1.
Jmol
–
Jmol is computer software for molecular modelling chemical structures in 3-dimensions. Jmol returns a 3D representation of a molecule that may be used as a teaching tool and it is written in the programming language Java, so it can run on the operating systems Windows, macOS, Linux, and Unix, if Java is installed. It is free and open-source software released under a GNU Lesser General Public License version 2.0, a standalone application and a software development kit exist that can be integrated into other Java applications, such as Bioclipse and Taverna. A popular feature is an applet that can be integrated into web pages to display molecules in a variety of ways, for example, molecules can be displayed as ball-and-stick models, space-filling models, ribbon diagrams, etc. Jmol supports a range of chemical file formats, including Protein Data Bank, Crystallographic Information File, MDL Molfile. There is also a JavaScript-only version, JSmol, that can be used on computers with no Java, the Jmol applet, among other abilities, offers an alternative to the Chime plug-in, which is no longer under active development. While Jmol has many features that Chime lacks, it does not claim to reproduce all Chime functions, most notably, Chime requires plug-in installation and Internet Explorer 6.0 or Firefox 2.0 on Microsoft Windows, or Netscape Communicator 4.8 on Mac OS9. Jmol requires Java installation and operates on a variety of platforms. For example, Jmol is fully functional in Mozilla Firefox, Internet Explorer, Opera, Google Chrome, fast and Scriptable Molecular Graphics in Web Browsers without Java3D
2.
ChemSpider
–
ChemSpider is a database of chemicals. ChemSpider is owned by the Royal Society of Chemistry, the database contains information on more than 50 million molecules from over 500 data sources including, Each chemical is given a unique identifier, which forms part of a corresponding URL. This is an approach to develop an online chemistry database. The search can be used to widen or restrict already found results, structure searching on mobile devices can be done using free apps for iOS and for the Android. The ChemSpider database has been used in combination with text mining as the basis of document markup. The result is a system between chemistry documents and information look-up via ChemSpider into over 150 data sources. ChemSpider was acquired by the Royal Society of Chemistry in May,2009, prior to the acquisition by RSC, ChemSpider was controlled by a private corporation, ChemZoo Inc. The system was first launched in March 2007 in a release form. ChemSpider has expanded the generic support of a database to include support of the Wikipedia chemical structure collection via their WiChempedia implementation. A number of services are available online. SyntheticPages is an interactive database of synthetic chemistry procedures operated by the Royal Society of Chemistry. Users submit synthetic procedures which they have conducted themselves for publication on the site and these procedures may be original works, but they are more often based on literature reactions. Citations to the published procedure are made where appropriate. They are checked by an editor before posting. The pages do not undergo formal peer-review like a journal article. The comments are moderated by scientific editors. The intention is to collect practical experience of how to conduct useful chemical synthesis in the lab, while experimental methods published in an ordinary academic journal are listed formally and concisely, the procedures in ChemSpider SyntheticPages are given with more practical detail. Comments by submitters are included as well, other publications with comparable amounts of detail include Organic Syntheses and Inorganic Syntheses
3.
European Chemicals Agency
–
ECHA is the driving force among regulatory authorities in implementing the EUs chemicals legislation. ECHA helps companies to comply with the legislation, advances the safe use of chemicals, provides information on chemicals and it is located in Helsinki, Finland. The Agency, headed by Executive Director Geert Dancet, started working on 1 June 2007, the REACH Regulation requires companies to provide information on the hazards, risks and safe use of chemical substances that they manufacture or import. Companies register this information with ECHA and it is freely available on their website. So far, thousands of the most hazardous and the most commonly used substances have been registered, the information is technical but gives detail on the impact of each chemical on people and the environment. This also gives European consumers the right to ask whether the goods they buy contain dangerous substances. The Classification, Labelling and Packaging Regulation introduces a globally harmonised system for classifying and labelling chemicals into the EU. This worldwide system makes it easier for workers and consumers to know the effects of chemicals, companies need to notify ECHA of the classification and labelling of their chemicals. So far, ECHA has received over 5 million notifications for more than 100000 substances, the information is freely available on their website. Consumers can check chemicals in the products they use, Biocidal products include, for example, insect repellents and disinfectants used in hospitals. The Biocidal Products Regulation ensures that there is information about these products so that consumers can use them safely. ECHA is responsible for implementing the regulation, the law on Prior Informed Consent sets guidelines for the export and import of hazardous chemicals. Through this mechanism, countries due to hazardous chemicals are informed in advance and have the possibility of rejecting their import. Substances that may have effects on human health and the environment are identified as Substances of Very High Concern 1. These are mainly substances which cause cancer, mutation or are toxic to reproduction as well as substances which persist in the body or the environment, other substances considered as SVHCs include, for example, endocrine disrupting chemicals. Companies manufacturing or importing articles containing these substances in a concentration above 0 and they are required to inform users about the presence of the substance and therefore how to use it safely. Consumers have the right to ask the retailer whether these substances are present in the products they buy, once a substance has been officially identified in the EU as being of very high concern, it will be added to a list. This list is available on ECHA’s website and shows consumers and industry which chemicals are identified as SVHCs, Substances placed on the Candidate List can then move to another list
4.
PubChem
–
PubChem is a database of chemical molecules and their activities against biological assays. The system is maintained by the National Center for Biotechnology Information, a component of the National Library of Medicine, PubChem can be accessed for free through a web user interface. Millions of compound structures and descriptive datasets can be downloaded via FTP. PubChem contains substance descriptions and small molecules with fewer than 1000 atoms and 1000 bonds, more than 80 database vendors contribute to the growing PubChem database. PubChem consists of three dynamically growing primary databases, as of 28 January 2016, Compounds,82.6 million entries, contains pure and characterized chemical compounds. Substances,198 million entries, contains also mixtures, extracts, complexes, bioAssay, bioactivity results from 1.1 million high-throughput screening programs with several million values. PubChem contains its own online molecule editor with SMILES/SMARTS and InChI support that allows the import and export of all common chemical file formats to search for structures and fragments. In the text search form the database fields can be searched by adding the name in square brackets to the search term. A numeric range is represented by two separated by a colon. The search terms and field names are case-insensitive, parentheses and the logical operators AND, OR, and NOT can be used. AND is assumed if no operator is used, example,0,5000,50,10 -5,5 PubChem was released in 2004. The American Chemical Society has raised concerns about the publicly supported PubChem database and they have a strong interest in the issue since the Chemical Abstracts Service generates a large percentage of the societys revenue. To advocate their position against the PubChem database, ACS has actively lobbied the US Congress, soon after PubChems creation, the American Chemical Society lobbied U. S. Congress to restrict the operation of PubChem, which they asserted competes with their Chemical Abstracts Service
5.
International Chemical Identifier
–
Initially developed by IUPAC and NIST from 2000 to 2005, the format and algorithms are non-proprietary. The continuing development of the standard has supported since 2010 by the not-for-profit InChI Trust. The current version is 1.04 and was released in September 2011, prior to 1.04, the software was freely available under the open source LGPL license, but it now uses a custom license called IUPAC-InChI Trust License. Not all layers have to be provided, for instance, the layer can be omitted if that type of information is not relevant to the particular application. InChIs can thus be seen as akin to a general and extremely formalized version of IUPAC names and they can express more information than the simpler SMILES notation and differ in that every structure has a unique InChI string, which is important in database applications. Information about the 3-dimensional coordinates of atoms is not represented in InChI, the InChI algorithm converts input structural information into a unique InChI identifier in a three-step process, normalization, canonicalization, and serialization. The InChIKey, sometimes referred to as a hashed InChI, is a fixed length condensed digital representation of the InChI that is not human-understandable. The InChIKey specification was released in September 2007 in order to facilitate web searches for chemical compounds and it should be noted that, unlike the InChI, the InChIKey is not unique, though collisions can be calculated to be very rare, they happen. In January 2009 the final 1.02 version of the InChI software was released and this provided a means to generate so called standard InChI, which does not allow for user selectable options in dealing with the stereochemistry and tautomeric layers of the InChI string. The standard InChIKey is then the hashed version of the standard InChI string, the standard InChI will simplify comparison of InChI strings and keys generated by different groups, and subsequently accessed via diverse sources such as databases and web resources. Every InChI starts with the string InChI= followed by the version number and this is followed by the letter S for standard InChIs. The remaining information is structured as a sequence of layers and sub-layers, the layers and sub-layers are separated by the delimiter / and start with a characteristic prefix letter. The six layers with important sublayers are, Main layer Chemical formula and this is the only sublayer that must occur in every InChI. The atoms in the formula are numbered in sequence, this sublayer describes which atoms are connected by bonds to which other ones. Describes how many hydrogen atoms are connected to each of the other atoms, the condensed,27 character standard InChIKey is a hashed version of the full standard InChI, designed to allow for easy web searches of chemical compounds. Most chemical structures on the Web up to 2007 have been represented as GIF files, the full InChI turned out to be too lengthy for easy searching, and therefore the InChIKey was developed. With all databases currently having below 50 million structures, such duplication appears unlikely at present, a recent study more extensively studies the collision rate finding that the experimental collision rate is in agreement with the theoretical expectations. Example, Morphine has the structure shown on the right, as the InChI cannot be reconstructed from the InChIKey, an InChIKey always needs to be linked to the original InChI to get back to the original structure
6.
Simplified molecular-input line-entry system
–
The simplified molecular-input line-entry system is a specification in form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules, the original SMILES specification was initiated in the 1980s. It has since modified and extended. In 2007, a standard called OpenSMILES was developed in the open-source chemistry community. Other linear notations include the Wiswesser Line Notation, ROSDAL and SLN, the original SMILES specification was initiated by David Weininger at the USEPA Mid-Continent Ecology Division Laboratory in Duluth in the 1980s. The Environmental Protection Agency funded the project to develop SMILES. It has since modified and extended by others, most notably by Daylight Chemical Information Systems. In 2007, a standard called OpenSMILES was developed by the Blue Obelisk open-source chemistry community. Other linear notations include the Wiswesser Line Notation, ROSDAL and SLN, in July 2006, the IUPAC introduced the InChI as a standard for formula representation. SMILES is generally considered to have the advantage of being slightly more human-readable than InChI, the term SMILES refers to a line notation for encoding molecular structures and specific instances should strictly be called SMILES strings. However, the term SMILES is also used to refer to both a single SMILES string and a number of SMILES strings, the exact meaning is usually apparent from the context. The terms canonical and isomeric can lead to confusion when applied to SMILES. The terms describe different attributes of SMILES strings and are not mutually exclusive, typically, a number of equally valid SMILES strings can be written for a molecule. For example, CCO, OCC and CC all specify the structure of ethanol, algorithms have been developed to generate the same SMILES string for a given molecule, of the many possible strings, these algorithms choose only one of them. This SMILES is unique for each structure, although dependent on the algorithm used to generate it. These algorithms first convert the SMILES to a representation of the molecular structure. A common application of canonical SMILES is indexing and ensuring uniqueness of molecules in a database, there is currently no systematic comparison across commercial software to test if such flaws exist in those packages. SMILES notation allows the specification of configuration at tetrahedral centers, and these are structural features that cannot be specified by connectivity alone and SMILES which encode this information are termed isomeric SMILES
7.
Chemical formula
–
These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulas can fully specify the structure of only the simplest of molecules and chemical substances, the simplest types of chemical formulas are called empirical formulas, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulas indicate the numbers of each type of atom in a molecule. For example, the formula for glucose is CH2O, while its molecular formula is C6H12O6. This is possible if the relevant bonding is easy to show in one dimension, an example is the condensed molecular/chemical formula for ethanol, which is CH3-CH2-OH or CH3CH2OH. For reasons of structural complexity, there is no condensed chemical formula that specifies glucose, chemical formulas may be used in chemical equations to describe chemical reactions and other chemical transformations, such as the dissolving of ionic compounds into solution. A chemical formula identifies each constituent element by its chemical symbol, in empirical formulas, these proportions begin with a key element and then assign numbers of atoms of the other elements in the compound, as ratios to the key element. For molecular compounds, these numbers can all be expressed as whole numbers. For example, the formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom. Some types of compounds, however, cannot be written with entirely whole-number empirical formulas. An example is boron carbide, whose formula of CBn is a variable non-whole number ratio with n ranging from over 4 to more than 6.5. When the chemical compound of the consists of simple molecules. These types of formulas are known as molecular formulas and condensed formulas. A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the formula for glucose is C6H12O6 rather than the glucose empirical formula. However, except for very simple substances, molecular chemical formulas lack needed structural information, for simple molecules, a condensed formula is a type of chemical formula that may fully imply a correct structural formula. For example, ethanol may be represented by the chemical formula CH3CH2OH
8.
Density
–
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume, ρ = m V, where ρ is the density, m is the mass, and V is the volume. In some cases, density is defined as its weight per unit volume. For a pure substance the density has the numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity, osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. Thus a relative density less than one means that the floats in water. The density of a material varies with temperature and pressure and this variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object, increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a results in convection of the heat from the bottom to the top. This causes it to rise relative to more dense unheated material, the reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is a property in that increasing the amount of a substance does not increase its density. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass, upon this discovery, he leapt from his bath and ran naked through the streets shouting, Eureka. As a result, the term eureka entered common parlance and is used today to indicate a moment of enlightenment, the story first appeared in written form in Vitruvius books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time, from the equation for density, mass density has units of mass divided by volume. As there are units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per metre and the cgs unit of gram per cubic centimetre are probably the most commonly used units for density.1,000 kg/m3 equals 1 g/cm3. In industry, other larger or smaller units of mass and or volume are often more practical, see below for a list of some of the most common units of density
9.
Boiling point
–
The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the environmental pressure. A liquid in a vacuum has a lower boiling point than when that liquid is at atmospheric pressure. A liquid at high pressure has a boiling point than when that liquid is at atmospheric pressure. For a given pressure, different liquids boil at different temperatures, for example, water boils at 100 °C at sea level, but at 93.4 °C at 2,000 metres altitude. The normal boiling point of a liquid is the case in which the vapor pressure of the liquid equals the defined atmospheric pressure at sea level,1 atmosphere. At that temperature, the pressure of the liquid becomes sufficient to overcome atmospheric pressure. The standard boiling point has been defined by IUPAC since 1982 as the temperature at which boiling occurs under a pressure of 1 bar, the heat of vaporization is the energy required to transform a given quantity of a substance from a liquid into a gas at a given pressure. Liquids may change to a vapor at temperatures below their boiling points through the process of evaporation, evaporation is a surface phenomenon in which molecules located near the liquids edge, not contained by enough liquid pressure on that side, escape into the surroundings as vapor. On the other hand, boiling is a process in which molecules anywhere in the liquid escape, a saturated liquid contains as much thermal energy as it can without boiling. The saturation temperature is the temperature for a corresponding saturation pressure at which a liquid boils into its vapor phase, the liquid can be said to be saturated with thermal energy. Any addition of energy results in a phase transition. If the pressure in a system remains constant, a vapor at saturation temperature will begin to condense into its liquid phase as thermal energy is removed, similarly, a liquid at saturation temperature and pressure will boil into its vapor phase as additional thermal energy is applied. The boiling point corresponds to the temperature at which the pressure of the liquid equals the surrounding environmental pressure. Thus, the point is dependent on the pressure. Boiling points may be published with respect to the NIST, USA standard pressure of 101.325 kPa, at higher elevations, where the atmospheric pressure is much lower, the boiling point is also lower. The boiling point increases with increased pressure up to the critical point, the boiling point cannot be increased beyond the critical point. Likewise, the point decreases with decreasing pressure until the triple point is reached
10.
Flash point
–
The flash point is the lowest temperature at which vapours of a volatile material will ignite, when given an ignition source. The flash point may sometimes be confused with the autoignition temperature, the fire point is the lowest temperature at which the vapor will keep burning after being ignited and the ignition source removed. The fire point is higher than the point, because at the flash point the vapor may be reliably expected to cease burning when the ignition source is removed. The flash point is a characteristic that is used to distinguish between flammable liquids, such as petrol, and combustible liquids, such as diesel. It is also used to characterize the fire hazards of liquids, all liquids have a specific vapor pressure, which is a function of that liquids temperature and is subject to Boyles Law. As temperature increases, vapor pressure increases, as vapor pressure increases, the concentration of vapor of a flammable or combustible liquid in the air increases. Hence, temperature determines the concentration of vapor of the liquid in the air. The flash point is the lowest temperature at which there will be enough flammable vapor to induce ignition when a source is applied. There are two types of flash point measurement, open cup and closed cup. In open cup devices, the sample is contained in a cup which is heated and, at intervals. The measured flash point will vary with the height of the flame above the liquid surface and, at sufficient height. The best-known example is the Cleveland open cup, in both these types, the cups are sealed with a lid through which the ignition source can be introduced. Closed cup testers normally give lower values for the point than open cup and are a better approximation to the temperature at which the vapour pressure reaches the lower flammable limit. The flash point is an empirical measurement rather than a physical parameter. The measured value will vary with equipment and test protocol variations, including temperature ramp rate, time allowed for the sample to equilibrate, sample volume, methods for determining the flash point of a liquid are specified in many standards. For example, testing by the Pensky-Martens closed cup method is detailed in ASTM D93, IP34, ISO2719, DIN51758, JIS K2265 and AFNOR M07-019. Determination of flash point by the Small Scale closed cup method is detailed in ASTM D3828 and D3278, EN ISO3679 and 3680, cEN/TR15138 Guide to Flash Point Testing and ISO TR29662 Guidance for Flash Point Testing cover the key aspects of flash point testing. Gasoline is a used in a spark-ignition engine
11.
Chemical compound
–
A chemical compound is an entity consisting of two or more atoms, at least two from different elements, which associate via chemical bonds. Many chemical compounds have a numerical identifier assigned by the Chemical Abstracts Service. For example, water is composed of two atoms bonded to one oxygen atom, the chemical formula is H2O. A compound can be converted to a different chemical composition by interaction with a chemical compound via a chemical reaction. In this process, bonds between atoms are broken in both of the compounds, and then bonds are reformed so that new associations are made between atoms. Schematically, this reaction could be described as AB + CD → AC + BD, where A, B, C, and D are each unique atoms, and AB, CD, AC, and BD are each unique compounds. A chemical element bonded to a chemical element is not a chemical compound since only one element. Examples are the diatomic hydrogen and the polyatomic molecule sulfur. Chemical compounds have a unique and defined chemical structure held together in a spatial arrangement by chemical bonds. Pure chemical elements are not considered chemical compounds, failing the two or more atom requirement, though they often consist of molecules composed of multiple atoms. There is varying and sometimes inconsistent nomenclature differentiating substances, which include truly non-stoichiometric examples, from chemical compounds, other compounds regarded as chemically identical may have varying amounts of heavy or light isotopes of the constituent elements, which changes the ratio of elements by mass slightly. Characteristic properties of compounds include that elements in a compound are present in a definite proportion, for example, the molecule of the compound water is composed of hydrogen and oxygen in a ratio of 2,1. In addition, compounds have a set of properties. The physical and chemical properties of compounds differ from those of their constituent elements, however, mixtures can be created by mechanical means alone, but a compound can be created only by a chemical reaction. Some mixtures are so combined that they have some properties similar to compounds. Other examples of compound-like mixtures include intermetallic compounds and solutions of metals in a liquid form of ammonia. Compounds may be described using formulas in various formats, for compounds that exist as molecules, the formula for the molecular unit is shown. For polymeric materials, such as minerals and many metal oxides, the elements in a chemical formula are normally listed in a specific order, called the Hill system
12.
Ketone
–
In chemistry, a ketone /ˈkiːtoʊn/ is an organic compound with the structure RCR, where R and R can be a variety of carbon-containing substituents. Ketones and aldehydes are simple compounds that contain a carbonyl group and they are considered simple because they do not have reactive groups like −OH or −Cl attached directly to the carbon atom in the carbonyl group, as in carboxylic acids containing −COOH. Many ketones are known and many are of importance in industry. Examples include many sugars and the industrial solvent acetone, which is the smallest ketone, the word ketone is derived from Aketon, an old German word for acetone. According to the rules of IUPAC nomenclature, ketones are named by changing the suffix -ane of the parent alkane to -anone, the position of the carbonyl group is usually denoted by a number. For the most important ketones, however, traditional names are still generally used. The common names of ketones are obtained by writing separately the names of the two alkyl groups attached to the group, followed by ketone as a separate word. The names of the groups are written alphabetically. When the two groups are the same, the prefix di- is added before the name of alkyl group. The positions of other groups are indicated by Greek letters, the α-carbon being the adjacent to carbonyl group. If both alkyl groups in a ketone are the same then the ketone is said to be symmetrical, although used infrequently, oxo is the IUPAC nomenclature for a ketone functional group. Other prefixes, however, are also used, for some common chemicals, keto or oxo refer to the ketone functional group. The term oxo is used widely through chemistry, for example, it also refers to an oxygen atom bonded to a transition metal. The ketone carbon is often described as sp2 hybridized, a description that includes both their electronic and molecular structure, ketones are trigonal planar around the ketonic carbon, with C−C−O and C−C−C bond angles of approximately 120°. Ketones differ from aldehydes in that the group is bonded to two carbons within a carbon skeleton. In aldehydes, the carbonyl is bonded to one carbon and one hydrogen and are located at the ends of carbon chains, ketones are also distinct from other carbonyl-containing functional groups, such as carboxylic acids, esters and amides. The carbonyl group is polar because the electronegativity of the oxygen is greater than that for carbon, thus, ketones are nucleophilic at oxygen and electrophilic at carbon. Because the carbonyl group interacts with water by bonding, ketones are typically more soluble in water than the related methylene compounds
13.
Oxetane
–
Oxetane, or 1, 3-propylene oxide, is an heterocyclic organic compound with the molecular formula C3H6O, having a four-membered ring with three carbon atoms and one oxygen atom. The term oxetane may also more generally to any organic compound containing an oxetane ring. Other possible reactions to form oxetane ring is the Paternò–Büchi reaction, the oxetane ring can also be formed through diol cyclization as well as through decarboxylation of a six-membered cyclic carbonate. Paclitaxel is an example of a product containing an oxetane ring. Taxol has become a point of interest among researchers due to its unusual structure
14.
Isomer
–
An isomer is a molecule with the same molecular formula as another molecule, but with a different chemical structure. That is, isomers contain the number of atoms of each element. Isomers do not necessarily share similar properties, unless they also have the functional groups. There are two forms of isomerism, structural isomerism and stereoisomerism. In structural isomers, sometimes referred to as constitutional isomers, the atoms, Structural isomers have different IUPAC names and may or may not belong to the same functional group. For example, two position isomers would be 2-fluoropropane and 1-fluoropropane, illustrated on the side of the diagram above. In skeletal isomers the main chain is different between the two isomers. This type of isomerism is most identifiable in secondary and tertiary alcohol isomers, tautomers are structural isomers that spontaneously interconvert with each other, even when pure. They have different chemical properties and, as a consequence, distinct reactions characteristic to each form are observed, if the interconversion reaction is fast enough, tautomers cannot be isolated from each other. An example is when they differ by the position of a proton, such as in keto/enol tautomerism, there is, however, another isomer of C3H8O that has significantly different properties, methoxyethane. Unlike the isomers of propanol, methoxyethane has an oxygen connected to two carbons rather than to one carbon and one hydrogen. Methoxyethane is an ether, not an alcohol, because it lacks a hydroxyl group, propadiene and propyne are examples of isomers containing different bond types. Propadiene contains two double bonds, whereas propyne contains one triple bond, in stereoisomers the bond structure is the same, but the geometrical positioning of atoms and functional groups in space differs. This class includes enantiomers which are non-superposable mirror-images of each other, and diastereomers, enantiomers always contain chiral centers and diastereomers often do, but there are some diastereomers that neither are chiral nor contain chiral centers. Another type of isomer, conformational isomers, may be rotamers, diastereomers, for example, ortho- position-locked biphenyl systems have enantiomers. E/Z isomers, which have restricted rotation at a bond, are configurational isomers. They are classified as diastereomers, whether or not they contain any chiral centers, e/Z notation depicts absolute stereochemistry, which is an unambiguous descriptor based on CIP priorities. Cis–trans isomers are used to describe any molecules with restricted rotation in the molecule, for molecules with C=C double bonds, these descriptors describe relative stereochemistry only based on group bulkiness or principal carbon chain, and so can be ambiguous
15.
Beta-Propiolactone
–
β-Propiolactone is an organic compound of the lactone family, with a four-membered ring. It is a clear, colorless liquid with a sweet odor, highly soluble in water and miscible with ethanol, acetone, diethyl ether. The word propiolactone usually refers to compound, although it may also refer to α-propiolactone. β-Propiolactone is reasonably anticipated to be a human carcinogen and it was once widely used in the manufacture of acrylic acid and its esters, but its use has been mostly phased out in favor of safer and less expensive alternatives. β-Propiolactone is a sterilizing and sporicidal agent, and has used to sterilize blood plasma, vaccines, tissue grafts, surgical instruments. The principal current use of propiolactone is an intermediate in the synthesis of chemical compounds. β-Propiolactone will slowly react with water and hydrolyze to produce 3-hydroxypropionic acid, variovorax paradoxus, Sphingomonas paucimobilis, Rhizopus delemar and thermophilic Streptomyces sp. can degrade β-propiolactone. 3-Oxetanone, an isomer of β-propiolactone Malonic anhydride α-Propiolactone
16.
Fine chemical
–
Fine chemicals are complex, single, pure chemical substances, produced in limited quantities in multipurpose plants by multistep batch chemical or biotechnological processes. They are described by exacting specifications, used for further processing within the chemical industry, the class of fine chemicals is subdivided either on the basis of the added value, or the type of business transaction, namely standard or exclusive products. Fine chemicals are produced in limited volumes and at high prices according to exacting specifications. The global production value is about $85 billion, Fine chemicals are used as starting materials for specialty chemicals, particularly pharmaceuticals, biopharmaceuticals and agrochemicals. Custom manufacturing for the science industry plays a big role, however. The industry is fragmented and extends from small, privately owned companies to divisions of big, the term fine chemicals is used in distinction to heavy chemicals, which are produced and handled in large lots and are often in a crude state. Since their inception in the late 1970s, fine chemicals have become an important part of the chemical industry, the products are mainly used as building blocks for proprietary products. The hardware of the top tier fine chemical companies has become almost identical, the design, lay-out and equipment of the plants and laboratories has become practically the same all over the world. Most chemical reactions performed go back to the days of the dyestuff industry, numerous regulations determine the way labs and plants have to be operated, thereby contributing to the uniformity. Lonza, Switzerland, which already had supplied an early intermediate, methyl acetoacetate, during drug development, the signature of a first, simple supply contract is generally acknowledged as the historical document marking the beginning of the fine chemical industry. In the subsequent years, the business developed favorably and Lonza was the first fine chemical company entering in a partnership with SKF. In a similar way, Fine Organics, UK became the supplier of the thioethyl-N’-methyl-2-nitro-1, 1-ethenediamine moiety of ranitidine, other pharmaceutical and agrochemical companies gradually followed suit and also started outsourcing the procurement of fine chemicals. An example in case is F. I. S, Italy, which partnered with Roche, Switzerland for custom manufacturing precursors of the benzodiazepine class of tranquilizers, such as Librium and Valium. For many years, however, the science industry continued considering captive production of the active ingredients of their drugs. In terms of structure, one distinguishes first between low-molecular-weight and high-molecular-weight products. The generally accepted threshold between LMW and HMW is a weight of about 700. LMW fine chemicals, also designated as small molecules, are produced by chemical synthesis, by microorganisms or by extraction from plants. In the production of modern life science products, total synthesis from petrochemicals prevails, the HMW products, respectively large molecules, are obtained mainly by biotechnology processes
17.
Malonic anhydride
–
Malonic anhydride or oxetane-2, 4-dione is an organic compound with chemical formula C3H2O3 or CH22O. It can be viewed as the anhydride of malonic acid, or a double ketone of oxetane, malonic anhydride was first synthesized in 1988 by ozonolysis of diketene. Some derivatives, such as 3, 3-dimethyl-oxetane-2, 4-dione, are known, carbon suboxide, an anhydride of malonic anhydride
18.
1,2-Dioxetanedione
–
The chemical compound 1, 2-dioxetanedione, or 1, 2-dioxacyclobutane-3, 4-dione, often called peroxyacid ester, is an unstable oxide of carbon with formula C2O4. It can be viewed as a double ketone of 1, 2-dioxetane, in ordinary conditions, it quickly decomposes to carbon dioxide even at 180 K, but can be detected by mass spectrometry and other techniques. 1, 2-Dioxetanedione is an intermediate in the chemoluminescent reactions used in glowsticks, the decomposition proceeds via a paramagnetic oxalate biradical intermediate