Proper motion
Proper motion is the astronomical measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars. The components for proper motion in the equatorial coordinate system are given in the direction of right ascension and of declination, their combined value is computed as the total proper motion. It has dimensions of angle per time arcseconds per year or milliarcseconds per year. Knowledge of the proper motion and radial velocity allows calculations of true stellar motion or velocity in space in respect to the Sun, by coordinate transformation, the motion in respect to the Milky Way. Proper motion is not "proper", because it includes a component due to the motion of the Solar System itself. Over the course of centuries, stars appear to maintain nearly fixed positions with respect to each other, so that they form the same constellations over historical time.
Ursa Major or Crux, for example, looks nearly the same now. However, precise long-term observations show that the constellations change shape, albeit slowly, that each star has an independent motion; this motion is caused by the movement of the stars relative to the Solar System. The Sun travels in a nearly circular orbit about the center of the Milky Way at a speed of about 220 km/s at a radius of 8 kPc from the center, which can be taken as the rate of rotation of the Milky Way itself at this radius; the proper motion is a two-dimensional vector and is thus defined by two quantities: its position angle and its magnitude. The first quantity indicates the direction of the proper motion on the celestial sphere, the second quantity is the motion's magnitude expressed in arcseconds per year or milliarcsecond per year. Proper motion may alternatively be defined by the angular changes per year in the star's right ascension and declination, using a constant epoch in defining these; the components of proper motion by convention are arrived at.
Suppose an object moves from coordinates to coordinates in a time Δt. The proper motions are given by: μ α = α 2 − α 1 Δ t, μ δ = δ 2 − δ 1 Δ t; the magnitude of the proper motion μ is given by the Pythagorean theorem: μ 2 = μ δ 2 + μ α 2 ⋅ cos 2 δ, μ 2 = μ δ 2 + μ α ∗ 2, where δ is the declination. The factor in cos2δ accounts for the fact that the radius from the axis of the sphere to its surface varies as cosδ, for example, zero at the pole. Thus, the component of velocity parallel to the equator corresponding to a given angular change in α is smaller the further north the object's location; the change μα, which must be multiplied by cosδ to become a component of the proper motion, is sometimes called the "proper motion in right ascension", μδ the "proper motion in declination". If the proper motion in right ascension has been converted by cosδ, the result is designated μα*. For example, the proper motion results in right ascension in the Hipparcos Catalogue have been converted. Hence, the individual proper motions in right ascension and declination are made equivalent for straightforward calculations of various other stellar motions.
The position angle θ is related to these components by: μ sin θ = μ α cos δ = μ α ∗, μ cos θ = μ δ. Motions in equatorial coordinates can be converted to motions in galactic coordinates. For the majority of stars seen in the sky, the observed proper motions are small and unremarkable; such stars are either faint or are distant, have changes of below 10 milliarcseconds per year, do not appear to move appreciably over many millennia. A few do have significant motions, are called high-proper motion stars. Motions can be in seemingly random directions. Two or more stars, double stars or open star clusters, which are moving in similar directions, exhibit so-called shared or common proper motion, suggesting they may be gravitationally attached or share similar motion in space. Barnard's Star has the largest proper motion of all stars, moving at 10.3 seconds of arc per year. L
Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Right ascension
Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point above the earth in question. When paired with declination, these astronomical coordinates specify the direction of a point on the celestial sphere in the equatorial coordinate system. An old term, right ascension refers to the ascension, or the point on the celestial equator that rises with any celestial object as seen from Earth's equator, where the celestial equator intersects the horizon at a right angle, it contrasts with oblique ascension, the point on the celestial equator that rises with any celestial object as seen from most latitudes on Earth, where the celestial equator intersects the horizon at an oblique angle. Right ascension is the celestial equivalent of terrestrial longitude. Both right ascension and longitude measure an angle from a primary direction on an equator. Right ascension is measured from the Sun at the March equinox i.e. the First Point of Aries, the place on the celestial sphere where the Sun crosses the celestial equator from south to north at the March equinox and is located in the constellation Pisces.
Right ascension is measured continuously in a full circle from that alignment of Earth and Sun in space, that equinox, the measurement increasing towards the east. As seen from Earth, objects noted to have 12h RA are longest visible at the March equinox. On those dates at midnight, such objects will reach their highest point. How high depends on their declination. Any units of angular measure could have been chosen for right ascension, but it is customarily measured in hours and seconds, with 24h being equivalent to a full circle. Astronomers have chosen this unit to measure right ascension because they measure a star's location by timing its passage through the highest point in the sky as the Earth rotates; the line which passes through the highest point in the sky, called the meridian, is the projection of a longitude line onto the celestial sphere. Since a complete circle contains 24h of right ascension or 360°, 1/24 of a circle is measured as 1h of right ascension, or 15°. A full circle, measured in right-ascension units, contains 24 × 60 × 60 = 86400s, or 24 × 60 = 1440m, or 24h.
Because right ascensions are measured in hours, they can be used to time the positions of objects in the sky. For example, if a star with RA = 1h 30m 00s is at its meridian a star with RA = 20h 00m 00s will be on the/at its meridian 18.5 sidereal hours later. Sidereal hour angle, used in celestial navigation, is similar to right ascension, but increases westward rather than eastward. Measured in degrees, it is the complement of right ascension with respect to 24h, it is important not to confuse sidereal hour angle with the astronomical concept of hour angle, which measures angular distance of an object westward from the local meridian. The Earth's axis rotates westward about the poles of the ecliptic, completing one cycle in about 26,000 years; this movement, known as precession, causes the coordinates of stationary celestial objects to change continuously, if rather slowly. Therefore, equatorial coordinates are inherently relative to the year of their observation, astronomers specify them with reference to a particular year, known as an epoch.
Coordinates from different epochs must be mathematically rotated to match each other, or to match a standard epoch. Right ascension for "fixed stars" near the ecliptic and equator increases by about 3.05 seconds per year on average, or 5.1 minutes per century, but for fixed stars further from the ecliptic the rate of change can be anything from negative infinity to positive infinity. The right ascension of Polaris is increasing quickly; the North Ecliptic Pole in Draco and the South Ecliptic Pole in Dorado are always at right ascension 18h and 6h respectively. The used standard epoch is J2000.0, January 1, 2000 at 12:00 TT. The prefix "J" indicates. Prior to J2000.0, astronomers used the successive Besselian epochs B1875.0, B1900.0, B1950.0. The concept of right ascension has been known at least as far back as Hipparchus who measured stars in equatorial coordinates in the 2nd century BC, but Hipparchus and his successors made their star catalogs in ecliptic coordinates, the use of RA was limited to special cases.
With the invention of the telescope, it became possible for astronomers to observe celestial objects in greater detail, provided that the telescope could be kept pointed at the object for a period of time. The easiest way to do, to use an equatorial mount, which allows the telescope to be aligned with one of its two pivots parallel to the Earth's axis. A motorized clock drive is used with an equatorial mount to cancel out the Earth's rotation; as the equatorial mount became adopted for observation, the equatorial coordinate system, which includes right ascension, was adopted at the same time for simplicity. Equatorial mounts could be pointed at objects with known right ascension and declination by the use of setting circles; the first star catalog to use right ascen
Luminosity
In astronomy, luminosity is the total amount of energy emitted per unit of time by a star, galaxy, or other astronomical object. As a term for energy emitted per unit time, luminosity is synonymous with power. In SI units luminosity is measured in joules per second or watts. Values for luminosity are given in the terms of the luminosity of the Sun, L⊙. Luminosity can be given in terms of the astronomical magnitude system: the absolute bolometric magnitude of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or filter band. In contrast, the term brightness in astronomy is used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the luminosity of the object and the distance between the object and observer, on any absorption of light along the path from object to observer. Apparent magnitude is a logarithmic measure of apparent brightness.
The distance determined by luminosity measures can be somewhat ambiguous, is thus sometimes called the luminosity distance. In astronomy, luminosity is the amount of electromagnetic energy; when not qualified, the term "luminosity" means bolometric luminosity, measured either in the SI units, watts, or in terms of solar luminosities. A bolometer is the instrument used to measure radiant energy over a wide band by absorption and measurement of heating. A star radiates neutrinos, which carry off some energy, contributing to the star's total luminosity; the IAU has defined a nominal solar luminosity of 3.828×1026 W to promote publication of consistent and comparable values in units of the solar luminosity. While bolometers do exist, they cannot be used to measure the apparent brightness of a star because they are insufficiently sensitive across the electromagnetic spectrum and because most wavelengths do not reach the surface of the Earth. In practice bolometric magnitudes are measured by taking measurements at certain wavelengths and constructing a model of the total spectrum, most to match those measurements.
In some cases, the process of estimation is extreme, with luminosities being calculated when less than 1% of the energy output is observed, for example with a hot Wolf-Rayet star observed only in the infra-red. Bolometric luminosities can be calculated using a bolometric correction to a luminosity in a particular passband; the term luminosity is used in relation to particular passbands such as a visual luminosity of K-band luminosity. These are not luminosities in the strict sense of an absolute measure of radiated power, but absolute magnitudes defined for a given filter in a photometric system. Several different photometric systems exist; some such as the UBV or Johnson system are defined against photometric standard stars, while others such as the AB system are defined in terms of a spectral flux density. A star's luminosity can be determined from two stellar characteristics: size and effective temperature; the former is represented in terms of solar radii, R⊙, while the latter is represented in kelvins, but in most cases neither can be measured directly.
To determine a star's radius, two other metrics are needed: the star's angular diameter and its distance from Earth. Both can be measured with great accuracy in certain cases, with cool supergiants having large angular diameters, some cool evolved stars having masers in their atmospheres that can be used to measure the parallax using VLBI. However, for most stars the angular diameter or parallax, or both, are far below our ability to measure with any certainty. Since the effective temperature is a number that represents the temperature of a black body that would reproduce the luminosity, it cannot be measured directly, but it can be estimated from the spectrum. An alternative way to measure stellar luminosity is to measure the star's apparent brightness and distance. A third component needed to derive the luminosity is the degree of interstellar extinction, present, a condition that arises because of gas and dust present in the interstellar medium, the Earth's atmosphere, circumstellar matter.
One of astronomy's central challenges in determining a star's luminosity is to derive accurate measurements for each of these components, without which an accurate luminosity figure remains elusive. Extinction can only be measured directly if the actual and observed luminosities are both known, but it can be estimated from the observed colour of a star, using models of the expected level of reddening from the interstellar medium. In the current system of stellar classification, stars are grouped according to temperature, with the massive young and energetic Class O stars boasting temperatures in excess of 30,000 K while the less massive older Class M stars exhibit temperatures less than 3,500 K; because luminosity is proportional to temperature to the fourth power, the large variation in stellar temperatures produces an vaster variation in stellar luminosity. Because the luminosity depends on a high power of the stellar mass, high mass luminous stars have much shorter lifetimes; the most luminous stars are always young stars, no more than a few million years for the most extreme.
In the Hertzsprung–Russell diagram, the x-axis represents temperature or spectral type while the y-axis represents luminosity or magnitude. The vast majority of stars are found along the main sequence with blue Class O stars found at the top left of the chart while red Class M stars fall to the bottom right. Certain stars like Deneb and Betelgeuse are
Margin of error
The margin of error is a statistic expressing the amount of random sampling error in a survey's results. The larger the margin of error, the less confidence one should have that the poll's reported results are close to the "true" figures. Margin of error is positive whenever a population is incompletely sampled and the outcome measure has positive variance; the term "margin of error" is used in non-survey contexts to indicate observational error in reporting measured quantities. Margin of error is defined as the "radius" of a confidence interval for a particular statistic from a survey. One example is the percent of people who prefer product A versus product B; when a single, global margin of error is reported for a survey, it refers to the maximum margin of error for all reported percentages using the full sample from the survey. If the statistic is a percentage, this maximum margin of error can be calculated as the radius of the confidence interval for a reported percentage of 50%; the margin of error has been described as an "absolute" quantity, equal to a confidence interval radius for the statistic.
For example, if the true value is 50 percentage points, the statistic has a confidence interval radius of 5 percentage points we say the margin of error is 5 percentage points. As another example, if the true value is 50 people, the statistic has a confidence interval radius of 5 people we might say the margin of error is 5 people. In some cases, the margin of error is not expressed as an "absolute" quantity. For example, suppose the true value is 50 people, the statistic has a confidence interval radius of 5 people. If we use the "absolute" definition, the margin of error would be 5 people. If we use the "relative" definition we express this absolute margin of error as a percent of the true value. Hence, in this case, the absolute margin of error is 5 people, but the "percent relative" margin of error is 10%. However, the distinction is not explicitly made, yet is apparent from context. Like confidence intervals, the margin of error can be defined for any desired confidence level, but a level of 90%, 95% or 99% is chosen.
This level is the confidence that a margin of error around the reported percentage would include the "true" percentage. Hence, for example, we can be confident, at the 95% level, that out of every 100 simple random samples taken from a given population, 95 of them will contain the true percentage or other statistic under investigation, within the margin of error associated with each. Along with the confidence level, the sample design for a survey, in particular its sample size, determines the magnitude of the margin of error. A larger sample size produces a smaller margin of all else remaining equal. If the exact confidence intervals are used the margin of error takes into account both sampling error and non-sampling error. If an approximate confidence interval is used the margin of error may only take random sampling error into account, it does not represent other potential sources of error or bias such as a non-representative sample-design, poorly phrased questions, people lying or refusing to respond, the exclusion of people who could not be contacted, or miscounts and miscalculations.
An example from the 2004 U. S. presidential campaign will be used to illustrate concepts throughout this article. According to an October 2, 2004 survey by Newsweek, 47% of registered voters would vote for John Kerry/John Edwards if the election were held on that day, 45% would vote for George W. Bush/Dick Cheney, 2% would vote for Ralph Nader/Peter Camejo; the size of the sample was 1,013. Unless otherwise stated, the remainder of this article uses a 95% level of confidence. Polls involve taking a sample from a certain population. In the case of the Newsweek poll, the population of interest is the population of people who will vote; because it is impractical to poll everyone who will vote, pollsters take smaller samples that are intended to be representative, that is, a random sample of the population. It is possible that pollsters sample 1,013 voters who happen to vote for Bush when in fact the population is evenly split between Bush and Kerry, but this is unlikely given that the sample is random.
Sampling theory provides methods for calculating the probability that the poll results differ from reality by more than a certain amount due to chance. This theory and some Bayesian assumptions suggest that the "true" percentage will be close to 47%; the more people that are sampled, the more confident pollsters can be that the "true" percentage is close to the observed percentage. The margin of error is a measure of how close the results are to be. However, the margin of error only accounts for random sampling error, so it is blind to systematic errors that may be introduced by non-response or by interactions between the survey and subjects' memory, motivation and knowledge; this section will discuss the standard error of a percentage, the corresponding confidence interval, connect these two concepts to the margin of error. For simplicity, the calculations here assume the poll was based on a simple random sample from a large population; the standard error of a reported proportion or percentage p measures its accuracy, is the estimated standard deviation of that perc
Parallax
Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight, is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects when observed from different positions, so parallax can be used to determine distances. To measure large distances, such as the distance of a planet or a star from Earth, astronomers use the principle of parallax. Here, the term parallax is the semi-angle of inclination between two sight-lines to the star, as observed when Earth is on opposite sides of the Sun in its orbit; these distances form the lowest rung of what is called "the cosmic distance ladder", the first in a succession of methods by which astronomers determine the distances to celestial objects, serving as a basis for other distance measurements in astronomy forming the higher rungs of the ladder. Parallax affects optical instruments such as rifle scopes, binoculars and twin-lens reflex cameras that view objects from different angles.
Many animals, including humans, have two eyes with overlapping visual fields that use parallax to gain depth perception. In computer vision the effect is used for computer stereo vision, there is a device called a parallax rangefinder that uses it to find range, in some variations altitude to a target. A simple everyday example of parallax can be seen in the dashboard of motor vehicles that use a needle-style speedometer gauge; when viewed from directly in front, the speed may show 60. As the eyes of humans and other animals are in different positions on the head, they present different views simultaneously; this is the basis of stereopsis, the process by which the brain exploits the parallax due to the different views from the eye to gain depth perception and estimate distances to objects. Animals use motion parallax, in which the animals move to gain different viewpoints. For example, pigeons down to see depth; the motion parallax is exploited in wiggle stereoscopy, computer graphics which provide depth cues through viewpoint-shifting animation rather than through binocular vision.
Parallax arises due to change in viewpoint occurring due to motion of the observer, of the observed, or of both. What is essential is relative motion. By observing parallax, measuring angles, using geometry, one can determine distance. Astronomers use the word "parallax" as a synonym for "distance measurement" by other methods: see parallax #Astronomy. Stellar parallax created by the relative motion between the Earth and a star can be seen, in the Copernican model, as arising from the orbit of the Earth around the Sun: the star only appears to move relative to more distant objects in the sky. In a geostatic model, the movement of the star would have to be taken as real with the star oscillating across the sky with respect to the background stars. Stellar parallax is most measured using annual parallax, defined as the difference in position of a star as seen from the Earth and Sun, i. e. the angle subtended at a star by the mean radius of the Earth's orbit around the Sun. The parsec is defined as the distance.
Annual parallax is measured by observing the position of a star at different times of the year as the Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars; the first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Stellar parallax remains the standard for calibrating other measurement methods. Accurate calculations of distance based on stellar parallax require a measurement of the distance from the Earth to the Sun, now based on radar reflection off the surfaces of planets; the angles involved in these calculations are small and thus difficult to measure. The nearest star to the Sun, Proxima Centauri, has a parallax of 0.7687 ± 0.0003 arcsec. This angle is that subtended by an object 2 centimeters in diameter located 5.3 kilometers away. The fact that stellar parallax was so small that it was unobservable at the time was used as the main scientific argument against heliocentrism during the early modern age.
It is clear from Euclid's geometry that the effect would be undetectable if the stars were far enough away, but for various reasons such gigantic distances involved seemed implausible: it was one of Tycho's principal objections to Copernican heliocentrism that in order for it to be compatible with the lack of observable stellar parallax, there would have to be an enormous and unlikely void between the orbit of Saturn and the eighth sphere. In 1989, the satellite Hipparcos was launched for obtaining improved parallaxes and proper motions for over 100,000 nearby stars, increasing the reach of the method tenfold. So, Hipparcos is only able to measure parallax angles for stars up to about 1,600 light-years away, a little more than one percent of the diameter of the Milky Way Galaxy; the European Space Agency's Gaia mission, launched in December 2013, will be able to measure parallax angles to an accuracy of 10 microarcseconds, thus mapping nearby stars up to a distance of tens of thousands of ligh
Kelvin
The Kelvin scale is an absolute thermodynamic temperature scale using as its null point absolute zero, the temperature at which all thermal motion ceases in the classical description of thermodynamics. The kelvin is the base unit of temperature in the International System of Units; until 2018, the kelvin was defined as the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. In other words, it was defined such that the triple point of water is 273.16 K. On 16 November 2018, a new definition was adopted, in terms of a fixed value of the Boltzmann constant. For legal metrology purposes, the new definition will come into force on 20 May 2019; the Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Thomson, 1st Baron Kelvin, who wrote of the need for an "absolute thermometric scale". Unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or written as a degree; the kelvin is the primary unit of temperature measurement in the physical sciences, but is used in conjunction with the degree Celsius, which has the same magnitude.
The definition implies that absolute zero is equivalent to −273.15 °C. In 1848, William Thomson, made Lord Kelvin, wrote in his paper, On an Absolute Thermometric Scale, of the need for a scale whereby "infinite cold" was the scale's null point, which used the degree Celsius for its unit increment. Kelvin calculated; this absolute scale is known today as the Kelvin thermodynamic temperature scale. Kelvin's value of "−273" was the negative reciprocal of 0.00366—the accepted expansion coefficient of gas per degree Celsius relative to the ice point, giving a remarkable consistency to the accepted value. In 1954, Resolution 3 of the 10th General Conference on Weights and Measures gave the Kelvin scale its modern definition by designating the triple point of water as its second defining point and assigned its temperature to 273.16 kelvins. In 1967/1968, Resolution 3 of the 13th CGPM renamed the unit increment of thermodynamic temperature "kelvin", symbol K, replacing "degree Kelvin", symbol °K. Furthermore, feeling it useful to more explicitly define the magnitude of the unit increment, the 13th CGPM held in Resolution 4 that "The kelvin, unit of thermodynamic temperature, is equal to the fraction 1/273.16 of the thermodynamic temperature of the triple point of water."In 2005, the Comité International des Poids et Mesures, a committee of the CGPM, affirmed that for the purposes of delineating the temperature of the triple point of water, the definition of the Kelvin thermodynamic temperature scale would refer to water having an isotopic composition specified as Vienna Standard Mean Ocean Water.
In 2018, Resolution A of the 26th CGPM adopted a significant redefinition of SI base units which included redefining the Kelvin in terms of a fixed value for the Boltzmann constant of 1.380649×10−23 J/K. When spelled out or spoken, the unit is pluralised using the same grammatical rules as for other SI units such as the volt or ohm; when reference is made to the "Kelvin scale", the word "kelvin"—which is a noun—functions adjectivally to modify the noun "scale" and is capitalized. As with most other SI unit symbols there is a space between the kelvin symbol. Before the 13th CGPM in 1967–1968, the unit kelvin was called a "degree", the same as with the other temperature scales at the time, it was distinguished from the other scales with either the adjective suffix "Kelvin" or with "absolute" and its symbol was °K. The latter term, the unit's official name from 1948 until 1954, was ambiguous since it could be interpreted as referring to the Rankine scale. Before the 13th CGPM, the plural form was "degrees absolute".
The 13th CGPM changed the unit name to "kelvin". The omission of "degree" indicates that it is not relative to an arbitrary reference point like the Celsius and Fahrenheit scales, but rather an absolute unit of measure which can be manipulated algebraically. In science and engineering, degrees Celsius and kelvins are used in the same article, where absolute temperatures are given in degrees Celsius, but temperature intervals are given in kelvins. E.g. "its measured value was 0.01028 °C with an uncertainty of 60 µK." This practice is permissible because the degree Celsius is a special name for the kelvin for use in expressing relative temperatures, the magnitude of the degree Celsius is equal to that of the kelvin. Notwithstanding that the official endorsement provided by Resolution 3 of the 13th CGPM states "a temperature interval may be expressed in degrees Celsius", the practice of using both °C and K is widespread throughout the scientific world; the use of SI prefixed forms of the degree Celsius to express a temperature interval has not been adopted.
In 2005 the CIPM embarked on a programme to redefine the kelvin using a more experimentally rigorous methodology. In particular, the committee proposed redefining the kelvin such that Boltzmann's constant takes the exact value 1.3806505×10−23 J/K. The committee had hoped tha