Orbital eccentricity
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit, greater than 1 is a hyperbola; the term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is used for the isolated two-body problem, but extensions exist for objects following a Klemperer rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit; the eccentricity of this Kepler orbit is a non-negative number. The eccentricity may take the following values: circular orbit: e = 0 elliptic orbit: 0 < e < 1 parabolic trajectory: e = 1 hyperbolic trajectory: e > 1 The eccentricity e is given by e = 1 + 2 E L 2 m red α 2 where E is the total orbital energy, L is the angular momentum, mred is the reduced mass, α the coefficient of the inverse-square law central force such as gravity or electrostatics in classical physics: F = α r 2 or in the case of a gravitational force: e = 1 + 2 ε h 2 μ 2 where ε is the specific orbital energy, μ the standard gravitational parameter based on the total mass, h the specific relative angular momentum.
For values of e from 0 to 1 the orbit's shape is an elongated ellipse. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola. Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, one must calculate the inverse sine to find the projection angle of 11.86 degrees. Next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity; the word "eccentricity" comes from Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros "out of the center", from ἐκ- ek-, "out of" + κέντρον kentron "center".
"Eccentric" first appeared in English in 1551, with the definition "a circle in which the earth, sun. Etc. deviates from its center". By five years in 1556, an adjectival form of the word had developed; the eccentricity of an orbit can be calculated from the orbital state vectors as the magnitude of the eccentricity vector: e = | e | where: e is the eccentricity vector. For elliptical orbits it can be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p = 1 − 2 r a r p + 1 where: ra is the radius at apoapsis. Rp is the radius at periapsis; the eccentricity of an elliptical orbit can be used to obtain the ratio of the periapsis to the apoapsis: r p r a = 1 − e 1 + e For Earth, orbital eccentricity ≈ 0.0167, apoapsis= aphelion and periapsis= perihelion relative to sun. For Earth's annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈ 1.034 relative to center point of path. The eccentricity of the Earth's orbit is about 0.0167.
Ve
Hipparcos
Hipparcos was a scientific satellite of the European Space Agency, launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky; this permitted the accurate determination of proper motions and parallaxes of stars, allowing a determination of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, this pinpointed all six quantities needed to determine the motion of stars; the resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos' follow-up mission, was launched in 2013; the word "Hipparcos" is an acronym for HIgh Precision PARallax COllecting Satellite and a reference to the ancient Greek astronomer Hipparchus of Nicaea, noted for applications of trigonometry to astronomy and his discovery of the precession of the equinoxes.
By the second half of the 20th century, the accurate measurement of star positions from the ground was running into insurmountable barriers to improvements in accuracy for large-angle measurements and systematic terms. Problems were dominated by the effects of the Earth's atmosphere, but were compounded by complex optical terms and gravitational instrument flexures, the absence of all-sky visibility. A formal proposal to make these exacting observations from space was first put forward in 1967. Although proposed to the French space agency CNES, it was considered too complex and expensive for a single national programme, its acceptance within the European Space Agency's scientific programme, in 1980, was the result of a lengthy process of study and lobbying. The underlying scientific motivation was to determine the physical properties of the stars through the measurement of their distances and space motions, thus to place theoretical studies of stellar structure and evolution, studies of galactic structure and kinematics, on a more secure empirical basis.
Observationally, the objective was to provide the positions and annual proper motions for some 100,000 stars with an unprecedented accuracy of 0.002 arcseconds, a target in practice surpassed by a factor of two. The name of the space telescope, "Hipparcos" was an acronym for High Precision Parallax Collecting Satellite, it reflected the name of the ancient Greek astronomer Hipparchus, considered the founder of trigonometry and the discoverer of the precession of the equinoxes; the spacecraft carried a single all-reflective, eccentric Schmidt telescope, with an aperture of 29 cm. A special beam-combining mirror superimposed two fields of view, 58 degrees apart, into the common focal plane; this complex mirror consisted of two mirrors tilted in opposite directions, each occupying half of the rectangular entrance pupil, providing an unvignetted field of view of about 1°×1°. The telescope used a system of grids, at the focal surface, composed of 2688 alternate opaque and transparent bands, with a period of 1.208 arc-sec.
Behind this grid system, an image dissector tube with a sensitive field of view of about 38-arc-sec diameter converted the modulated light into a sequence of photon counts from which the phase of the entire pulse train from a star could be derived. The apparent angle between two stars in the combined fields of view, modulo the grid period, was obtained from the phase difference of the two star pulse trains. Targeting the observation of some 100,000 stars, with an astrometric accuracy of about 0.002 arc-sec, the final Hipparcos Catalogue comprised nearly 120,000 stars with a median accuracy of better than 0.001 arc-sec. An additional photomultiplier system viewed a beam splitter in the optical path and was used as a star mapper, its purpose was to monitor and determine the satellite attitude, in the process, to gather photometric and astrometric data of all stars down to about 11th magnitude. These measurements were made in two broad bands corresponding to B and V in the UBV photometric system.
The positions of these latter stars were to be determined to a precision of 0.03 arc-sec, a factor of 25 less than the main mission stars. Targeting the observation of around 400,000 stars, the resulting Tycho Catalogue comprised just over 1 million stars, with a subsequent analysis extending this to the Tycho-2 Catalogue of about 2.5 million stars. The attitude of the spacecraft about its center of gravity was controlled to scan the celestial sphere in a regular precessional motion maintaining a constant inclination between the spin axis and the direction to the Sun; the spacecraft spun around its Z-axis at the rate of 11.25 revolutions/day at an angle of 43° to the Sun. The Z-axis rotated about the sun-satellite line at 6.4 revolutions/year. The spacecraft consisted of two platforms and six vertical panels, all made of aluminum honeycomb; the solar array consisted of three deployable sections. Two S-band antennas were located on the top and bottom of the spacecraft, providing an omni-directional downlink data rate of 24 kbit/s.
An attitude and orbit-control subsystem ensured correct dynamic attitude control and determination during the operational lifetim
Minute and second of arc
A minute of arc, arc minute, or minute arc is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn, one minute of arc is 1/21600 of a turn – it is for this reason that the Earth's circumference is exactly 21,600 nautical miles. A minute of arc is π/10800 of a radian. A second of arc, arcsecond, or arc second is 1/60 of an arcminute, 1/3600 of a degree, 1/1296000 of a turn, π/648000 of a radian; these units originated in Babylonian astronomy as sexagesimal subdivisions of the degree. To express smaller angles, standard SI prefixes can be employed; the number of square arcminutes in a complete sphere is 4 π 2 = 466 560 000 π ≈ 148510660 square arcminutes. The names "minute" and "second" have nothing to do with the identically named units of time "minute" or "second"; the identical names reflect the ancient Babylonian number system, based on the number 60. The standard symbol for marking the arcminute is the prime, though a single quote is used where only ASCII characters are permitted.
One arcminute is thus written 1′. It is abbreviated as arcmin or amin or, less the prime with a circumflex over it; the standard symbol for the arcsecond is the double prime, though a double quote is used where only ASCII characters are permitted. One arcsecond is thus written 1″, it is abbreviated as arcsec or asec. In celestial navigation, seconds of arc are used in calculations, the preference being for degrees and decimals of a minute, for example, written as 42° 25.32′ or 42° 25.322′. This notation has been carried over into marine GPS receivers, which display latitude and longitude in the latter format by default; the full moon's average apparent size is about 31 arcminutes. An arcminute is the resolution of the human eye. An arcsecond is the angle subtended by a U. S. dime coin at a distance of 4 kilometres. An arcsecond is the angle subtended by an object of diameter 725.27 km at a distance of one astronomical unit, an object of diameter 45866916 km at one light-year, an object of diameter one astronomical unit at a distance of one parsec, by definition.
A milliarcsecond is about the size of a dime atop the Eiffel Tower. A microarcsecond is about the size of a period at the end of a sentence in the Apollo mission manuals left on the Moon as seen from Earth. A nanoarcsecond is about the size of a penny on Neptune's moon Triton as observed from Earth. Notable examples of size in arcseconds are: Hubble Space Telescope has calculational resolution of 0.05 arcseconds and actual resolution of 0.1 arcseconds, close to the diffraction limit. Crescent Venus measures between 66 seconds of arc. Since antiquity the arcminute and arcsecond have been used in astronomy. In the ecliptic coordinate system and longitude; the principal exception is right ascension in equatorial coordinates, measured in time units of hours and seconds. The arcsecond is often used to describe small astronomical angles such as the angular diameters of planets, the proper motion of stars, the separation of components of binary star systems, parallax, the small change of position of a star in the course of a year or of a solar system body as the Earth rotates.
These small angles may be written in milliarcseconds, or thousandths of an arcsecond. The unit of distance, the parsec, named from the parallax of one arc second, was developed for such parallax measurements, it is the distance at which the mean radius of the Earth's orbit would subtend an angle of one arcsecond. The ESA astrometric space probe Gaia, launched in 2013, can approximate star positions to 7 microarcseconds. Apart from the Sun, the star with the largest angular diameter from Earth is R Doradus, a red giant with a diameter of 0.05 arcsecond. Because of the effects of atmospheric seeing, ground-based telescopes will smear the image of a star to an angular diameter of about 0.5 arcsecond. The dwarf planet Pluto has proven difficult to resolve because its angular diameter is about 0.1 arcsecond. Space telescopes are diffraction limited. For example, the Hubble Space Telescope can reach an angular size of stars down to about 0.1″. Techniques exist for improving seeing on the ground. Adaptive optics, for example, can produce images around 0.05 arcsecond on a 10 m class telescope.
Minutes and seconds of arc are used in cartography and navigation. At sea level one minute of arc
Star catalogue
A star catalogue or star catalog, is an astronomical catalogue that lists stars. In astronomy, many stars are referred to by catalogue numbers. There are a great many different star catalogues which have been produced for different purposes over the years, this article covers only some of the more quoted ones. Star catalogues were compiled by many different ancient people, including the Babylonians, Chinese and Arabs, they were sometimes accompanied by a star chart for illustration. Most modern catalogues are available in electronic format and can be downloaded from space agencies data centres. Completeness and accuracy is described by the weakest apparent magnitude V and the accuracy of the positions. From their existing records, it is known that the ancient Egyptians recorded the names of only a few identifiable constellations and a list of thirty-six decans that were used as a star clock; the Egyptians called the circumpolar star "the star that cannot perish" and, although they made no known formal star catalogues, they nonetheless created extensive star charts of the night sky which adorn the coffins and ceilings of tomb chambers.
Although the ancient Sumerians were the first to record the names of constellations on clay tablets, the earliest known star catalogues were compiled by the ancient Babylonians of Mesopotamia in the late 2nd millennium BC, during the Kassite Period. They are better known by their Assyrian-era name'Three Stars Each'; these star catalogues, written on clay tablets, listed thirty-six stars: twelve for "Anu" along the celestial equator, twelve for "Ea" south of that, twelve for "Enlil" to the north. The Mul. Apin lists, dated to sometime before the Neo-Babylonian Empire, are direct textual descendants of the "Three Stars Each" lists and their constellation patterns show similarities to those of Greek civilization. In Ancient Greece, the astronomer and mathematician Eudoxus laid down a full set of the classical constellations around 370 BC, his catalogue Phaenomena, rewritten by Aratus of Soli between 275 and 250 BC as a didactic poem, became one of the most consulted astronomical texts in antiquity and beyond.
It contains descriptions of the positions of the stars, the shapes of the constellations and provided information on their relative times of rising and setting. In the 3rd century BC, the Greek astronomers Timocharis of Alexandria and Aristillus created another star catalogue. Hipparchus completed his star catalogue in 129 BC, which he compared to Timocharis' and discovered that the longitude of the stars had changed over time; this led him to determine the first value of the precession of the equinoxes. In the 2nd century, Ptolemy of Roman Egypt published a star catalogue as part of his Almagest, which listed 1,022 stars visible from Alexandria. Ptolemy's catalogue was based entirely on an earlier one by Hipparchus, it remained the standard star catalogue in the Arab worlds for over eight centuries. The Islamic astronomer al-Sufi updated it in 964, the star positions were redetermined by Ulugh Beg in 1437, but it was not superseded until the appearance of the thousand-star catalogue of Tycho Brahe in 1598.
Although the ancient Vedas of India specified how the ecliptic was to be divided into twenty-eight nakshatra, Indian constellation patterns were borrowed from Greek ones sometime after Alexander's conquests in Asia in the 4th century BC. The earliest known inscriptions for Chinese star names were written on oracle bones and date to the Shang Dynasty. Sources dating from the Zhou Dynasty which provide star names include the Zuo Zhuan, the Shi Jing, the "Canon of Yao" in the Book of Documents; the Lüshi Chunqiu written by the Qin statesman Lü Buwei provides most of the names for the twenty-eight mansions. An earlier lacquerware chest found in the Tomb of Marquis Yi of Zeng contains a complete list of the names of the twenty-eight mansions. Star catalogues are traditionally attributed to Shi Shen and Gan De, two rather obscure Chinese astronomers who may have been active in the 4th century BC of the Warring States period; the Shi Shen astronomy is attributed to Shi Shen, the Astronomic star observation to Gan De.
It was not until the Han Dynasty that astronomers started to observe and record names for all the stars that were apparent in the night sky, not just those around the ecliptic. A star catalogue is featured in one of the chapters of the late 2nd-century-BC history work Records of the Grand Historian by Sima Qian and contains the "schools" of Shi Shen and Gan De's work. Sima's catalogue—the Book of Celestial Offices —includes some 90 constellations, the stars therein named after temples, ideas in philosophy, locations such as markets and shops, different people such as farmers and soldiers. For his Spiritual Constitution of the Universe of 120 AD, the astronomer Zhang Heng compiled a star catalogue comprising 124 constellations. Chinese constellation names were adopted by the Koreans and Japanese. A large number of star catalogues were published by Muslim astronomers in the medieval Islamic world; these were Zij treatises, including Arzachel's Tables of Toledo, the Maragheh observatory's Zij-i Ilkhani and Ulugh Beg's Zij-i-Sultani.
Other fam
Right ascension
Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point above the earth in question. When paired with declination, these astronomical coordinates specify the direction of a point on the celestial sphere in the equatorial coordinate system. An old term, right ascension refers to the ascension, or the point on the celestial equator that rises with any celestial object as seen from Earth's equator, where the celestial equator intersects the horizon at a right angle, it contrasts with oblique ascension, the point on the celestial equator that rises with any celestial object as seen from most latitudes on Earth, where the celestial equator intersects the horizon at an oblique angle. Right ascension is the celestial equivalent of terrestrial longitude. Both right ascension and longitude measure an angle from a primary direction on an equator. Right ascension is measured from the Sun at the March equinox i.e. the First Point of Aries, the place on the celestial sphere where the Sun crosses the celestial equator from south to north at the March equinox and is located in the constellation Pisces.
Right ascension is measured continuously in a full circle from that alignment of Earth and Sun in space, that equinox, the measurement increasing towards the east. As seen from Earth, objects noted to have 12h RA are longest visible at the March equinox. On those dates at midnight, such objects will reach their highest point. How high depends on their declination. Any units of angular measure could have been chosen for right ascension, but it is customarily measured in hours and seconds, with 24h being equivalent to a full circle. Astronomers have chosen this unit to measure right ascension because they measure a star's location by timing its passage through the highest point in the sky as the Earth rotates; the line which passes through the highest point in the sky, called the meridian, is the projection of a longitude line onto the celestial sphere. Since a complete circle contains 24h of right ascension or 360°, 1/24 of a circle is measured as 1h of right ascension, or 15°. A full circle, measured in right-ascension units, contains 24 × 60 × 60 = 86400s, or 24 × 60 = 1440m, or 24h.
Because right ascensions are measured in hours, they can be used to time the positions of objects in the sky. For example, if a star with RA = 1h 30m 00s is at its meridian a star with RA = 20h 00m 00s will be on the/at its meridian 18.5 sidereal hours later. Sidereal hour angle, used in celestial navigation, is similar to right ascension, but increases westward rather than eastward. Measured in degrees, it is the complement of right ascension with respect to 24h, it is important not to confuse sidereal hour angle with the astronomical concept of hour angle, which measures angular distance of an object westward from the local meridian. The Earth's axis rotates westward about the poles of the ecliptic, completing one cycle in about 26,000 years; this movement, known as precession, causes the coordinates of stationary celestial objects to change continuously, if rather slowly. Therefore, equatorial coordinates are inherently relative to the year of their observation, astronomers specify them with reference to a particular year, known as an epoch.
Coordinates from different epochs must be mathematically rotated to match each other, or to match a standard epoch. Right ascension for "fixed stars" near the ecliptic and equator increases by about 3.05 seconds per year on average, or 5.1 minutes per century, but for fixed stars further from the ecliptic the rate of change can be anything from negative infinity to positive infinity. The right ascension of Polaris is increasing quickly; the North Ecliptic Pole in Draco and the South Ecliptic Pole in Dorado are always at right ascension 18h and 6h respectively. The used standard epoch is J2000.0, January 1, 2000 at 12:00 TT. The prefix "J" indicates. Prior to J2000.0, astronomers used the successive Besselian epochs B1875.0, B1900.0, B1950.0. The concept of right ascension has been known at least as far back as Hipparchus who measured stars in equatorial coordinates in the 2nd century BC, but Hipparchus and his successors made their star catalogs in ecliptic coordinates, the use of RA was limited to special cases.
With the invention of the telescope, it became possible for astronomers to observe celestial objects in greater detail, provided that the telescope could be kept pointed at the object for a period of time. The easiest way to do, to use an equatorial mount, which allows the telescope to be aligned with one of its two pivots parallel to the Earth's axis. A motorized clock drive is used with an equatorial mount to cancel out the Earth's rotation; as the equatorial mount became adopted for observation, the equatorial coordinate system, which includes right ascension, was adopted at the same time for simplicity. Equatorial mounts could be pointed at objects with known right ascension and declination by the use of setting circles; the first star catalog to use right ascen
Apparent magnitude
The apparent magnitude of an astronomical object is a number, a measure of its brightness as seen by an observer on Earth. The magnitude scale is logarithmic. A difference of 1 in magnitude corresponds to a change in brightness by a factor of 5√100, or about 2.512. The brighter an object appears, the lower its magnitude value, with the brightest astronomical objects having negative apparent magnitudes: for example Sirius at −1.46. The measurement of apparent magnitudes or brightnesses of celestial objects is known as photometry. Apparent magnitudes are used to quantify the brightness of sources at ultraviolet and infrared wavelengths. An apparent magnitude is measured in a specific passband corresponding to some photometric system such as the UBV system. In standard astronomical notation, an apparent magnitude in the V filter band would be denoted either as mV or simply as V, as in "mV = 15" or "V = 15" to describe a 15th-magnitude object; the scale used to indicate magnitude originates in the Hellenistic practice of dividing stars visible to the naked eye into six magnitudes.
The brightest stars in the night sky were said to be of first magnitude, whereas the faintest were of sixth magnitude, the limit of human visual perception. Each grade of magnitude was considered twice the brightness of the following grade, although that ratio was subjective as no photodetectors existed; this rather crude scale for the brightness of stars was popularized by Ptolemy in his Almagest and is believed to have originated with Hipparchus. In 1856, Norman Robert Pogson formalized the system by defining a first magnitude star as a star, 100 times as bright as a sixth-magnitude star, thereby establishing the logarithmic scale still in use today; this implies that a star of magnitude m is about 2.512 times as bright as a star of magnitude m + 1. This figure, the fifth root of 100, became known as Pogson's Ratio; the zero point of Pogson's scale was defined by assigning Polaris a magnitude of 2. Astronomers discovered that Polaris is variable, so they switched to Vega as the standard reference star, assigning the brightness of Vega as the definition of zero magnitude at any specified wavelength.
Apart from small corrections, the brightness of Vega still serves as the definition of zero magnitude for visible and near infrared wavelengths, where its spectral energy distribution approximates that of a black body for a temperature of 11000 K. However, with the advent of infrared astronomy it was revealed that Vega's radiation includes an Infrared excess due to a circumstellar disk consisting of dust at warm temperatures. At shorter wavelengths, there is negligible emission from dust at these temperatures. However, in order to properly extend the magnitude scale further into the infrared, this peculiarity of Vega should not affect the definition of the magnitude scale. Therefore, the magnitude scale was extrapolated to all wavelengths on the basis of the black-body radiation curve for an ideal stellar surface at 11000 K uncontaminated by circumstellar radiation. On this basis the spectral irradiance for the zero magnitude point, as a function of wavelength, can be computed. Small deviations are specified between systems using measurement apparatuses developed independently so that data obtained by different astronomers can be properly compared, but of greater practical importance is the definition of magnitude not at a single wavelength but applying to the response of standard spectral filters used in photometry over various wavelength bands.
With the modern magnitude systems, brightness over a wide range is specified according to the logarithmic definition detailed below, using this zero reference. In practice such apparent magnitudes do not exceed 30; the brightness of Vega is exceeded by four stars in the night sky at visible wavelengths as well as the bright planets Venus and Jupiter, these must be described by negative magnitudes. For example, the brightest star of the celestial sphere, has an apparent magnitude of −1.4 in the visible. Negative magnitudes for other bright astronomical objects can be found in the table below. Astronomers have developed other photometric zeropoint systems as alternatives to the Vega system; the most used is the AB magnitude system, in which photometric zeropoints are based on a hypothetical reference spectrum having constant flux per unit frequency interval, rather than using a stellar spectrum or blackbody curve as the reference. The AB magnitude zeropoint is defined such that an object's AB and Vega-based magnitudes will be equal in the V filter band.
As the amount of light received by a telescope is reduced by transmission through the Earth's atmosphere, any measurement of apparent magnitude is corrected for what it would have been as seen from above the atmosphere. The dimmer an object appears, the higher the numerical value given to its apparent magnitude, with a difference of 5 magnitudes corresponding to a brightness factor of 100. Therefore, the apparent magnitude m, in the spectral band x, would be given by m x = − 5 log 100 , more expressed in terms of common logarithms as m x
Radial velocity
The radial velocity of an object with respect to a given point is the rate of change of the distance between the object and the point. That is, the radial velocity is the component of the object's velocity that points in the direction of the radius connecting the object and the point. In astronomy, the point is taken to be the observer on Earth, so the radial velocity denotes the speed with which the object moves away from or approaches the Earth. In astronomy, radial velocity is measured to the first order of approximation by Doppler spectroscopy; the quantity obtained by this method may be called the barycentric radial-velocity measure or spectroscopic radial velocity. However, due to relativistic and cosmological effects over the great distances that light travels to reach the observer from an astronomical object, this measure cannot be transformed to a geometric radial velocity without additional assumptions about the object and the space between it and the observer. By contrast, astrometric radial velocity is determined by astrometric observations.
Light from an object with a substantial relative radial velocity at emission will be subject to the Doppler effect, so the frequency of the light decreases for objects that were receding and increases for objects that were approaching. The radial velocity of a star or other luminous distant objects can be measured by taking a high-resolution spectrum and comparing the measured wavelengths of known spectral lines to wavelengths from laboratory measurements. A positive radial velocity indicates the distance between the objects was increasing. In many binary stars, the orbital motion causes radial velocity variations of several kilometers per second; as the spectra of these stars vary due to the Doppler effect, they are called spectroscopic binaries. Radial velocity can be used to estimate the ratio of the masses of the stars, some orbital elements, such as eccentricity and semimajor axis; the same method has been used to detect planets around stars, in the way that the movement's measurement determines the planet's orbital period, while the resulting radial-velocity amplitude allows the calculation of the lower bound on a planet's mass using the binary mass function.
Radial velocity methods alone may only reveal a lower bound, since a large planet orbiting at a high angle to the line of sight will perturb its star radially as much as a much smaller planet with an orbital plane on the line of sight. It has been suggested that planets with high eccentricities calculated by this method may in fact be two-planet systems of circular or near-circular resonant orbit; the radial velocity method to detect exoplanets is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an exoplanet as it orbits the star. When the star moves towards us, its spectrum is blueshifted, while it is redshifted when it moves away from us. By looking at the spectrum of a star—and so, measuring its velocity—it can be determined if it moves periodically due to the influence of an exoplanet companion. From the instrumental perspective, velocities are measured relative to the telescope's motion. So an important first step of the data reduction is to remove the contributions of the Earth's elliptic motion around the sun at ± 30 km/s, a monthly rotation of ± 13 m/s of the Earth around the center of gravity of the Earth-Moon system, the daily rotation of the telescope with the Earth crust around the Earth axis, up to ±460 m/s at the equator and proportional to the cosine of the telescope's geographic latitude, small contributions from the Earth polar motion at the level of mm/s, contributions of 230 km/s from the motion around the Galactic center and associated proper motions.
In the case of spectroscopic measurements corrections of the order of ±20 cm/s with respect to aberration. Proper motion Peculiar velocity Relative velocity Space velocity The Radial Velocity Equation in the Search for Exoplanets