisors of n. A divisor of n that is not a divisor is known as a non-trivial divisor. A non-zero integer with at least one divisor is known as a composite number, while the units −1 and 1. There are divisibility rules which allow one to recognize certain divisors of a number from the numbers digits, the generalization can be said to be the concept of divisibility in any integral domain. 7 is a divisor of 42 because 7 ×6 =42 and it can also be said that 42 is divisible by 7,42 is a multiple of 7,7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2,3, the positive divisors of 42 are 1,2,3,6,7,14,21,42. 5 ∣0, because 5 ×0 =0, if a ∣ b and b ∣ a, then a = b or a = − b. If a ∣ b and a ∣ c, then a ∣ holds, however, if a ∣ b and c ∣ b, then ∣ b does not always hold. If a ∣ b c, and gcd =1, then a ∣ c, if p is a prime number and p ∣ a b then p ∣ a or p ∣ b. A positive divisor of n which is different from n is called a proper divisor or a part of n. A number that does not evenly divide n but leaves a remainder is called an aliquant part of n, an integer n >1 whose only proper divisor is 1 is called a prime number
16.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made
17.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
18.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
19.
Ternary numeral system
–
The ternary numeral system has three as its base. Analogous to a bit, a digit is a trit. One trit is equivalent to bits of information. Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary, for example, decimal 365 corresponds to binary 101101101 and to ternary 111112. However, they are far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary. The value of a number with n bits that are all 1 is 2n −1. Then N = M, N = /, and N = bd −1, for a three-digit ternary number, N =33 −1 =26 =2 ×32 +2 ×31 +2 ×30 =18 +6 +2. Nonary or septemvigesimal can be used for representation of ternary. A base-three system is used in Islam to keep track of counting Tasbih to 99 or to 100 on a hand for counting prayers. In certain analog logic, the state of the circuit is often expressed ternary and this is most commonly seen in Transistor–transistor logic using 7406 open collector logic. The output is said to either be low, high, or open, in this configuration the output of the circuit is actually not connected to any voltage reference at all. Where the signal is usually grounded to a reference, or at a certain voltage level. Thus, the voltage level is sometimes unpredictable. A rare ternary point is used to denote fractional parts of an inning in baseball, since each inning consists of three outs, each out is considered one third of an inning and is denoted as.1. For example, if a player pitched all of the 4th, 5th and 6th innings, plus 2 outs of the 7th inning, his Innings pitched column for that game would be listed as 3.2, meaning 3⅔. In this usage, only the part of the number is written in ternary form. Ternary numbers can be used to convey self-similar structures like the Sierpinski triangle or the Cantor set conveniently, additionally, it turns out that the ternary representation is useful for defining the Cantor set and related point sets, because of the way the Cantor set is constructed. The Cantor set consists of the points from 0 to 1 that have an expression that does not contain any instance of the digit 1
20.
Quaternary numeral system
–
Quaternary is the base-4 numeral system. It uses the digits 0,1,2 and 3 to represent any real number. Four is the largest number within the range and one of two numbers that is both a square and a highly composite number, making quaternary a convenient choice for a base at this scale. Despite being twice as large, its economy is equal to that of binary. However, it no better in the localization of prime numbers. See decimal and binary for a discussion of these properties, as with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix 4,8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit with 2,3 or 4 binary digits, for example, in base 4,302104 =11001001002. Although octal and hexadecimal are widely used in computing and computer programming in the discussion and analysis of binary arithmetic and logic, by analogy with byte and nybble, a quaternary digit is sometimes called a crumb. There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca, the Kharosthi numerals have a partial base 4 counting system from 1 to decimal 10. Quaternary numbers are used in the representation of 2D Hilbert curves, here a real number between 0 and 1 is converted into the quaternary system. Every single digit now indicates in which of the respective 4 sub-quadrants the number will be projected, parallels can be drawn between quaternary numerals and the way genetic code is represented by DNA. The four DNA nucleotides in order, abbreviated A, C, G and T, can be taken to represent the quaternary digits in numerical order 0,1,2. With this encoding, the complementary digit pairs 0↔3, and 1↔2 match the complementation of the pairs, A↔T and C↔G. For example, the nucleotide sequence GATTACA can be represented by the quaternary number 2033010, quaternary line codes have been used for transmission, from the invention of the telegraph to the 2B1Q code used in modern ISDN circuits
21.
Quinary
–
Quinary is a numeral system with five as the base. A possible origination of a system is that there are five fingers on either hand. The base five is stated from 0–4, in the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, today, the main usage of base 5 is as a biquinary system, which is decimal using five as a sub-base. Another example of a system, is sexagesimal, base 60. Each quinary digit has log25 bits of information, many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño and Saraveca. Gumatj is a true 5–25 language, in which 25 is the group of 5. The Gumatj numerals are shown below, In the video game Riven and subsequent games of the Myst franchise, a decimal system with 2 and 5 as a sub-bases is called biquinary, and is found in Wolof and Khmer. Roman numerals are a biquinary system, the numbers 1,5,10, and 50 are written as I, V, X, and L respectively. Eight is VIII and seventy is LXX, most versions of the abacus use a biquinary system to simulate a decimal system for ease of calculation. Urnfield culture numerals and some tally mark systems are also biquinary, units of currencies are commonly partially or wholly biquinary. A vigesimal system with 4 and 5 as a sub-bases is found in Nahuatl, pentimal system Quibinary Yan Tan Tethera References, Quinary Base Conversion, includes fractional part, from Math Is Fun Media related to Quinary numeral system at Wikimedia Commons
22.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
23.
Octal
–
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping binary digits into groups of three. For example, the representation for decimal 74 is 1001010. Two zeroes can be added at the left,1001010, corresponding the octal digits 112, in the decimal system each decimal place is a power of ten. For example,7410 =7 ×101 +4 ×100 In the octal system each place is a power of eight. The Yuki language in California and the Pamean languages in Mexico have octal systems because the speakers count using the spaces between their fingers rather than the fingers themselves and it has been suggested that the reconstructed Proto-Indo-European word for nine might be related to the PIE word for new. Based on this, some have speculated that proto-Indo-Europeans used a number system. In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number based on 64 instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base would be too difficult, in 1718 Swedenborg wrote a manuscript, En ny rekenkonst som om vexlas wid Thalet 8 i stelle then wanliga wid Thalet 10. The numbers 1-7 are there denoted by the l, s, n, m, t, f, u. Thus 8 = lo,16 = so,24 = no,64 = loo,512 = looo etc, numbers with consecutive consonants are pronounced with vowel sounds between in accordance with a special rule. Writing under the pseudonym Hirossa Ap-Iccim in The Gentlemans Magazine, July 1745, Hugh Jones proposed a system for British coins, weights. In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic and he suggested base 8 for which he coined the term octal. In the mid 19th century, Alfred B. Taylor concluded that Our octonary radix is, therefore, so, for example, the number 65 would be spoken in octonary as under-un. Taylor also republished some of Swedenborgs work on octonary as an appendix to the above-cited publications, in the 2009 film Avatar, the language of the extraterrestrial Navi race employs an octal numeral system, probably due to the fact that they have four fingers on each hand. In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, in the tabletop game series Warhammer 40,000, the Tau race use an octal number system. Octal became widely used in computing systems such as the PDP-8, ICL1900. Octal was an abbreviation of binary for these machines because their word size is divisible by three
24.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer
25.
Hexadecimal
–
In mathematics and computing, hexadecimal is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits, it allows a more human-friendly representation of binary-coded values, one hexadecimal digit represents a nibble, which is half of an octet or byte. For example, a byte can have values ranging from 00000000 to 11111111 in binary form. In a non-programming context, a subscript is typically used to give the radix, several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix 0x is used in C and related languages, where this value might be denoted as 0x2AF3, in contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously, a numerical subscript can give the base explicitly,15910 is decimal 159,15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h. example. com/name%20with%20spaces where %20 is the space character, thus ’, represents the right single quotation mark, Unicode code point number 2019 in hex,8217. In the Unicode standard, a value is represented with U+ followed by the hex value. Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits prefixed with #, white, CSS allows 3-hexdigit abbreviations with one hexdigit per component, #FA3 abbreviates #FFAA33. *nix shells, AT&T assembly language and likewise the C programming language, to output an integer as hexadecimal with the printf function family, the format conversion code %X or %x is used. In Intel-derived assembly languages and Modula-2, hexadecimal is denoted with a suffixed H or h, some assembly languages use the notation HABCD. Ada and VHDL enclose hexadecimal numerals in based numeric quotes, 16#5A3#, for bit vector constants VHDL uses the notation x5A3. Verilog represents hexadecimal constants in the form 8hFF, where 8 is the number of bits in the value, the Smalltalk language uses the prefix 16r, 16r5A3 PostScript and the Bourne shell and its derivatives denote hex with prefix 16#, 16#5A3. For PostScript, binary data can be expressed as unprefixed consecutive hexadecimal pairs, in early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the Sad Mac to tell the user what went wrong. Common Lisp uses the prefixes #x and #16r, setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, MSX BASIC, QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H, &H5A3 BBC BASIC and Locomotive BASIC use & for hex. TI-89 and 92 series uses a 0h prefix, 0h5A3 ALGOL68 uses the prefix 16r to denote hexadecimal numbers, binary, quaternary and octal numbers can be specified similarly
26.
Vigesimal
–
The vigesimal or base 20 numeral system is based on twenty. In a vigesimal system, twenty individual numerals are used. One modern method of finding the extra needed symbols is to write ten as the letter A20, to write nineteen as J20, and this is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters A–F. Another method skips over the letter I, in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, the number twenty is written as 1020. According to this notation,2020 means forty in decimal = + D020 means two hundred and sixty in decimal = +10020 means four hundred in decimal = + +, in the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example,10 means ten,20 means twenty, in decimal, dividing by three twice only gives one digit periods because 9 is the number below ten. 21, however, the adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods, the prime factorization of twenty is 22 ×5, so it is not a perfect power. However, its part,5, is congruent to 1. Thus, according to Artins conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37. 395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a set of bases found that, of the first 15,456 primes. In many European languages,20 is used as a base, vigesimal systems are common in Africa, for example in Yoruba. Ogún,20, is the basic numeric block, ogójì,40, =20 multiplied by 2. Ogota,60, =20 multiplied by 3, ogorin,80, =20 multiplied by 4. Ogorun,100, =20 multiplied by 5, twenty was a base in the Maya and Aztec number systems. The Maya used the names for the powers of twenty, kal, bak, pic, calab, kinchil. See also Maya numerals and Maya calendar, Mayan languages, Yucatec, the Aztec called them, cempoalli, centzontli, cenxiquipilli, cempoalxiquipilli, centzonxiquipilli and cempoaltzonxiquipilli. Note that the ce prefix at the beginning means one and is replaced with the number to get the names of other multiples of the power
27.
Base 36
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
28.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
29.
SI prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used
30.
Factorial
–
In mathematics, the factorial of a non-negative integer n, denoted by n. is the product of all positive integers less than or equal to n. =5 ×4 ×3 ×2 ×1 =120, the value of 0. is 1, according to the convention for an empty product. The factorial operation is encountered in areas of mathematics, notably in combinatorics, algebra. Its most basic occurrence is the fact there are n. ways to arrange n distinct objects into a sequence. This fact was known at least as early as the 12th century, fabian Stedman, in 1677, described factorials as applied to change ringing. After describing a recursive approach, Stedman gives a statement of a factorial, Now the nature of these methods is such, the factorial function is formally defined by the product n. = ∏ k =1 n k, or by the relation n. = {1 if n =0. The factorial function can also be defined by using the rule as n. All of the above definitions incorporate the instance 0, =1, in the first case by the convention that the product of no numbers at all is 1. This is convenient because, There is exactly one permutation of zero objects, = n. ×, valid for n >0, extends to n =0. It allows for the expression of many formulae, such as the function, as a power series. It makes many identities in combinatorics valid for all applicable sizes, the number of ways to choose 0 elements from the empty set is =0. More generally, the number of ways to choose n elements among a set of n is = n. n, the factorial function can also be defined for non-integer values using more advanced mathematics, detailed in the section below. This more generalized definition is used by advanced calculators and mathematical software such as Maple or Mathematica, although the factorial function has its roots in combinatorics, formulas involving factorials occur in many areas of mathematics. There are n. different ways of arranging n distinct objects into a sequence, often factorials appear in the denominator of a formula to account for the fact that ordering is to be ignored. A classical example is counting k-combinations from a set with n elements, one can obtain such a combination by choosing a k-permutation, successively selecting and removing an element of the set, k times, for a total of n k _ = n ⋯ possibilities. This however produces the k-combinations in an order that one wishes to ignore, since each k-combination is obtained in k. different ways. This number is known as the coefficient, because it is also the coefficient of Xk in n
31.
Composite number
–
A composite number is a positive integer that can be formed by multiplying together two smaller positive integers. Equivalently, it is an integer that has at least one divisor other than 1. Every positive integer is composite, prime, or the unit 1, so the numbers are exactly the numbers that are not prime. For example, the integer 14 is a number because it is the product of the two smaller integers 2 ×7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one, every composite number can be written as the product of two or more primes. For example, the composite number 299 can be written as 13 ×23, and the composite number 360 can be written as 23 ×32 ×5, furthermore and this fact is called the fundamental theorem of arithmetic. There are several known primality tests that can determine whether a number is prime or composite, one way to classify composite numbers is by counting the number of prime factors. A composite number with two prime factors is a semiprime or 2-almost prime, a composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of prime factors and those with an even number of distinct prime factors. For the latter μ =2 x =1, while for the former μ =2 x +1 = −1, however, for prime numbers, the function also returns −1 and μ =1. For a number n with one or more repeated prime factors, if all the prime factors of a number are repeated it is called a powerful number. If none of its factors are repeated, it is called squarefree. For example,72 =23 ×32, all the factors are repeated. 42 =2 ×3 ×7, none of the factors are repeated. Another way to classify composite numbers is by counting the number of divisors, all composite numbers have at least three divisors. In the case of squares of primes, those divisors are, a number n that has more divisors than any x < n is a highly composite number. Composite numbers have also been called rectangular numbers, but that name can refer to the pronic numbers, numbers that are the product of two consecutive integers. Table of prime factors Integer factorization Canonical representation of a positive integer Sieve of Eratosthenes Fraleigh, a First Course In Abstract Algebra, Reading, Addison-Wesley, ISBN 0-201-01984-1 Herstein, I. N
32.
Odd prime
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n
33.
1 (number)
–
1, is a number, a numeral, and the name of the glyph representing that number. It represents a single entity, the unit of counting or measurement, for example, a line segment of unit length is a line segment of length 1. It is also the first of the series of natural numbers. The word one can be used as a noun, an adjective and it comes from the English word an, which comes from the Proto-Germanic root *ainaz. The Proto-Germanic root *ainaz comes from the Proto-Indo-European root *oi-no-, compare the Proto-Germanic root *ainaz to Old Frisian an, Gothic ains, Danish een, Dutch een, German eins and Old Norse einn. Compare the Proto-Indo-European root *oi-no- to Greek oinos, Latin unus, Old Persian aivam, Old Church Slavonic -inu and ino-, Lithuanian vienas, Old Irish oin, One, sometimes referred to as unity, is the first non-zero natural number. It is thus the integer before two and after zero, and the first positive odd number, any number multiplied by one is that number, as one is the identity for multiplication. As a result,1 is its own factorial, its own square, its own cube, One is also the result of the empty product, as any number multiplied by one is itself. It is also the natural number that is neither composite nor prime with respect to division. The Gupta wrote it as a line, and the Nagari sometimes added a small circle on the left. The Nepali also rotated it to the right but kept the circle small and this eventually became the top serif in the modern numeral, but the occasional short horizontal line at the bottom probably originates from similarity with the Roman numeral I. Where the 1 is written with an upstroke, the number 7 has a horizontal stroke through the vertical line. While the shape of the 1 character has an ascender in most modern typefaces, in typefaces with text figures, many older typewriters do not have a separate symbol for 1 and use the lowercase letter l instead. It is possible to find cases when the uppercase J is used,1 cannot be used as the base of a positional numeral system, as the only digit that would be permitted in such a system would be 0. Since the base 1 exponential function always equals 1, its inverse does not exist, there are two ways to write the real number 1 as a recurring decimal, as 1.000. and as 0.999. There is only one way to represent the real number 1 as a Dedekind cut, in a multiplicative group or monoid, the identity element is sometimes denoted 1, but e is also traditional. However,1 is especially common for the identity of a ring. When such a ring has characteristic n not equal to 0,1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few
34.
2 (number)
–
2 is a number, numeral, and glyph. It is the number following 1 and preceding 3. The number two has many properties in mathematics, an integer is called even if it is divisible by 2. For integers written in a system based on an even number, such as decimal and hexadecimal. If it is even, then the number is even. In particular, when written in the system, all multiples of 2 will end in 0,2,4,6. In numeral systems based on an odd number, divisibility by 2 can be tested by having a root that is even. Two is the smallest and first prime number, and the only prime number. Two and three are the two consecutive prime numbers. 2 is the first Sophie Germain prime, the first factorial prime, the first Lucas prime, the first Ramanujan prime, and it is an Eisenstein prime with no imaginary part and real part of the form 3n −1. It is also a Stern prime, a Pell number, the first Fibonacci prime, and it is the third Fibonacci number, and the second and fourth Perrin numbers. Despite being prime, two is also a highly composite number, because it is a natural number which has more divisors than any other number scaled relative to the number itself. The next superior highly composite number is six, vulgar fractions with only 2 or 5 in the denominator do not yield infinite decimal expansions, as is the case with all other primes, because 2 and 5 are factors of ten, the decimal base. Two is the number x such that the sum of the reciprocals of the powers of x equals itself. In symbols ∑ k =0 ∞12 k =1 +12 +14 +18 +116 + ⋯ =2. This comes from the fact that, ∑ k =0 ∞1 n k =1 +1 n −1 for all n ∈ R >1, powers of two are central to the concept of Mersenne primes, and important to computer science. Two is the first Mersenne prime exponent, the square root of 2 was the first known irrational number. The smallest field has two elements, in the set-theoretical construction of the natural numbers,2 is identified with the set
35.
3 (number)
–
3 is a number, numeral, and glyph. It is the number following 2 and preceding 4. Three is the largest number still written with as many lines as the number represents, to this day 3 is written as three lines in Roman and Chinese numerals. This was the way the Brahmin Indians wrote it, and the Gupta made the three lines more curved, the Nagari started rotating the lines clockwise and ending each line with a slight downward stroke on the right. Eventually they made these strokes connect with the lines below, and it was the Western Ghubar Arabs who finally eliminated the extra stroke and created our modern 3. ٣ While the shape of the 3 character has an ascender in most modern typefaces, in typefaces with text figures the character usually has a descender, as, for example, in some French text-figure typefaces, though, it has an ascender instead of a descender. A common variant of the digit 3 has a flat top and this form is sometimes used to prevent people from fraudulently changing a 3 into an 8. It is usually found on UPC-A barcodes and standard 52-card decks,3 is, a rough approximation of π and a very rough approximation of e when doing quick estimates. The first odd prime number, and the second smallest prime, the only number that is both a Fermat prime and a Mersenne prime. The first unique prime due to the properties of its reciprocal, the second triangular number and it is the only prime triangular number. Both the zeroth and third Perrin numbers in the Perrin sequence, the smallest number of sides that a simple polygon can have. The only prime which is one less than a perfect square, any other number which is n2 −1 for some integer n is not prime, since it is. This is true for 3 as well, but in case the smaller factor is 1. If n is greater than 2, both n −1 and n +1 are greater than 1 so their product is not prime, the number of non-collinear points needed to determine a plane and a circle. Also, Vulgar fractions with 3 in the denominator have a single digit repeating sequences in their decimal expansions,0.000, a natural number is divisible by three if the sum of its digits in base 10 is divisible by 3. For example, the number 21 is divisible by three and the sum of its digits is 2 +1 =3, because of this, the reverse of any number that is divisible by three is also divisible by three. For instance,1368 and its reverse 8631 are both divisible by three and this works in base 10 and in any positional numeral system whose base divided by three leaves a remainder of one. Three of the five regular polyhedra have triangular faces – the tetrahedron, the octahedron, also, three of the five regular polyhedra have vertices where three faces meet – the tetrahedron, the hexahedron, and the dodecahedron
36.
4 (number)
–
4 is a number, numeral, and glyph. It is the number following 3 and preceding 5. Four is the only cardinal numeral in the English language that has the number of letters as its number value. Four is the smallest composite number, its divisors being 1 and 2. Four is also a composite number. The next highly composite number is 6, Four is the second square number, the second centered triangular number. 4 is the smallest squared prime and the even number in this form. It has a sum of 3 which is itself prime. The aliquot sequence of 4 has 4 members and is accordingly the first member of the 3-aliquot tree, a number is a multiple of 4 if its last two digits are a multiple of 4. For example,1092 is a multiple of 4 because 92 =4 ×23, only one number has an aliquot sum of 4 and that is squared prime 9. Four is the smallest composite number that is equal to the sum of its prime factors, however, it is the only composite number n for which. It is also a Motzkin number, in bases 6 and 12,4 is a 1-automorphic number. In addition,2 +2 =2 ×2 =22 =4, continuing the pattern in Knuths up-arrow notation,2 ↑↑2 =2 ↑↑↑2 =4, and so on, for any number of up arrows. A four-sided plane figure is a quadrilateral which include kites, rhombi, a circle divided by 4 makes right angles and four quadrants. Because of it, four is the number of plane. Four cardinal directions, four seasons, duodecimal system, and vigesimal system are based on four, a solid figure with four faces as well as four vertices is a tetrahedron, and 4 is the smallest possible number of faces of a polyhedron. The regular tetrahedron is the simplest Platonic solid, a tetrahedron, which can also be called a 3-simplex, has four triangular faces and four vertices. It is the only regular polyhedron
37.
6 (number)
–
6 is the natural number following 5 and preceding 7. The SI prefix for 10006 is exa-, and for its reciprocal atto-,6 is the smallest positive integer which is neither a square number nor a prime number. Six is the second smallest composite number, its proper divisors are 1,2 and 3, since six equals the sum of its proper divisors, six is the smallest perfect number, Granville number, and S -perfect number. As a perfect number,6 is related to the Mersenne prime 3,6 is the only even perfect number that is not the sum of successive odd cubes. As a perfect number,6 is the root of the 6-aliquot tree, and is itself the sum of only one number. Six is the number that is both the sum and the product of three consecutive positive numbers. Unrelated to 6 being a number, a Golomb ruler of length 6 is a perfect ruler. Six is the first discrete biprime and the first member of the discrete biprime family, Six is the smallest natural number that can be written as the sum of two positive rational cubes which are not integers,6 =3 +3. Six is a perfect number, a harmonic divisor number and a superior highly composite number. The next superior highly composite number is 12,5 and 6 form a Ruth-Aaron pair under either definition. There are no Graeco-Latin squares with order 6, if n is a natural number that is not 2 or 6, then there is a Graeco-Latin square with order n. The smallest non-abelian group is the symmetric group S3 which has 3, s6, with 720 elements, is the only finite symmetric group which has an outer automorphism. This automorphism allows us to construct a number of mathematical objects such as the S Steiner system, the projective plane of order 4. This can also be expressed category theoretically, consider the category whose objects are the n element sets and this category has a non-trivial functor to itself only for n =6. 6 similar coins can be arranged around a central coin of the radius so that each coin makes contact with the central one. This makes 6 the answer to the kissing number problem. The densest sphere packing of the plane is obtained by extending this pattern to the lattice in which each circle touches just six others. 6 is the largest of the four all-Harshad numbers, a six-sided polygon is a hexagon, one of the three regular polygons capable of tiling the plane
38.
8 (number)
–
8 is the natural number following 7 and preceding 9. 8 is, a number, its proper divisors being 1,2. It is twice 4 or four times 2, a power of two, being 23, and is the first number of the form p3, p being an integer greater than 1. The first number which is neither prime nor semiprime, the base of the octal number system, which is mostly used with computers. In octal, one digit represents 3 bits, in modern computers, a byte is a grouping of eight bits, also called an octet. A Fibonacci number, being 3 plus 5, the next Fibonacci number is 13. 8 is the only positive Fibonacci number, aside from 1, the order of the smallest non-abelian group all of whose subgroups are normal. The dimension of the octonions and is the highest possible dimension of a division algebra. The first number to be the sum of two numbers other than itself, the discrete biprime 10, and the square number 49. It has a sum of 7 in the 4 member aliquot sequence being the first member of 7-aliquot tree. All powers of 2, have a sum of one less than themselves. A number is divisible by 8 if its last 3 digits,8 and 9 form a Ruth–Aaron pair under the second definition in which repeated prime factors are counted as often as they occur. There are a total of eight convex deltahedra, a polygon with eight sides is an octagon. Figurate numbers representing octagons are called octagonal numbers, a polyhedron with eight faces is an octahedron. A cuboctahedron has as faces six equal squares and eight regular triangles. Sphenic numbers always have exactly eight divisors, the number 8 is involved with a number of interesting mathematical phenomena related to the notion of Bott periodicity. For example, if O is the limit of the inclusions of real orthogonal groups O ↪ O ↪ … ↪ O ↪ …. Clifford algebras also display a periodicity of 8, for example, the algebra Cl is isomorphic to the algebra of 16 by 16 matrices with entries in Cl
39.
12 (number)
–
12 is the natural number following 11 and preceding 13. The product of the first three factorials, twelve is a highly composite number, divisible by 2,3,4. It is central to systems of counting, including the Western calendar and units of time. The word twelve is the largest number with a name in English. Such uses gradually disappeared with the introduction of Arabic numerals during the 12th-century Renaissance and it derives from the Old English twelf and tuelf, first attested in the 10th-century Lindisfarne Gospels Book of John. It has cognates in every Germanic language, whose Proto-Germanic ancestor has been reconstructed as *twaliƀi, from *twa and suffix *-lif- or *-liƀ- of uncertain meaning. It is sometimes compared with the Lithuanian dvýlika, although -lika is used as the suffix for all numbers from 11 to 19, every other Indo-European language instead uses a form of two+ten, such as the Latin duōdecim. The usual ordinal form is twelfth but dozenth or duodecimal is also used in some contexts, similarly, a group of twelve things is usually a dozen but may also be referred to as a duodecad. The adjective referring to a group of twelve is duodecuple, as with eleven, the earliest forms of twelve are often considered to be connected with Proto-Germanic *liƀan or *liƀan, with the implicit meaning that two is left after having already counted to ten. The Lithuanian suffix is also considered to share a similar development, the suffix *-lif- has also been connected with reconstructions of the Proto-Germanic for ten. While, as mentioned above,12 has its own name in Germanic languages such as English and German, it is a number in many other languages, e. g. Italian dodici. In Germany, according to an old tradition, the numbers 0 through 12 were spelt out, the Duden now calls this tradition outdated and no longer valid, but many writers still follow it. Another system spells out all numbers written in one or two words, Twelve is a composite number, the smallest number with exactly six divisors, its divisors being 1,2,3,4,6 and 12. Twelve is also a composite number, the next one being twenty-four. Twelve is also a highly composite number, the next one being sixty. It is the first composite number of the form p2q, a square-prime,12 has an aliquot sum of 16. Accordingly,12 is the first abundant number and demonstrates an 8-member aliquot sequence,12 is the 3rd composite number in the 3-aliquot tree, the only number which has 12 as its aliquot sum is the square 121. Only 2 other square primes are abundant, Twelve is a sublime number, a number that has a perfect number of divisors, and the sum of its divisors is also a perfect number
40.
Highly composite number
–
A highly composite number is a positive integer with more divisors than any smaller positive integer has. The term was coined by Ramanujan, the related concept of largely composite number refers to a positive integer which has at least as many divisors as any smaller positive integer. The initial or smallest 38 highly composite numbers are listed in the table below, the number of divisors is given in the column labeled d. The table below shows all the divisors of one of these numbers, the 15, 000th highly composite number can be found on Achim Flammenkamps website. Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, also, except in two special cases n =4 and n =36, the last exponent ck must equal 1. It means that 1,4, and 36 are the only square highly composite numbers, saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials. Note, that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example,96 =25 ×3 satisfies the conditions and has 12 divisors but is not highly composite since there is a smaller number 60 which has the same number of divisors. If Q denotes the number of composite numbers less than or equal to x. The first part of the inequality was proved by Paul Erdős in 1944 and we have 1.13862 < lim inf log Q log log x ≤1.44 and lim sup log Q log log x ≤1.71. Highly composite numbers higher than 6 are also abundant numbers, one need only look at the three or four highest divisors of a particular highly composite number to ascertain this fact. It is false that all composite numbers are also Harshad numbers in base 10. The first HCN that is not a Harshad number is 245,044,800, which has a sum of 27. 10 of the first 38 highly composite numbers are highly composite numbers. The sequence of composite numbers is a subset of the sequence of smallest numbers k with exactly n divisors. A positive integer n is a composite number if d ≥ d for all m ≤ n. The counting function QL of largely composite numbers satisfies c ≤ log Q L ≤ d for positive c, d with 0.2 ≤ c ≤ d ≤0.5. Because the prime factorization of a composite number uses all of the first k primes
41.
Semiperfect number
–
In number theory, a semiperfect number or pseudoperfect number is a natural number n that is equal to the sum of all or some of its proper divisors. A semiperfect number that is equal to the sum of all its divisors is a perfect number. The first few numbers are 6,12,18,20,24,28,30,36,40. Every multiple of a number is semiperfect. A semiperfect number that is not divisible by any smaller number is primitive. Every number of the form 2mp for a number m. In particular, every number of the form 2m is semiperfect, the smallest odd semiperfect number is 945. A semiperfect number is necessarily either perfect or abundant, an abundant number that is not semiperfect is called a weird number. With the exception of 2, all primary pseudoperfect numbers are semiperfect, every practical number that is not a power of two is semiperfect. The natural density of the set of semiperfect numbers exists, a primitive semiperfect number is a semiperfect number that has no semiperfect proper divisor. The first few semiperfect numbers are 6,20,28,88,104,272,304,350. There are infinitely many such numbers, all numbers of the form 2mp, with p a prime between 2m and 2m+1, are primitive semiperfect, but this is not the only form, for example,770. Hemiperfect number Erdős–Nicolas number Friedman, Charles N, sums of divisors and Egyptian fractions. Weisstein, Eric W. Primitive semiperfect number
42.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n
43.
Euler's totient function
–
In number theory, Eulers totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as φ or ϕ and it can be defined more formally as the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd is equal to 1. The integers k of this form are referred to as totatives of n. For example, the totatives of n =9 are the six numbers 1,2,4,5,7 and 8. They are all relatively prime to 9, but the three numbers in this range,3,6, and 9 are not, because gcd = gcd =3. As another example, φ =1 since for n =1 the only integer in the range from 1 to n is 1 itself, Eulers totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ = φφ. This function gives the order of the group of integers modulo n. It also plays a key role in the definition of the RSA encryption system, leonhard Euler introduced the function in 1763. However, he did not at that time choose any specific symbol to denote it. In a 1784 publication, Euler studied the function further, choosing the Greek letter π to denote it, he wrote πD for the multitude of less than D. This definition varies from the current definition for the totient function at D =1 but is otherwise the same, the now-standard notation φ comes from Gausss 1801 treatise Disquisitiones Arithmeticae. Although Gauss didnt use parentheses around the argument and wrote φA, thus, it is often called Eulers phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, so it is referred to as Eulers totient function. Jordans totient is a generalization of Eulers, the cototient of n is defined as n − φ. It counts the number of positive integers less than or equal to n that have at least one factor in common with n. There are several formulas for computing φ and it states φ = n ∏ p ∣ n, where the product is over the distinct prime numbers dividing n. The proof of Eulers product formula depends on two important facts and this means that if gcd =1, then φ = φ φ. If p is prime and k ≥1, then φ = p k − p k −1 = p k −1 = p k, proof, since p is a prime number the only possible values of gcd are 1, p, p2
44.
Semi-meandric number
–
In mathematics, a meander or closed meander is a self-avoiding closed curve which intersects a line a number of times. Intuitively, a meander can be viewed as a road crossing a river through a number of bridges, the line and curve together form a meandric system. Two meanders are said to be equivalent if there is a homeomorphism of the plane that takes L to itself. The meander of order 1 intersects the line twice, The meanders of order 2 intersect the line four times, the first fifteen meandric numbers are given below. The curve is oriented upward at the intersection labelled 1, the cyclic permutation with no fixed points is obtained by following the oriented curve through the labelled intersection points. In the diagram on the right, the order 4 meandric permutation is given by and this is a permutation written in cyclic notation and not to be confused with one-line notation. If π is a permutation, then π2 consists of two cycles, one containing of all the even symbols and the other all the odd symbols. Permutations with this property are called alternate permutations, since the symbols in the original permutation alternate between odd and even integers, however, not all alternate permutations are meandric because it may not be possible to draw them without introducing a self-intersection in the curve. For example, the order 3 alternate permutation, is not meandric, two open meanders are said to be equivalent if they are homeomorphic in the plane. The open meander of order 1 intersects the line once, The open meander of order 2 intersects the line twice, the first fifteen open meandric numbers are given below. Two semi-meanders are said to be equivalent if they are homeomorphic in the plane, the semi-meander of order 1 intersects the ray once, The semi-meander of order 2 intersects the ray twice, The number of distinct semi-meanders of order n is the semi-meandric number Mn. The first fifteen semi-meandric numbers are given below
45.
Tesseract
–
In geometry, the tesseract is the four-dimensional analog of the cube, the tesseract is to the cube as the cube is to the square. Just as the surface of the consists of six square faces. The tesseract is one of the six convex regular 4-polytopes, the tesseract is also called an 8-cell, C8, octachoron, octahedroid, cubic prism, and tetracube. It is the four-dimensional hypercube, or 4-cube as a part of the family of hypercubes or measure polytopes. In this publication, as well as some of Hintons later work, the tesseract can be constructed in a number of ways. As a regular polytope with three cubes folded together around every edge, it has Schläfli symbol with hyperoctahedral symmetry of order 384, constructed as a 4D hyperprism made of two parallel cubes, it can be named as a composite Schläfli symbol ×, with symmetry order 96. As a 4-4 duoprism, a Cartesian product of two squares, it can be named by a composite Schläfli symbol ×, with symmetry order 64, as an orthotope it can be represented by composite Schläfli symbol × × × or 4, with symmetry order 16. Since each vertex of a tesseract is adjacent to four edges, the dual polytope of the tesseract is called the hexadecachoron, or 16-cell, with Schläfli symbol. The standard tesseract in Euclidean 4-space is given as the hull of the points. That is, it consists of the points, A tesseract is bounded by eight hyperplanes, each pair of non-parallel hyperplanes intersects to form 24 square faces in a tesseract. Three cubes and three squares intersect at each edge, there are four cubes, six squares, and four edges meeting at every vertex. All in all, it consists of 8 cubes,24 squares,32 edges, the construction of a hypercube can be imagined the following way, 1-dimensional, Two points A and B can be connected to a line, giving a new line segment AB. 2-dimensional, Two parallel line segments AB and CD can be connected to become a square, 3-dimensional, Two parallel squares ABCD and EFGH can be connected to become a cube, with the corners marked as ABCDEFGH. 4-dimensional, Two parallel cubes ABCDEFGH and IJKLMNOP can be connected to become a hypercube and it is possible to project tesseracts into three- or two-dimensional spaces, as projecting a cube is possible on a two-dimensional space. Projections on the 2D-plane become more instructive by rearranging the positions of the projected vertices, the scheme is similar to the construction of a cube from two squares, juxtapose two copies of the lower-dimensional cube and connect the corresponding vertices. Each edge of a tesseract is of the same length, the regular complex polytope 42, in C2 has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 42 has 16 vertices, and 8 4-edges and its symmetry is 42, order 32. It also has a lower construction, or 4×4, with symmetry 44
46.
Square (geometry)
–
In geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle in which two adjacent sides have equal length, a square with vertices ABCD would be denoted ◻ ABCD. e. A rhombus with equal diagonals a convex quadrilateral with sides a, b, c, d whose area is A =12 =12. Opposite sides of a square are both parallel and equal in length, all four angles of a square are equal. All four sides of a square are equal, the diagonals of a square are equal. The square is the n=2 case of the families of n-hypercubes and n-orthoplexes, a truncated square, t, is an octagon. An alternated square, h, is a digon, the perimeter of a square whose four sides have length ℓ is P =4 ℓ and the area A is A = ℓ2. In classical times, the power was described in terms of the area of a square. This led to the use of the square to mean raising to the second power. The area can also be calculated using the diagonal d according to A = d 22. In terms of the circumradius R, the area of a square is A =2 R2, since the area of the circle is π R2, in terms of the inradius r, the area of the square is A =4 r 2. Because it is a polygon, a square is the quadrilateral of least perimeter enclosing a given area. Dually, a square is the quadrilateral containing the largest area within a given perimeter. Indeed, if A and P are the area and perimeter enclosed by a quadrilateral, then the isoperimetric inequality holds,16 A ≤ P2 with equality if. The diagonals of a square are 2 times the length of a side of the square and this value, known as the square root of 2 or Pythagoras constant, was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles, if a figure is both a rectangle and a rhombus, then it is a square. If a circle is circumscribed around a square, the area of the circle is π /2 times the area of the square, if a circle is inscribed in the square, the area of the circle is π /4 times the area of the square. A square has an area than any other quadrilateral with the same perimeter
47.
Cannonball problem
–
François Édouard Anatole Lucas was a French mathematician. Lucas is known for his study of the Fibonacci sequence, the related Lucas sequences and Lucas numbers are named after him. Lucas was educated at the École Normale Supérieure and he worked in the Paris observatory and later became a professor of mathematics in Paris. In the meantime he served in the army, in 1875, Lucas posed a challenge to prove that the only solution of the Diophantine equation, ∑ n =1 N n 2 = M2 with N >1 is when N =24 and M =70. This is known as the problem, since it can be visualized as the problem of taking a square arrangement of cannonballs on the ground. It was not until 1918 that a proof was found for this remarkable fact, more recently, elementary proofs have been published. He devised methods for testing the primality of numbers, in 1857, at age 15, Lucas began testing the primality of 2127 −1 by hand, using Lucas Sequences. In 1876, after 19 years of testing, he proved that 2127 −1 was prime. This may stand forever as the largest prime number proven by hand, later Derrick Henry Lehmer refined Lucas primality tests and obtained the Lucas–Lehmer primality test. He worked on the development of the umbral calculus, Lucas was also interested in recreational mathematics. He found an elegant binary solution to the Baguenaudier puzzle, at the banquet of the annual congress of the Association française pour lavancement des sciences, a waiter dropped some crockery and a piece of broken plate cut Lucas on the cheek. He died a few days later of a skin inflammation probably caused by septicemia. He was only 49 years old, canadian Mathematical Society series of monographs and advanced texts. OConnor, John J. Robertson, Edmund F. Édouard Lucas, MacTutor History of Mathematics archive, scans of Lucass original Tower of Hanoi puzzle in French, with translations Édouard Lucas, by Clark Kimberling Édouard Lucas
48.
Square number
–
In mathematics, a square number or perfect square is an integer that is the square of an integer, in other words, it is the product of some integer with itself. For example,9 is a number, since it can be written as 3 × 3. The usual notation for the square of a n is not the product n × n. The name square number comes from the name of the shape, another way of saying that a integer is a square number, is that its square root is again an integer. For example, √9 =3, so 9 is a square number, a positive integer that has no perfect square divisors except 1 is called square-free. For a non-negative integer n, the nth square number is n2, the concept of square can be extended to some other number systems. If rational numbers are included, then a square is the ratio of two integers, and, conversely, the ratio of two square integers is a square, e. g.49 =2. Starting with 1, there are ⌊√m⌋ square numbers up to and including m, the squares smaller than 602 =3600 are, The difference between any perfect square and its predecessor is given by the identity n2 −2 = 2n −1. Equivalently, it is possible to count up square numbers by adding together the last square, the last squares root, and the current root, that is, n2 =2 + + n. The number m is a number if and only if one can compose a square of m equal squares. Hence, a square with side length n has area n2, the expression for the nth square number is n2. This is also equal to the sum of the first n odd numbers as can be seen in the above pictures, the formula follows, n 2 = ∑ k =1 n. So for example,52 =25 =1 +3 +5 +7 +9, there are several recursive methods for computing square numbers. For example, the nth square number can be computed from the square by n2 =2 + + n =2 +. Alternatively, the nth square number can be calculated from the two by doubling the th square, subtracting the th square number, and adding 2. For example, 2 × 52 −42 +2 = 2 × 25 −16 +2 =50 −16 +2 =36 =62, a square number is also the sum of two consecutive triangular numbers. The sum of two square numbers is a centered square number. Every odd square is also an octagonal number
49.
Niemeier lattice
–
In mathematics, a Niemeier lattice is one of the 24 positive definite even unimodular lattices of rank 24, which were classified by Hans-Volker Niemeier. Venkov gave a proof of the classification. Witt has a mentioning that he found more than 10 such lattices. One example of a Niemeier lattice is the Leech lattice, Niemeier lattices are usually labeled by the Dynkin diagram of their root systems. These Dynkin diagrams have rank either 0 or 24, and all of their components have the same Coxeter number, there are exactly 24 Dynkin diagrams with these properties, and there turns out to be a unique Niemeier lattice for each of these Dynkin diagrams. The complete list of Niemeier lattices is given in the following table and it is the square root of the discriminant of the root lattice. G0×G1×G2 is the order of the group of the lattice G∞×G1×G2 is the order of the automorphism group of the corresponding deep hole. If L is an odd unimodular lattice of dimension 8n and M its sublattice of even vectors, then M is contained in exactly 3 unimodular lattices, one of which is L and the other two of which are even. There may be several lines between the pair of vertices, and there may be lines from a vertex to itself. Kneser proved that this graph is always connected, the number on the right is the Coxeter number of the Niemeier lattice. In 32 dimensions the neighborhood graph has more than a billion vertices, some of the Niemeier lattices are related to sporadic simple groups. The Leech lattice is acted on by a cover of the Conway group. The Niemeier lattices, other than the Leech lattice, correspond to the holes of the Leech lattice. Niemeier lattices also correspond to the 24 orbits of primitive norm zero vectors w of the even unimodular Lorentzian lattice II25,1, where the Niemeier lattice corresponding to w is w⊥/w. Chenevier, Gaëtan, Lannes, Jean, Formes automorphes et voisins de Kneser des réseaux de Niemeier, arXiv,1409.7616 Conway, J. H. Sloane, N. J. A. CS1 maint, Multiple names, authors list Ebeling, Wolfgang, Lattices and codes, Advanced Lectures in Mathematics, Braunschweig, vieweg & Sohn, ISBN 978-3-528-16497-3, MR1938666 Niemeier, Hans-Volker. Definite quadratische Formen der Dimension 24 und Diskriminate 1, on the classification of integral even unimodular 24-dimensional quadratic forms, Akademiya Nauk Soyuza Sovetskikh Sotsialisticheskikh Respublik. Trudy Matematicheskogo Instituta imeni V. A. 1007/BF02940750, MR0005508 Witt, Ernst, gesammelte Abhandlungen, Berlin, New York, Springer-Verlag, ISBN 978-3-540-57061-5, MR1643949 Aachen University lattice catalogue
50.
Kissing number problem
–
In geometry, a kissing number is defined as the number of non-overlapping unit spheres that can be arranged such that they each touch another given unit sphere. For a lattice packing the kissing number is the same for every sphere, other names for kissing number that have been used are Newton number, and contact number. In general, the number problem seeks the maximum possible kissing number for n-dimensional spheres in -dimensional Euclidean space. Ordinary spheres correspond to two-dimensional closed surfaces in three-dimensional space, finding the kissing number when centers of spheres are confined to a line or a plane is trivial. Proving a solution to the case, despite being easy to conceptualise and model in the physical world. Solutions in higher dimensions are more challenging, and only a handful of cases have been solved exactly. For others investigations have determined upper and lower bounds, but not exact solutions. In one dimension, the number is 2, In two dimensions, the kissing number is 6, Proof, Consider a circle with center C that is touched by circles with centers C1. These rays all emanate from the same center C, so the sum of angles between adjacent rays is 360°, assume by contradiction that there are more than six touching circles. Then at least two adjacent rays, say C C1 and C C2, are separated by an angle of less than 60°, the segments C Ci have the same length – 2r – for all i. Therefore the triangle C C1 C2 is isosceles, and its third side – C1 C2 – has a length of less than 2r. Therefore the circles 1 and 2 intersect – a contradiction, in three dimensions, the kissing number is 12, but the correct value was much more difficult to establish than in dimensions one and two. It is easy to arrange 12 spheres so that each touches a central sphere, but there is a lot of left over. This was the subject of a disagreement between mathematicians Isaac Newton and David Gregory. Newton correctly thought that the limit was 12, Gregory thought that a 13th could fit, some incomplete proofs that Newton was correct were offered in the nineteenth century, most notably one by Reinhold Hoppe, but the first correct proof did not appear until 1953. The twelve neighbors of the sphere correspond to the maximum bulk coordination number of an atom in a crystal lattice in which all atoms have the same size. A coordination number of 12 is found in a cubic close-packed or a hexagonal close-packed structure, in four dimensions, it was known for some time that the answer is either 24 or 25. It is easy to produce a packing of 24 spheres around a central sphere, as in the three-dimensional case, there is a lot of space left over—even more, in fact, than for n = 3—so the situation was even less clear
51.
Sphere packing
–
In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space, however, sphere packing problems can be generalised to consider unequal spheres, n-dimensional Euclidean space or to non-Euclidean spaces such as hyperbolic space. A typical sphere packing problem is to find an arrangement in which the fill as large a proportion of the space as possible. The proportion of space filled by the spheres is called the density of the arrangement, for equal spheres in three dimensions the densest packing uses approximately 74% of the volume. A random packing of equal spheres generally has a density around 64%, a lattice arrangement is one in which the centers of the spheres form a very symmetric pattern which only needs n vectors to be uniquely defined. Arrangements in which the spheres do not form a lattice can still be periodic, lattice arrangements are easier to handle than irregular ones—their high degree of symmetry makes it easier to classify them and to measure their densities. In three-dimensional Euclidean space, the densest packing of spheres is achieved by a family of structures called close-packed structures. One method for generating such a structure is as follows, consider a plane with a compact arrangement of spheres on it. For any three neighbouring spheres, a sphere can be placed on top in the hollow between the three bottom spheres. If we do this everywhere in a plane above the first. A third layer can be placed directly above the first one, or the spheres can be offset, there are thus three types of planes, called A, B and C. Two simple arrangements within the close-packed family correspond to regular lattices, one is called cubic close packing — where the layers are alternated in the ABCABC… sequence. The other is called hexagonal close packing — where the layers are alternated in the ABAB… sequence, but many layer stacking sequences are possible, and still generate a close-packed structure. In all of these arrangements each sphere is surrounded by 12 other spheres, carl Friedrich Gauss proved in 1831 that these packings have the highest density amongst all possible lattice packings. In 1611 Johannes Kepler had conjectured that this is the maximum possible density amongst both regular and irregular arrangements — this became known as the Kepler conjecture. In 1998, Thomas Callister Hales, following the approach suggested by László Fejes Tóth in 1953, Hales proof is a proof by exhaustion involving checking of many individual cases using complex computer calculations. Referees said that they were 99% certain of the correctness of Hales proof, on 10 August 2014 Hales announced the completion of a formal proof using automated proof checking, removing any doubt. Some other lattice packings are often found in physical systems, Packings where all spheres are constrained by their neighbours to stay in one location are called rigid or jammed
52.
Binary Golay code
–
In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications. The binary Golay code, along with the ternary Golay code, has a particularly deep and interesting connection to the theory of finite sporadic groups in mathematics. These codes are named in honor of Marcel J. E. Golay whose 1949 paper introducing them has been called, by E. R. Berlekamp, there are two closely related binary Golay codes. The extended binary Golay code, G24 encodes 12 bits of data in a 24-bit word in such a way that any 3-bit errors can be corrected or any 7-bit errors can be detected. The other, the perfect binary Golay code, G23, has codewords of length 23 and is obtained from the extended binary Golay code by deleting one coordinate position. In standard code notation the codes have parameters and, corresponding to the length of the codewords, the dimension of the code, W is called a linear code because it is a vector space. In all, W comprises 4096 =212 elements, the elements of W are called code words. They can also be described as subsets of a set of 24 elements, in the extended binary Golay code, all code words have Hamming weights of 0,8,12,16, or 24. Code words of weight 8 are called octads and code words of weight 12 are called dodecads, octads of the code G24 are elements of the S Steiner system. There are 759 = 3*11*23 octads and 759 complements thereof and it follows that there are 2576 = 24*7*23 dodecads. Two octads intersect in 0,2, or 4 coordinates in the vector representation. An octad and a dodecad intersect at 2,4, or 6 coordinates, up to relabeling coordinates, W is unique. The binary Golay code, G23 is a perfect code and that is, the spheres of radius three around code words form a partition of the vector space. G23 is a 12-dimensional subspace of the space F223, the automorphism group of the perfect binary Golay code, G23, is the Mathieu group M23. The automorphism group of the extended binary Golay code is the Mathieu group M24, M24 is transitive on octads and on dodecads. The other Mathieu groups occur as stabilizers of one or several elements of W. Lexicographic code, starting with w0 =0, define w1, w2. W12 by the rule that wn is the smallest integer which differs from all linear combinations of elements in at least eight coordinates. Then W can be defined as the span of w1, quadratic residue code, Consider the set N of quadratic non-residues
53.
Steiner system
–
In combinatorial mathematics, a Steiner system is a type of block design, specifically a t-design with λ =1 and t ≥2. In an alternate notation for block designs, an S would be a t- design and this definition is relatively modern, generalizing the classical definition of Steiner systems which in addition required that k = t +1. An S was called a Steiner triple system, while an S was called a Steiner quadruple system, with the generalization of the definition, this naming system is no longer strictly adhered to. A long-standing problem in design theory was if any nontrivial Steiner systems have t ≥6 and this was solved in the affirmative by Peter Keevash in 2014. A finite affine plane of order q, with the lines as blocks, is an S, an affine plane of order q can be obtained from a projective plane of the same order by removing one block and all of the points in that block from the projective plane. Choosing different blocks to remove in this way can lead to non-isomorphic affine planes, an S is called a Steiner triple system, and its blocks are called triples. It is common to see the abbreviation STS for a Steiner triple system of order n, the number of triples through a point is /2 and hence the total number of triples is n/6. This shows that n must be of the form 6k+1 or 6k +3 for some k, the fact that this condition on n is sufficient for the existence of an S was proved by Raj Chandra Bose and T. Skolem. The projective plane of order 2 is an STS and the plane of order 3 is an STS. Up to isomorphism, the STS and STS are unique, there are two STSs,80 STSs, and 11,084,874,829 STSs. We can define a multiplication on the set S using the Steiner triple system by setting aa = a for all a in S and this makes S an idempotent, commutative quasigroup. It has the property that ab = c implies bc = a. Conversely, any quasigroup with these properties arises from a Steiner triple system, commutative idempotent quasigroups satisfying this additional property are called Steiner quasigroups. An S is called a Steiner quadruple system, a necessary and sufficient condition for the existence of an S is that n ≡2 or 4. The abbreviation SQS is often used for these systems, up to isomorphism, SQS and SQS are unique, there are 4 SQSs and 1,054,163 SQSs. An S is called a Steiner quintuple system, a necessary condition for the existence of such a system is that n ≡3 or 5 which comes from considerations that apply to all the classical Steiner systems. An additional necessary condition is that n ≢4, which comes from the fact that the number of blocks must be an integer, There is a unique Steiner quintuple system of order 11, but none of order 15 or order 17. Systems are known for orders 23,35,47,71,83,107,131,167 and 243, the smallest order for which the existence is not known is 21
54.
Mathieu group
–
In the area of modern algebra known as group theory, the Mathieu groups are the five sporadic simple groups M11, M12, M22, M23 and M24 introduced by Mathieu. They are multiply transitive permutation groups on 11,12,22,23 or 24 objects and they were the first sporadic groups to be discovered. Sometimes the notation M9, M10, M20 and M21 is used for related groups, while these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can extend this sequence up. M21 is simple, but is not a group, being isomorphic to PSL. Mathieu introduced the group M12 as part of an investigation of multiply transitive permutation groups, witt finally removed the doubts about the existence of these groups, by constructing them as successive transitive extensions of permutation groups, as well as automorphism groups of Steiner systems. After the Mathieu groups no new groups were found until 1965. Mathieu was interested in finding multiply transitive permutation groups, which will now be defined, for a natural number k, a permutation group G acting on n points is k-transitive if, given two sets of points a1. Bk with the property that all the ai are distinct and all the bi are distinct, such a group is called sharply k-transitive if the element g is unique. M24 is 5-transitive, and M12 is sharply 5-transitive, with the other Mathieu groups being the subgroups corresponding to stabilizers of m points, and accordingly of lower transitivity. The only 4-transitive groups are the symmetric groups Sk for k at least 4, the alternating groups Ak for k at least 6, the full proof requires the classification of finite simple groups, but some special cases have been known for much longer. It is a result of Jordan that the symmetric and alternating groups. Important examples of multiply transitive groups are the 2-transitive groups and the Zassenhaus groups, the Zassenhaus groups notably include the projective general linear group of a projective line over a finite field, PGL, which is sharply 3-transitive on q +1 elements. The Mathieu groups can be constructed in various ways, M12 has a simple subgroup of order 660, a maximal subgroup. That subgroup is isomorphic to the special linear group PSL2 over the field of 11 elements. With −1 written as a and infinity as b, two generators are and. A third generator giving M12 sends an element x of F11 to 4x2 − 3x7 and this group turns out not to be isomorphic to any member of the infinite families of finite simple groups and is called sporadic. M11 is the stabilizer of a point in M12, and turns out also to be a simple group
55.
Modular discriminant
–
In mathematics, Weierstrasss elliptic functions are elliptic functions that take a particularly simple form, they are named for Karl Weierstrass. This class of functions are referred to as P-functions and generally written using the symbol ℘. The ℘ functions constitute branched double coverings of the Riemann sphere by the torus and they can be used to parametrize elliptic curves over the complex numbers, thus establishing an equivalence to complex tori. They also yield solutions of the Korteweg–de Vries equation, the Weierstrass elliptic function can be defined in three closely related ways, each of which possesses certain advantages. One is as a function of a variable z and a lattice Λ in the complex plane. Another is in terms of z and two complex numbers ω1 and ω2 defining a pair of generators, or periods, for the lattice, the third is in terms of z and a modulus τ in the upper half-plane. This is related to the definition by τ = ω2/ω1. Using this approach, for fixed z the Weierstrass functions become modular functions of τ, in terms of the two periods, Weierstrasss elliptic function is an elliptic function with periods ω1 and ω2 defined as ℘ =1 z 2 + ∑ n 2 + m 2 ≠0. Then Λ = are the points of the lattice, so that ℘ = ℘ for any pair of generators of the lattice defines the Weierstrass function as a function of a complex variable. If τ is a number in the upper half-plane, then ℘ = ℘ =1 z 2 + ∑ n 2 + m 2 ≠0. The above sum is homogeneous of degree two, from which we may define the Weierstrass ℘ function for any pair of periods. We may compute ℘ very rapidly in terms of functions, because these converge so quickly. The formula here is ℘ = π2 ϑ2 ϑ102 ϑ012 ϑ112 − π23 There is a pole at each point of the period lattice. With these definitions, ℘ is a function and its derivative with respect to z. The numbers g2 and g3 are known as the invariants, the summations after the coefficients 60 and 140 are the first two Eisenstein series, which are modular forms when considered as functions G4 and G6, respectively, of τ = ω2/ω1 with Im >0. Note that g2 and g3 are homogeneous functions of degree −4 and −6, thus, by convention, one frequently writes g 2 and g 3 in terms of the period ratio τ = ω2 / ω1 and take τ to lie in the upper half-plane. Thus, g 2 = g 2 and g 3 = g 3 and this formula may be rewritten in terms of Lambert series. The invariants may be expressed in terms of Jacobis theta functions and this method is very convenient for numerical calculation, the theta functions converge very quickly
56.
Dedekind eta function
–
For any complex number τ with Im >0, let q = exp, and define the eta function by, η = e π i τ12 ∏ n =1 ∞ = q 124 ∏ n =1 ∞. The notation q ≡ e 2 π i τ is now standard in number theory, raising the eta equation to the 24th power and multiplying by 12 gives Δ =12 η24 where Δ is the modular discriminant. The presence of 24 can be understood by connection with other occurrences, the eta function is holomorphic on the upper half-plane but cannot be continued analytically beyond it. The eta function satisfies the functional equations η = e π i 12 η, η = − i τ η. More generally, suppose a, b, c, d are integers with ad − bc =1 and we may assume that either c >0, or c =0 and d =1. Then η = ϵ12 η, where ϵ = e b i π12, here s is the Dedekind sum s = ∑ n =1 k −1 n k. In particular the modular discriminant of Weierstrass can be defined as Δ =12 η24 and is a form of weight 12. Explicitly, η = e π i τ12 ϑ3, the picture on this page shows the modulus of the Euler function, the additional factor of q 1 /24 between this and eta makes almost no visual difference whatsoever. Thus, this picture can be taken as a picture of eta as a function of q, the theory of the algebraic characters of the affine Lie algebras gives rise to a large class of previously unknown identities for the eta function. These identities follow from the Weyl-Kac character formula, and more specifically from the so-called denominator identities, the characters themselves allow the construction of generalizations of the Jacobi theta function which transform under the modular group, this is what leads to the identities. Quotients of the Dedekind eta function at imaginary quadratic arguments may be algebraic, neal Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics 97, Springer-Verlag, ISBN 3-540-97966-2
57.
Lattice (group)
–
In geometry and group theory, a lattice in R n is a subgroup of R n which is isomorphic to Z n, and which spans the real vector space R n. In other words, for any basis of R n, the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice, a lattice may be viewed as a regular tiling of a space by a primitive cell. Lattices have many significant applications in mathematics, particularly in connection to Lie algebras, number theory. More generally, lattice models are studied in physics, often by the techniques of computational physics, a lattice is the symmetry group of discrete translational symmetry in n directions. A pattern with this lattice of translational symmetry cannot have more, as a group a lattice is a finitely-generated free abelian group, and thus isomorphic to Z n. A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e. g, a simple example of a lattice in R n is the subgroup Z n. More complicated examples include the E8 lattice, which is a lattice in R8, the period lattice in R2 is central to the study of elliptic functions, developed in nineteenth century mathematics, it generalises to higher dimensions in the theory of abelian functions. Lattices called root lattices are important in the theory of simple Lie algebras, for example, a typical lattice Λ in R n thus has the form Λ = where is a basis for R n. Different bases can generate the lattice, but the absolute value of the determinant of the vectors vi is uniquely determined by Λ. If one thinks of a lattice as dividing the whole of R n into equal polyhedra and this is why d is sometimes called the covolume of the lattice. If this equals 1, the lattice is called unimodular, minkowskis theorem relates the number d and the volume of a symmetric convex set S to the number of lattice points contained in S. The number of lattice points contained in an all of whose vertices are elements of the lattice is described by the polytopes Ehrhart polynomial. Formulas for some of the coefficients of this polynomial involve d as well, Lattice basis reduction is the problem of finding a short and nearly orthogonal lattice basis. The Lenstra-Lenstra-Lovász lattice basis reduction algorithm approximates such a basis in polynomial time, it has found numerous applications. There are five 2D lattice types as given by the crystallographic restriction theorem, below, the wallpaper group of the lattice is given in IUC notation, Orbifold notation, and Coxeter notation, along with a wallpaper diagram showing the symmetry domains. Note that a pattern with this lattice of translational symmetry cannot have more, a full list of subgroups is available. For example below the hexagonal/triangular lattice is given twice, with full 6-fold, if the symmetry group of a pattern contains an n-fold rotation then the lattice has n-fold symmetry for even n and 2n-fold for odd n. For the classification of a lattice, start with one point
58.
Commutative ring
–
In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of rings is called commutative algebra. Complementarily, noncommutative algebra is the study of noncommutative rings where multiplication is not or is not required to be commutative. e, operations combining any two elements of the ring to a third. They are called addition and multiplication and commonly denoted by + and ⋅, e. g. a + b, the identity elements for addition and multiplication are denoted 0 and 1, respectively. If the multiplication is commutative, i. e. a ⋅ b = b ⋅ a, in the remainder of this article, all rings will be commutative, unless explicitly stated otherwise. An important example, and in some sense crucial, is the ring of integers Z with the two operations of addition and multiplication, as the multiplication of integers is a commutative operation, this is a commutative ring. It is usually denoted Z as an abbreviation of the German word Zahlen, a field is a commutative ring where every non-zero element a is invertible, i. e. has a multiplicative inverse b such that a ⋅ b =1. Therefore, by definition, any field is a commutative ring, the rational, real and complex numbers form fields. An example is the set of matrices of divided differences with respect to a set of nodes. If R is a commutative ring, then the set of all polynomials in the variable X whose coefficients are in R forms the polynomial ring. The same holds true for several variables, if V is some topological space, for example a subset of some Rn, real- or complex-valued continuous functions on V form a commutative ring. The same is true for differentiable or holomorphic functions, when the two concepts are defined, such as for V a complex manifold, in contrast to fields, where every nonzero element is multiplicatively invertible, the theory of rings is more complicated. There are several notions to cope with that situation, first, an element a of ring R is called a unit if it possesses a multiplicative inverse. Another particular type of element is the zero divisors, i. e. a non-zero element a such that there exists an element b of the ring such that ab =0. If R possesses no zero divisors, it is called an integral domain since it resembles the integers in some ways. Many of the following notions also exist for not necessarily commutative rings, for example, all ideals in a commutative ring are automatically two-sided, which simplifies the situation considerably. Given any subset F = j ∈ J of R, the ideal generated by F is the smallest ideal that contains F. Equivalently, an ideal generated by one element is called a principal ideal. A ring all of whose ideals are principal is called a principal ideal ring, any ring has two ideals, namely the zero ideal and R, the whole ring
59.
Modular arithmetic
–
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers wrap around upon reaching a certain value—the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, a familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7,00 now, then 8 hours later it will be 3,00. Usual addition would suggest that the time should be 7 +8 =15. Likewise, if the clock starts at 12,00 and 21 hours elapse, then the time will be 9,00 the next day, because the hour number starts over after it reaches 12, this is arithmetic modulo 12. According to the definition below,12 is congruent not only to 12 itself, Modular arithmetic can be handled mathematically by introducing a congruence relation on the integers that is compatible with the operations on integers, addition, subtraction, and multiplication. For a positive n, two integers a and b are said to be congruent modulo n, written, a ≡ b. The number n is called the modulus of the congruence, for example,38 ≡14 because 38 −14 =24, which is a multiple of 12. The same rule holds for negative values, −8 ≡72 ≡ −3 −3 ≡ −8. Equivalently, a ≡ b mod n can also be thought of as asserting that the remainders of the division of both a and b by n are the same, for instance,38 ≡14 because both 38 and 14 have the same remainder 2 when divided by 12. It is also the case that 38 −14 =24 is a multiple of 12. A remark on the notation, Because it is common to consider several congruence relations for different moduli at the same time, in spite of the ternary notation, the congruence relation for a given modulus is binary. This would have been if the notation a ≡n b had been used. The properties that make this relation a congruence relation are the following, if a 1 ≡ b 1 and a 2 ≡ b 2, then, a 1 + a 2 ≡ b 1 + b 2 a 1 − a 2 ≡ b 1 − b 2. The above two properties would still hold if the theory were expanded to all real numbers, that is if a1, a2, b1, b2. The next property, however, would fail if these variables were not all integers, the notion of modular arithmetic is related to that of the remainder in Euclidean division. The operation of finding the remainder is referred to as the modulo operation. For example, the remainder of the division of 14 by 12 is denoted by 14 mod 12, as this remainder is 2, we have 14 mod 12 =2
60.
Monstrous moonshine
–
In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The term was coined by John Conway and Simon P. Norton in 1979 and this vertex operator algebra is commonly interpreted as a structure underlying a conformal field theory, allowing physics to form a bridge between two mathematical areas. Let r n =1,196883,21296876,842609326,18538750076,19360062527,293553734298 and he won the Fields Medal in 1998 in part for his solution of the conjecture. The Frenkel–Lepowsky–Meurman construction starts with two tools, The construction of a lattice vertex operator algebra VL for an even lattice L of rank n. In physical terms, this is the chiral algebra for a bosonic string compactified on a torus Rn/L and it can be described roughly as the tensor product of the group ring of L with the oscillator representation in n dimensions. For the case in question, one sets L to be the Leech lattice, in physical terms, this describes a bosonic string propagating on a quotient orbifold. The construction of Frenkel–Lepowsky–Meurman was the first time appeared in conformal field theory. Attached to the –1 involution of the Leech lattice, there is an involution h of VL, and an irreducible h-twisted VLmodule, to get the Moonshine Module, one takes the fixed point subspace of h in the direct sum of VL and its twisted module. This was provided by Frenkel–Lepowsky–Meurmans construction and analysis of the Moonshine Module, a Lie algebra m, called the monster Lie algebra, is constructed from V using a quantization functor. It is a generalized Kac–Moody Lie algebra with an action by automorphisms. Using the Goddard–Thorn no-ghost theorem from string theory, the root multiplicities are found to be coefficients of J, one uses the Koike–Norton–Zagier infinite product identity to construct a generalized Kac–Moody Lie algebra by generators and relations. The identity is proved using the fact that Hecke operators applied to J yield polynomials in J, by comparing root multiplicities, one finds that the two Lie algebras are isomorphic, and in particular, the Weyl denominator formula for m is precisely the Koike–Norton–Zagier identity. Using Lie algebra homology and Adams operations, a twisted denominator identity is given for each element and these identities are related to the McKay–Thompson series Tg in much the same way that the Koike–Norton–Zagier identity is related to J. These relations are strong enough that one needs to check that the first seven terms agree with the functions given by Conway. The lowest terms are given by the decomposition of the seven lowest degree homogeneous spaces given in the first step. Borcherds was later quoted as saying I was over the moon when I proved the moonshine conjecture, I dont actually know, as I have not tested this theory of mine. More recent work has simplified and clarified the last steps of the proof, Conway and Norton suggested in their 1979 paper that perhaps moonshine is not limited to the monster, but that similar phenomena may be found for other groups. In 1987, Norton combined Queens results with his own computations to formulate the Generalized Moonshine conjecture, each f is either a constant function, or a Hauptmodul
61.
24-cell
–
In geometry, the 24-cell is the convex regular 4-polytope with Schläfli symbol. It is also called C24, icositetrachoron, octaplex, icosatetrahedroid, octacube, hyper-diamond or polyoctahedron, the boundary of the 24-cell is composed of 24 octahedral cells with six meeting at each vertex, and three at each edge. Together they have 96 triangular faces,96 edges, and 24 vertices, the vertex figure is a cube. In fact, the 24-cell is the unique convex self-dual regular Euclidean polytope which is neither a polygon nor a simplex, due to this singular property, it does not have a good analogue in 3 dimensions. A 24-cell is given as the hull of its vertices. The vertices of a 24-cell centered at the origin of 4-space, with edges of length 1, the first 8 vertices are the vertices of a regular 16-cell and the other 16 are the vertices of the dual tesseract. This gives an equivalent to cutting a tesseract into 8 cubical pyramids. This is equivalent to the dual of a rectified 16-cell, the analogous construction in 3-space gives the rhombic dodecahedron which, however, is not regular. We can further divide the last 16 vertices into two groups, those with an number of minus signs and those with an odd number. Each of groups of 8 vertices also define a regular 16-cell, the vertices of the 24-cell can then be grouped into three sets of eight with each set defining a regular 16-cell, and with the complement defining the dual tesseract. The vertices of the dual 24-cell are given by all permutations of, the dual 24-cell has edges of length √2 and is inscribed in a 3-sphere of radius √2. Another method of constructing the 24-cell is by the rectification of the 16-cell, the vertex figure of the 16-cell is the octahedron, thus, cutting the vertices of the 16-cell at the midpoint of its incident edges produce 8 octahedral cells. This process also rectifies the tetrahedral cells of the 16-cell which also become octahedra, a regular tessellation of 4-dimensional Euclidean space exists with 24-cells, called an icositetrachoric honeycomb, with Schläfli symbol. Hence, the angle of a 24-cell is 120°. The regular dual tessellation, has 16-cells, the 24 vertices of the 24-cell represent the root vectors of the simple Lie group D4. The vertices can be seen in 3 hyperplanes, with the 6 vertices of a cell on each of the outer hyperplanes and 12 vertices of a cuboctahedron on a central hyperplane. These vertices, combined with the 8 vertices of the 16-cell, represent the 32 root vectors of the B4, the 48 vertices of the union of the 24-cell and its dual form the root system of type F4. The 24 vertices of the original 24-cell form a system of type D4
62.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
63.
Convex regular 4-polytope
–
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the analogs of the regular polyhedra in three dimensions and the regular polygons in two dimensions. Regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century, There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century, Schläfli discovered that there are precisely six such figures. Schläfli also found four of the regular star 4-polytopes and he skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures. That excludes cells and vertex figures as, and, the six convex and ten star polytopes described are the only solutions to these constraints. There are four nonconvex Schläfli symbols that have cells and vertex figures, and pass the dihedral test. The regular convex 4-polytopes are the analogs of the Platonic solids in three dimensions and the convex regular polygons in two dimensions. Five of them may be thought of as close analogs of the Platonic solids, There is one additional figure, the 24-cell, which has no close three-dimensional equivalent. Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and these are fitted together along their respective faces in a regular fashion. The following tables lists some properties of the six convex regular 4-polytopes, the symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. The number following the name of the group is the order of the group, John Conway advocates the names simplex, orthoplex, tesseract, octaplex or polyoctahedron, dodecaplex or polydodecahedron, and tetraplex or polytetrahedron. The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analog of Eulers polyhedral formula, the topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients. The following table shows some 2-dimensional projections of these 4-polytopes, various other visualizations can be found in the external links below. The Coxeter-Dynkin diagram graphs are given below the Schläfli symbol. The Schläfli–Hess 4-polytopes are the set of 10 regular self-intersecting star polychora. They are named in honor of their discoverers, Ludwig Schläfli, each is represented by a Schläfli symbol in which one of the numbers is 5/2. They are thus analogous to the regular nonconvex Kepler–Poinsot polyhedra and their names given here were given by John Conway, extending Cayleys names for the Kepler–Poinsot polyhedra, along with stellated and great, he adds a grand modifier
64.
Kissing number
–
In geometry, a kissing number is defined as the number of non-overlapping unit spheres that can be arranged such that they each touch another given unit sphere. For a lattice packing the kissing number is the same for every sphere, other names for kissing number that have been used are Newton number, and contact number. In general, the number problem seeks the maximum possible kissing number for n-dimensional spheres in -dimensional Euclidean space. Ordinary spheres correspond to two-dimensional closed surfaces in three-dimensional space, finding the kissing number when centers of spheres are confined to a line or a plane is trivial. Proving a solution to the case, despite being easy to conceptualise and model in the physical world. Solutions in higher dimensions are more challenging, and only a handful of cases have been solved exactly. For others investigations have determined upper and lower bounds, but not exact solutions. In one dimension, the number is 2, In two dimensions, the kissing number is 6, Proof, Consider a circle with center C that is touched by circles with centers C1. These rays all emanate from the same center C, so the sum of angles between adjacent rays is 360°, assume by contradiction that there are more than six touching circles. Then at least two adjacent rays, say C C1 and C C2, are separated by an angle of less than 60°, the segments C Ci have the same length – 2r – for all i. Therefore the triangle C C1 C2 is isosceles, and its third side – C1 C2 – has a length of less than 2r. Therefore the circles 1 and 2 intersect – a contradiction, in three dimensions, the kissing number is 12, but the correct value was much more difficult to establish than in dimensions one and two. It is easy to arrange 12 spheres so that each touches a central sphere, but there is a lot of left over. This was the subject of a disagreement between mathematicians Isaac Newton and David Gregory. Newton correctly thought that the limit was 12, Gregory thought that a 13th could fit, some incomplete proofs that Newton was correct were offered in the nineteenth century, most notably one by Reinhold Hoppe, but the first correct proof did not appear until 1953. The twelve neighbors of the sphere correspond to the maximum bulk coordination number of an atom in a crystal lattice in which all atoms have the same size. A coordination number of 12 is found in a cubic close-packed or a hexagonal close-packed structure, in four dimensions, it was known for some time that the answer is either 24 or 25. It is easy to produce a packing of 24 spheres around a central sphere, as in the three-dimensional case, there is a lot of space left over—even more, in fact, than for n = 3—so the situation was even less clear
65.
Natural numbers
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory