1.
Integer
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain
2.
Negative number
–
In mathematics, a negative number is a real number that is less than zero. If positive represents movement to the right, negative represents movement to the left, if positive represents above sea level, then negative represents below level. If positive represents a deposit, negative represents a withdrawal and they are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset, if a quantity may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. In the medical context of fighting a tumor, an expansion could be thought of as a negative shrinkage, negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common idea of an opposite is reflected in arithmetic. For example, − −3 =3 because the opposite of an opposite is the original thing, negative numbers are usually written with a minus sign in front. For example, −3 represents a quantity with a magnitude of three, and is pronounced minus three or negative three. To help tell the difference between a subtraction operation and a number, occasionally the negative sign is placed slightly higher than the minus sign. Conversely, a number that is greater than zero is called positive, the positivity of a number may be emphasized by placing a plus sign before it, e. g. +3. In general, the negativity or positivity of a number is referred to as its sign, every real number other than zero is either positive or negative. The positive whole numbers are referred to as natural numbers, while the positive and negative numbers are referred to as integers. In bookkeeping, amounts owed are often represented by red numbers, or a number in parentheses, Liu Hui established rules for adding and subtracting negative numbers. By the 7th century, Indian mathematicians such as Brahmagupta were describing the use of negative numbers, islamic mathematicians further developed the rules of subtracting and multiplying negative numbers and solved problems with negative coefficients. Western mathematicians accepted the idea of numbers by the 17th century. Prior to the concept of numbers, mathematicians such as Diophantus considered negative solutions to problems false. Negative numbers can be thought of as resulting from the subtraction of a number from a smaller. For example, negative three is the result of subtracting three from zero,0 −3 = −3, in general, the subtraction of a larger number from a smaller yields a negative result, with the magnitude of the result being the difference between the two numbers
3.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number
4.
Factorization
–
In mathematics, factorization or factoring is the decomposition of an object into a product of other objects, or factors, which when multiplied together give the original. For example, the number 15 factors into primes as 3 ×5, in all cases, a product of simpler objects is obtained. The aim of factoring is usually to reduce something to “basic building blocks”, such as numbers to prime numbers, factoring integers is covered by the fundamental theorem of arithmetic and factoring polynomials by the fundamental theorem of algebra. Viètes formulas relate the coefficients of a polynomial to its roots, the opposite of polynomial factorization is expansion, the multiplying together of polynomial factors to an “expanded” polynomial, written as just a sum of terms. Integer factorization for large integers appears to be a difficult problem, there is no known method to carry it out quickly. Its complexity is the basis of the security of some public key cryptography algorithms. A matrix can also be factorized into a product of matrices of special types, One major example of this uses an orthogonal or unitary matrix, and a triangular matrix. There are different types, QR decomposition, LQ, QL, RQ and this situation is generalized by factorization systems. By the fundamental theorem of arithmetic, every integer greater than 1 has a unique prime factorization. Given an algorithm for integer factorization, one can factor any integer down to its constituent primes by repeated application of this algorithm, for very large numbers, no efficient classical algorithm is known. Modern techniques for factoring polynomials are fast and efficient, but use sophisticated mathematical ideas and these techniques are used in the construction of computer routines for carrying out polynomial factorization in Computer algebra systems. This article is concerned with classical techniques. While the general notion of factoring just means writing an expression as a product of simpler expressions, when factoring polynomials this means that the factors are to be polynomials of smaller degree. Thus, while x 2 − y = is a factorization of the expression, another issue concerns the coefficients of the factors. It is not always possible to do this, and a polynomial that can not be factored in this way is said to be irreducible over this type of coefficient, thus, x2 -2 is irreducible over the integers and x2 +4 is irreducible over the reals. In the first example, the integers 1 and -2 can also be thought of as real numbers, and if they are, then x 2 −2 = shows that this polynomial factors over the reals. Similarly, since the integers 1 and 4 can be thought of as real and hence complex numbers, x2 +4 splits over the complex numbers, i. e. x 2 +4 =. The fundamental theorem of algebra can be stated as, Every polynomial of n with complex number coefficients splits completely into n linear factors
5.
Divisor
–
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some other integer to produce n. In this case one says also that n is a multiple of m, an integer n is divisible by another integer m if m is a divisor of n, this implies dividing n by m leaves no remainder. Under this definition, the statement m ∣0 holds for every m, as before, but with the additional constraint k ≠0. Under this definition, the statement m ∣0 does not hold for m ≠0, in the remainder of this article, which definition is applied is indicated where this is significant. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4, they are 1,2,4, −1, −2, and −4,1 and −1 divide every integer. Every integer is a divisor of itself, every integer is a divisor of 0. Integers divisible by 2 are called even, and numbers not divisible by 2 are called odd,1, −1, n and −n are known as the trivial divisors of n. A divisor of n that is not a divisor is known as a non-trivial divisor. A non-zero integer with at least one divisor is known as a composite number, while the units −1 and 1. There are divisibility rules which allow one to recognize certain divisors of a number from the numbers digits, the generalization can be said to be the concept of divisibility in any integral domain. 7 is a divisor of 42 because 7 ×6 =42 and it can also be said that 42 is divisible by 7,42 is a multiple of 7,7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2,3, the positive divisors of 42 are 1,2,3,6,7,14,21,42. 5 ∣0, because 5 ×0 =0, if a ∣ b and b ∣ a, then a = b or a = − b. If a ∣ b and a ∣ c, then a ∣ holds, however, if a ∣ b and c ∣ b, then ∣ b does not always hold. If a ∣ b c, and gcd =1, then a ∣ c, if p is a prime number and p ∣ a b then p ∣ a or p ∣ b. A positive divisor of n which is different from n is called a proper divisor or a part of n. A number that does not evenly divide n but leaves a remainder is called an aliquant part of n, an integer n >1 whose only proper divisor is 1 is called a prime number
6.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made
7.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
8.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
9.
Ternary numeral system
–
The ternary numeral system has three as its base. Analogous to a bit, a digit is a trit. One trit is equivalent to bits of information. Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary, for example, decimal 365 corresponds to binary 101101101 and to ternary 111112. However, they are far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary. The value of a number with n bits that are all 1 is 2n −1. Then N = M, N = /, and N = bd −1, for a three-digit ternary number, N =33 −1 =26 =2 ×32 +2 ×31 +2 ×30 =18 +6 +2. Nonary or septemvigesimal can be used for representation of ternary. A base-three system is used in Islam to keep track of counting Tasbih to 99 or to 100 on a hand for counting prayers. In certain analog logic, the state of the circuit is often expressed ternary and this is most commonly seen in Transistor–transistor logic using 7406 open collector logic. The output is said to either be low, high, or open, in this configuration the output of the circuit is actually not connected to any voltage reference at all. Where the signal is usually grounded to a reference, or at a certain voltage level. Thus, the voltage level is sometimes unpredictable. A rare ternary point is used to denote fractional parts of an inning in baseball, since each inning consists of three outs, each out is considered one third of an inning and is denoted as.1. For example, if a player pitched all of the 4th, 5th and 6th innings, plus 2 outs of the 7th inning, his Innings pitched column for that game would be listed as 3.2, meaning 3⅔. In this usage, only the part of the number is written in ternary form. Ternary numbers can be used to convey self-similar structures like the Sierpinski triangle or the Cantor set conveniently, additionally, it turns out that the ternary representation is useful for defining the Cantor set and related point sets, because of the way the Cantor set is constructed. The Cantor set consists of the points from 0 to 1 that have an expression that does not contain any instance of the digit 1
10.
Quaternary numeral system
–
Quaternary is the base-4 numeral system. It uses the digits 0,1,2 and 3 to represent any real number. Four is the largest number within the range and one of two numbers that is both a square and a highly composite number, making quaternary a convenient choice for a base at this scale. Despite being twice as large, its economy is equal to that of binary. However, it no better in the localization of prime numbers. See decimal and binary for a discussion of these properties, as with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix 4,8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit with 2,3 or 4 binary digits, for example, in base 4,302104 =11001001002. Although octal and hexadecimal are widely used in computing and computer programming in the discussion and analysis of binary arithmetic and logic, by analogy with byte and nybble, a quaternary digit is sometimes called a crumb. There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca, the Kharosthi numerals have a partial base 4 counting system from 1 to decimal 10. Quaternary numbers are used in the representation of 2D Hilbert curves, here a real number between 0 and 1 is converted into the quaternary system. Every single digit now indicates in which of the respective 4 sub-quadrants the number will be projected, parallels can be drawn between quaternary numerals and the way genetic code is represented by DNA. The four DNA nucleotides in order, abbreviated A, C, G and T, can be taken to represent the quaternary digits in numerical order 0,1,2. With this encoding, the complementary digit pairs 0↔3, and 1↔2 match the complementation of the pairs, A↔T and C↔G. For example, the nucleotide sequence GATTACA can be represented by the quaternary number 2033010, quaternary line codes have been used for transmission, from the invention of the telegraph to the 2B1Q code used in modern ISDN circuits
11.
Quinary
–
Quinary is a numeral system with five as the base. A possible origination of a system is that there are five fingers on either hand. The base five is stated from 0–4, in the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, today, the main usage of base 5 is as a biquinary system, which is decimal using five as a sub-base. Another example of a system, is sexagesimal, base 60. Each quinary digit has log25 bits of information, many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño and Saraveca. Gumatj is a true 5–25 language, in which 25 is the group of 5. The Gumatj numerals are shown below, In the video game Riven and subsequent games of the Myst franchise, a decimal system with 2 and 5 as a sub-bases is called biquinary, and is found in Wolof and Khmer. Roman numerals are a biquinary system, the numbers 1,5,10, and 50 are written as I, V, X, and L respectively. Eight is VIII and seventy is LXX, most versions of the abacus use a biquinary system to simulate a decimal system for ease of calculation. Urnfield culture numerals and some tally mark systems are also biquinary, units of currencies are commonly partially or wholly biquinary. A vigesimal system with 4 and 5 as a sub-bases is found in Nahuatl, pentimal system Quibinary Yan Tan Tethera References, Quinary Base Conversion, includes fractional part, from Math Is Fun Media related to Quinary numeral system at Wikimedia Commons
12.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
13.
Octal
–
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping binary digits into groups of three. For example, the representation for decimal 74 is 1001010. Two zeroes can be added at the left,1001010, corresponding the octal digits 112, in the decimal system each decimal place is a power of ten. For example,7410 =7 ×101 +4 ×100 In the octal system each place is a power of eight. The Yuki language in California and the Pamean languages in Mexico have octal systems because the speakers count using the spaces between their fingers rather than the fingers themselves and it has been suggested that the reconstructed Proto-Indo-European word for nine might be related to the PIE word for new. Based on this, some have speculated that proto-Indo-Europeans used a number system. In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number based on 64 instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base would be too difficult, in 1718 Swedenborg wrote a manuscript, En ny rekenkonst som om vexlas wid Thalet 8 i stelle then wanliga wid Thalet 10. The numbers 1-7 are there denoted by the l, s, n, m, t, f, u. Thus 8 = lo,16 = so,24 = no,64 = loo,512 = looo etc, numbers with consecutive consonants are pronounced with vowel sounds between in accordance with a special rule. Writing under the pseudonym Hirossa Ap-Iccim in The Gentlemans Magazine, July 1745, Hugh Jones proposed a system for British coins, weights. In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic and he suggested base 8 for which he coined the term octal. In the mid 19th century, Alfred B. Taylor concluded that Our octonary radix is, therefore, so, for example, the number 65 would be spoken in octonary as under-un. Taylor also republished some of Swedenborgs work on octonary as an appendix to the above-cited publications, in the 2009 film Avatar, the language of the extraterrestrial Navi race employs an octal numeral system, probably due to the fact that they have four fingers on each hand. In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, in the tabletop game series Warhammer 40,000, the Tau race use an octal number system. Octal became widely used in computing systems such as the PDP-8, ICL1900. Octal was an abbreviation of binary for these machines because their word size is divisible by three
14.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer
15.
Hexadecimal
–
In mathematics and computing, hexadecimal is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits, it allows a more human-friendly representation of binary-coded values, one hexadecimal digit represents a nibble, which is half of an octet or byte. For example, a byte can have values ranging from 00000000 to 11111111 in binary form. In a non-programming context, a subscript is typically used to give the radix, several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix 0x is used in C and related languages, where this value might be denoted as 0x2AF3, in contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously, a numerical subscript can give the base explicitly,15910 is decimal 159,15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h. example. com/name%20with%20spaces where %20 is the space character, thus ’, represents the right single quotation mark, Unicode code point number 2019 in hex,8217. In the Unicode standard, a value is represented with U+ followed by the hex value. Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits prefixed with #, white, CSS allows 3-hexdigit abbreviations with one hexdigit per component, #FA3 abbreviates #FFAA33. *nix shells, AT&T assembly language and likewise the C programming language, to output an integer as hexadecimal with the printf function family, the format conversion code %X or %x is used. In Intel-derived assembly languages and Modula-2, hexadecimal is denoted with a suffixed H or h, some assembly languages use the notation HABCD. Ada and VHDL enclose hexadecimal numerals in based numeric quotes, 16#5A3#, for bit vector constants VHDL uses the notation x5A3. Verilog represents hexadecimal constants in the form 8hFF, where 8 is the number of bits in the value, the Smalltalk language uses the prefix 16r, 16r5A3 PostScript and the Bourne shell and its derivatives denote hex with prefix 16#, 16#5A3. For PostScript, binary data can be expressed as unprefixed consecutive hexadecimal pairs, in early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the Sad Mac to tell the user what went wrong. Common Lisp uses the prefixes #x and #16r, setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, MSX BASIC, QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H, &H5A3 BBC BASIC and Locomotive BASIC use & for hex. TI-89 and 92 series uses a 0h prefix, 0h5A3 ALGOL68 uses the prefix 16r to denote hexadecimal numbers, binary, quaternary and octal numbers can be specified similarly
16.
Vigesimal
–
The vigesimal or base 20 numeral system is based on twenty. In a vigesimal system, twenty individual numerals are used. One modern method of finding the extra needed symbols is to write ten as the letter A20, to write nineteen as J20, and this is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters A–F. Another method skips over the letter I, in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, the number twenty is written as 1020. According to this notation,2020 means forty in decimal = + D020 means two hundred and sixty in decimal = +10020 means four hundred in decimal = + +, in the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example,10 means ten,20 means twenty, in decimal, dividing by three twice only gives one digit periods because 9 is the number below ten. 21, however, the adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods, the prime factorization of twenty is 22 ×5, so it is not a perfect power. However, its part,5, is congruent to 1. Thus, according to Artins conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37. 395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a set of bases found that, of the first 15,456 primes. In many European languages,20 is used as a base, vigesimal systems are common in Africa, for example in Yoruba. Ogún,20, is the basic numeric block, ogójì,40, =20 multiplied by 2. Ogota,60, =20 multiplied by 3, ogorin,80, =20 multiplied by 4. Ogorun,100, =20 multiplied by 5, twenty was a base in the Maya and Aztec number systems. The Maya used the names for the powers of twenty, kal, bak, pic, calab, kinchil. See also Maya numerals and Maya calendar, Mayan languages, Yucatec, the Aztec called them, cempoalli, centzontli, cenxiquipilli, cempoalxiquipilli, centzonxiquipilli and cempoaltzonxiquipilli. Note that the ce prefix at the beginning means one and is replaced with the number to get the names of other multiples of the power
17.
Hebrew language
–
Hebrew is a language native to Israel, spoken by over 9 million people worldwide, of whom over 5 million are in Israel. Historically, it is regarded as the language of the Israelites and their ancestors, the earliest examples of written Paleo-Hebrew date from the 10th century BCE. Hebrew belongs to the West Semitic branch of the Afroasiatic language family, Hebrew is the only living Canaanite language left, and the only truly successful example of a revived dead language. Hebrew had ceased to be a spoken language somewhere between 200 and 400 CE, declining since the aftermath of the Bar Kokhba revolt. Aramaic and to a lesser extent Greek were already in use as international languages, especially among elites and it survived into the medieval period as the language of Jewish liturgy, rabbinic literature, intra-Jewish commerce, and poetry. Then, in the 19th century, it was revived as a spoken and literary language, and, according to Ethnologue, had become, as of 1998, the language of 5 million people worldwide. After Israel, the United States has the second largest Hebrew-speaking population, with 220,000 fluent speakers, Modern Hebrew is one of the two official languages of the State of Israel, while premodern Hebrew is used for prayer or study in Jewish communities around the world today. Ancient Hebrew is also the tongue of the Samaritans, while modern Hebrew or Arabic is their vernacular. For this reason, Hebrew has been referred to by Jews as Leshon Hakodesh, the modern word Hebrew is derived from the word Ivri, one of several names for the Israelite people. It is traditionally understood to be a based on the name of Abrahams ancestor, Eber. This name is based upon the root ʕ-b-r meaning to cross over. Interpretations of the term ʕibrim link it to this verb, cross over, in the Bible, the Hebrew language is called Yәhudit because Judah was the surviving kingdom at the time of the quotation. In Isaiah 19,18 it is called the Language of Canaan, Hebrew belongs to the Canaanite group of languages. In turn, the Canaanite languages are a branch of the Northwest Semitic family of languages, according to Avraham ben-Yosef, Hebrew flourished as a spoken language in the Kingdoms of Israel and Judah during about 1200 to 586 BCE. Scholars debate the degree to which Hebrew was a vernacular in ancient times following the Babylonian exile. In July 2008 Israeli archaeologist Yossi Garfinkel discovered a ceramic shard at Khirbet Qeiyafa which he claimed may be the earliest Hebrew writing yet discovered, dating around 3000 years ago. The Gezer calendar also dates back to the 10th century BCE at the beginning of the Monarchic Period, classified as Archaic Biblical Hebrew, the calendar presents a list of seasons and related agricultural activities. The Gezer calendar is written in an old Semitic script, akin to the Phoenician one that through the Greeks, the Gezer calendar is written without any vowels, and it does not use consonants to imply vowels even in the places where later Hebrew spelling requires it
18.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
19.
Square number
–
In mathematics, a square number or perfect square is an integer that is the square of an integer, in other words, it is the product of some integer with itself. For example,9 is a number, since it can be written as 3 × 3. The usual notation for the square of a n is not the product n × n. The name square number comes from the name of the shape, another way of saying that a integer is a square number, is that its square root is again an integer. For example, √9 =3, so 9 is a square number, a positive integer that has no perfect square divisors except 1 is called square-free. For a non-negative integer n, the nth square number is n2, the concept of square can be extended to some other number systems. If rational numbers are included, then a square is the ratio of two integers, and, conversely, the ratio of two square integers is a square, e. g.49 =2. Starting with 1, there are ⌊√m⌋ square numbers up to and including m, the squares smaller than 602 =3600 are, The difference between any perfect square and its predecessor is given by the identity n2 −2 = 2n −1. Equivalently, it is possible to count up square numbers by adding together the last square, the last squares root, and the current root, that is, n2 =2 + + n. The number m is a number if and only if one can compose a square of m equal squares. Hence, a square with side length n has area n2, the expression for the nth square number is n2. This is also equal to the sum of the first n odd numbers as can be seen in the above pictures, the formula follows, n 2 = ∑ k =1 n. So for example,52 =25 =1 +3 +5 +7 +9, there are several recursive methods for computing square numbers. For example, the nth square number can be computed from the square by n2 =2 + + n =2 +. Alternatively, the nth square number can be calculated from the two by doubling the th square, subtracting the th square number, and adding 2. For example, 2 × 52 −42 +2 = 2 × 25 −16 +2 =50 −16 +2 =36 =62, a square number is also the sum of two consecutive triangular numbers. The sum of two square numbers is a centered square number. Every odd square is also an octagonal number
20.
20 (number)
–
20 is the natural number following 19 and preceding 21. A group of twenty units may also be referred to as a score,20 is a tetrahedral number as 1,4,10,20. 20 is the basis for vigesimal number systems,20 is the third composite number comprising the product of a squared prime and a prime, and also the second member of the q family in this form. 20 has a sum of 22. Accordingly,20 is the abundant number and demonstrates an 8-member aliquot sequence. 20 is the smallest primitive abundant number,20 is the 4th composite number in the 7-aliquot tree. Two numbers have 20 as their sum, the discrete semiprime 34. Only 2 other square primes are abundant 12 and 18,20 can be written as the sum of three Fibonacci numbers uniquely, i. e.20 =13 +5 +2. The product of the number of divisors and the number of divisors of 20 is exactly 20. 20 is the number of required to optimally solve a Rubiks Cube in the worst case. 20 is the number with more than one digit that can be written from base 2 to base 20 using only the digits 0 to 9. The third magic number in physics, the IAU shower number for Coma Berenicids. The number of amino acids that are encoded by the standard genetic code. In some countries, the number 20 is used as an index in measuring visual acuity, 20/20 indicates normal vision at 20 feet, although it is commonly used to mean perfect vision. When someone is able to see only after an event how things turned out, the Baltimore Orioles and Cincinnati Reds, both for Hall of Famer Frank Robinson. The Kansas City Royals, for Frank White, the Los Angeles Dodgers, for Hall of Famer Don Sutton. The Philadelphia Phillies, for Hall of Famer Mike Schmidt, the Pittsburgh Pirates, for Hall of Famer Pie Traynor. The St. Louis Cardinals, for Hall of Famer Lou Brock, the San Francisco Giants, for Hall of Famer Monte Irvin, who played for the team when it was the New York Giants
21.
Circle
–
A circle is a simple closed shape in Euclidean geometry. The distance between any of the points and the centre is called the radius, a circle is a simple closed curve which divides the plane into two regions, an interior and an exterior. Annulus, the object, the region bounded by two concentric circles. Arc, any connected part of the circle, centre, the point equidistant from the points on the circle. Chord, a segment whose endpoints lie on the circle. Circumference, the length of one circuit along the circle, or the distance around the circle and it is a special case of a chord, namely the longest chord, and it is twice the radius. Disc, the region of the bounded by a circle. Lens, the intersection of two discs, passant, a coplanar straight line that does not touch the circle. Radius, a line segment joining the centre of the circle to any point on the circle itself, or the length of such a segment, sector, a region bounded by two radii and an arc lying between the radii. Segment, a region, not containing the centre, bounded by a chord, secant, an extended chord, a coplanar straight line cutting the circle at two points. Semicircle, an arc that extends from one of a diameters endpoints to the other, in non-technical common usage it may mean the diameter, arc, and its interior, a two dimensional region, that is technically called a half-disc. A half-disc is a case of a segment, namely the largest one. Tangent, a straight line that touches the circle at a single point. The word circle derives from the Greek κίρκος/κύκλος, itself a metathesis of the Homeric Greek κρίκος, the origins of the words circus and circuit are closely related. The circle has been known since before the beginning of recorded history, natural circles would have been observed, such as the Moon, Sun, and a short plant stalk blowing in the wind on sand, which forms a circle shape in the sand. The circle is the basis for the wheel, which, with related inventions such as gears, in mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Some highlights in the history of the circle are,1700 BCE – The Rhind papyrus gives a method to find the area of a circular field. The result corresponds to 256/81 as a value of π.300 BCE – Book 3 of Euclids Elements deals with the properties of circles
22.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
23.
Radian
–
The radian is the standard unit of angular measure, used in many areas of mathematics. The length of an arc of a circle is numerically equal to the measurement in radians of the angle that it subtends. The unit was formerly an SI supplementary unit, but this category was abolished in 1995, separately, the SI unit of solid angle measurement is the steradian. The radian is represented by the symbol rad, so for example, a value of 1.2 radians could be written as 1.2 rad,1.2 r,1. 2rad, or 1. 2c. Radian describes the angle subtended by a circular arc as the length of the arc divided by the radius of the arc. One radian is the angle subtended at the center of a circle by an arc that is equal in length to the radius of the circle. Conversely, the length of the arc is equal to the radius multiplied by the magnitude of the angle in radians. As the ratio of two lengths, the radian is a number that needs no unit symbol, and in mathematical writing the symbol rad is almost always omitted. When quantifying an angle in the absence of any symbol, radians are assumed, and it follows that the magnitude in radians of one complete revolution is the length of the entire circumference divided by the radius, or 2πr / r, or 2π. Thus 2π radians is equal to 360 degrees, meaning that one radian is equal to 180/π degrees, the concept of radian measure, as opposed to the degree of an angle, is normally credited to Roger Cotes in 1714. He described the radian in everything but name, and he recognized its naturalness as a unit of angular measure, the idea of measuring angles by the length of the arc was already in use by other mathematicians. For example, al-Kashi used so-called diameter parts as units where one part was 1/60 radian. The term radian first appeared in print on 5 June 1873, in examination questions set by James Thomson at Queens College, Belfast. He had used the term as early as 1871, while in 1869, Thomas Muir, then of the University of St Andrews, in 1874, after a consultation with James Thomson, Muir adopted radian. As stated, one radian is equal to 180/π degrees, thus, to convert from radians to degrees, multiply by 180/π. The length of circumference of a circle is given by 2 π r, so, to convert from radians to gradians multiply by 200 / π, and to convert from gradians to radians multiply by π /200. This is because radians have a mathematical naturalness that leads to a more elegant formulation of a number of important results, most notably, results in analysis involving trigonometric functions are simple and elegant when the functions arguments are expressed in radians. Because of these and other properties, the trigonometric functions appear in solutions to problems that are not obviously related to the functions geometrical meanings
24.
International System of Units
–
The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, the system also establishes a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system was published in 1960 as the result of an initiative began in 1948. It is based on the system of units rather than any variant of the centimetre-gram-second system. The motivation for the development of the SI was the diversity of units that had sprung up within the CGS systems, the International System of Units has been adopted by most developed countries, however, the adoption has not been universal in all English-speaking countries. The metric system was first implemented during the French Revolution with just the metre and kilogram as standards of length, in the 1830s Carl Friedrich Gauss laid the foundations for a coherent system based on length, mass, and time. In the 1860s a group working under the auspices of the British Association for the Advancement of Science formulated the requirement for a coherent system of units with base units and derived units. Meanwhile, in 1875, the Treaty of the Metre passed responsibility for verification of the kilogram, in 1921, the Treaty was extended to include all physical quantities including electrical units originally defined in 1893. The units associated with these quantities were the metre, kilogram, second, ampere, kelvin, in 1971, a seventh base quantity, amount of substance represented by the mole, was added to the definition of SI. On 11 July 1792, the proposed the names metre, are, litre and grave for the units of length, area, capacity. The committee also proposed that multiples and submultiples of these units were to be denoted by decimal-based prefixes such as centi for a hundredth, on 10 December 1799, the law by which the metric system was to be definitively adopted in France was passed. Prior to this, the strength of the magnetic field had only been described in relative terms. The technique used by Gauss was to equate the torque induced on a magnet of known mass by the earth’s magnetic field with the torque induced on an equivalent system under gravity. The resultant calculations enabled him to assign dimensions based on mass, length, a French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention. Initially the convention only covered standards for the metre and the kilogram, one of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the prototypes to serve as the national prototype for that country. Initially its prime purpose was a periodic recalibration of national prototype metres. The official language of the Metre Convention is French and the version of all official documents published by or on behalf of the CGPM is the French-language version
25.
Athens
–
Athens is the capital and largest city of Greece. In modern times, Athens is a cosmopolitan metropolis and central to economic, financial, industrial, maritime. In 2015, Athens was ranked the worlds 29th richest city by purchasing power, Athens is recognised as a global city because of its location and its importance in shipping, finance, commerce, media, entertainment, arts, international trade, culture, education and tourism. It is one of the biggest economic centres in southeastern Europe, with a financial sector. The municipality of Athens had a population of 664,046 within its limits. The urban area of Athens extends beyond its administrative city limits. According to Eurostat in 2011, the Functional urban areas of Athens was the 9th most populous FUA in the European Union, Athens is also the southernmost capital on the European mainland. The city also retains Roman and Byzantine monuments, as well as a number of Ottoman monuments. Athens is home to two UNESCO World Heritage Sites, the Acropolis of Athens and the medieval Daphni Monastery, Athens was the host city of the first modern-day Olympic Games in 1896, and 108 years later it welcomed home the 2004 Summer Olympics. In Ancient Greek, the name of the city was Ἀθῆναι a plural, in earlier Greek, such as Homeric Greek, the name had been current in the singular form though, as Ἀθήνη. It was possibly rendered in the later on, like those of Θῆβαι and Μυκῆναι. During the medieval period the name of the city was rendered once again in the singular as Ἀθήνα, an etiological myth explaining how Athens has acquired its name was well known among ancient Athenians and even became the theme of the sculpture on the West pediment of the Parthenon. The goddess of wisdom, Athena, and the god of the seas, Poseidon had many disagreements, in an attempt to compel the people, Poseidon created a salt water spring by striking the ground with his trident, symbolizing naval power. However, when Athena created the tree, symbolizing peace and prosperity. Different etymologies, now rejected, were proposed during the 19th century. Christian Lobeck proposed as the root of the name the word ἄθος or ἄνθος meaning flower, ludwig von Döderlein proposed the stem of the verb θάω, stem θη- to denote Athens as having fertile soil. In classical literature, the city was referred to as the City of the Violet Crown, first documented in Pindars ἰοστέφανοι Ἀθᾶναι. In medieval texts, variant names include Setines, Satine, and Astines, today the caption η πρωτεύουσα, the capital, has become somewhat common
26.
HTTP status code
–
This is a list of Hypertext Transfer Protocol response status codes. It includes codes from IETF Request for Comments, other specifications, the first digit of the status code specifies one of five standard classes of responses. The message phrases shown are typical, but any human-readable alternative may be provided, unless otherwise stated, the status code is part of the HTTP/1.1 standard. The Internet Assigned Numbers Authority maintains the registry of HTTP status codes. An informational response indicates that the request was received and understood and it is issued on a provisional basis while request processing continues. It alerts the client to wait for a final response, the message consists only of the status line and optional header fields, and is terminated by an empty line. As the HTTP/1.0 standard did not define any 1xx status codes,100 Continue The server has received the request headers and the client should proceed to send the request body. Sending a large request body to a server after a request has been rejected for inappropriate headers would be inefficient. To have a check the requests headers, a client must send Expect, 100-continue as a header in its initial request. The response 417 Expectation Failed indicates the request should not be continued,101 Switching Protocols The requester has asked the server to switch protocols and the server has agreed to do so. 102 Processing A WebDAV request may contain many sub-requests involving file operations and this code indicates that the server has received and is processing the request, but no response is available yet. This prevents the client from timing out and assuming the request was lost and this class of status codes indicates the action requested by the client was received, understood, accepted, and processed successfully. 200 OK Standard response for successful HTTP requests, the actual response will depend on the request method used. In a GET request, the response will contain an entity corresponding to the requested resource, in a POST request, the response will contain an entity describing or containing the result of the action. 201 Created The request has been fulfilled, resulting in the creation of a new resource,202 Accepted The request has been accepted for processing, but the processing has not been completed. The request might or might not be acted upon. 203 Non-Authoritative Information The server is a proxy that received a 200 OK from its origin. 204 No Content The server successfully processed the request and is not returning any content,205 Reset Content The server successfully processed the request, but is not returning any content
27.
Ward McAllister
–
Samuel Ward McAllister was the self-appointed arbiter of New York society from the 1860s to the early 1890s. Born Samuel Ward McAllister to a socially prominent Savannah, Georgia judicial family and he used the earnings from his legal prowess to journey throughout Europes great cities and spas—Bath, Pau, Bad Nauheim, and the like—where he observed the mannerisms of the titled nobility. Upon his return to the United States, McAllister settled in New York City with his wife, heiress Sarah Taintor Gibbons, above all in McAllisters life was his desire for social recognition and what he termed Tong, the cream of society. In his glory, McAllister referred to his patroness, Mrs. Caroline Astor and his gift for party and picnic planning soon made him a society darling. Among the undesirables McAllister endeavored to exclude from the circle of the Four Hundred were the many nouveau riche Midwesterners who poured into New York seeking social recognition. The Chicago Journal replied, The mayor will not frappé his wine too much and he will frappé it just enough so the guests can blow the foam off the tops of the glasses without a vulgar exhibition of lung and lip power. Pigs feet, will be triumphs of the gastronomic art, McAllisters downfall came when he published a book of memoirs entitled Society as I Have Found It in 1890. The book, and his hunger for attention, did little to endear him to the old guard. In disgrace, McAllister died while dining alone at New Yorks Union Club and his funeral, held on February 5,1895, was well attended by many society figures of the day, including Chauncey Depew and Cornelius Vanderbilt II. McAllister is interred at Green-Wood Cemetery in Brooklyn, New York, McAllister coined the phrase The Four Hundred. According to him, this was the number of people in New York who really mattered, the number was popularly supposed to be the capacity of Mrs William Backhouse Astor Jr. s ballroom. The Four Million, the title of a book by O. Henry, was a reaction to this phrase, social Crimes, by Jane Stanton Hitchcock. McCallister biography at Class and Leisure at Americas First Resort Biographical sketch at The History Box
28.
Atari 8-bit family
–
The Atari 8-bit family is a series of 8-bit home computers introduced by Atari, Inc. in 1979 and manufactured until 1992. All of the machines in the family are similar and differ primarily in packaging. They are based on the MOS Technology 6502 CPU running at 1.79 MHz, star Raiders is widely considered the platforms killer app. The original Atari 400 and 800 models were released with a series of plug-n-play peripherals that used Ataris SIO serial bus system, to meet stringent FCC requirements, the early machines were completely enclosed in a solid cast aluminum block, which made them physically robust but expensive to produce. Over the following decade, the models were replaced by the XL and XE series which had the same basic logical design. The Atari 8-bit computer line sold two million units during its production run between late 1979 and mid-1985. They were not only sold through dedicated computer retailers, but department stores such as Sears, the primary competition in the worldwide market was, starting in 1982, the Commodore 64. This was the first computer to offer similar performance. Atari also found a market in Eastern Europe and had something of a renaissance in the early 1990s as these countries joined a uniting Europe. On January 1,1992, Atari corp, officially dropped all remaining support of the 8-bit line. Design of the 8-bit series of machines started at Atari as soon as the Atari 2600 games console was released in late 1977. While designing the 2600 in 1976, the team from Atari Grass Valley Research Center felt that the 2600 would have about a three-year lifespan before becoming obsolete. They started blue sky designs for a new console that would be ready to replace it around 1979, what they ended up with was essentially a greatly updated version of the 2600, fixing its more obvious limitations but sharing a similar overall design philosophy. The newer design would be faster than the 2600, have better graphics, work on the chips for the new system continued throughout 1978 and focused on much-improved video hardware known as the Color Television Interface Adaptor, or CTIA. During this gestation the home computer era began in earnest in the form of the TRS-80, Commodore PET, Warner Communications had purchased Atari from Nolan Bushnell for $28 million in 1976 in order to fund the launch of the 2600. Atari had recently sent Ray Kassar to act as the CEO of the company, Kassar felt the chipset should be used in a home computer to challenge Apple. In order to adapt the machine to this role, it would need to support character graphics, include some form of expansion for peripherals, and run the then-universal BASIC programming language. The CTIA, like the 2600s TIA, was designed to produce Player-Missile graphics, instead of expanding the CTIA to handle these tasks, the designers instead introduced an entirely new chip for this purpose, the Alphanumeric Television Interface Controller, or ANTIC
29.
Bolton
–
Bolton is a town in Greater Manchester in North West England. A former mill town, Bolton has been a centre for textiles since Flemish weavers settled in the area in the 14th century, introducing a wool. The urbanisation and development of the town coincided with the introduction of textile manufacture during the Industrial Revolution. The British cotton industry declined sharply after the First World War, close to the West Pennine Moors, Bolton is 10 miles northwest of Manchester. It is surrounded by smaller towns and villages that together form the Metropolitan Borough of Bolton. The town of Bolton has a population of 139,403, historically part of Lancashire, Bolton originated as a small settlement in the moorland known as Bolton le Moors. In the English Civil War, the town was a Parliamentarian outpost in a staunchly Royalist region, in what became known as the Bolton Massacre,1,600 residents were killed and 700 were taken prisoner. Football club Bolton Wanderers play home games at the Macron Stadium, Cultural interests include the Octagon Theatre and the Bolton Museum and Art Gallery, as well as one of the earliest public libraries established after the Public Libraries Act 1850. Bolton is a common Northern English name derived from the Old English bothl-tun, the first recorded use of the name, in the form Boelton, dates from 1185 to describe Bolton le Moors, though this may not be in relation to a dwelling. It was recorded as Bothelton in 1212, Botelton in 1257, Boulton in 1288, later forms of Botheltun were Bodeltown, Botheltun-le-Moors, Bowelton, Boltune, Bolton-super-Moras, Bolton-in-ye-Moors, Bolton-le-Moors. The towns motto of Supera Moras means overcome difficulties, and is a pun on the Bolton-super-Moras version of the meaning literally. A Bronze Age mound was excavated in Victorian times outside Haulgh Hall, the Romans built roads from Manchester to Ribchester to the east and a road along what is now the A6 to the west. It is claimed that Agricola built a fort at Blackrod by clearing land above the forest, evidence of a Saxon settlement exists in the form of religious objects found when the Victorian parish church was built. In 1067 Great Bolton was the property of Roger de Poitou and after 1100 and it became the property of the Pilkingtons who forfeited it in the Civil War and after that the Stanleys who became Earls of Derby. Great Bolton and Little Bolton were part of the Marsey fee, in 1212 Little Bolton was held by Roger de Bolton as plough-land, a charter to hold a market in Churchgate was granted on 14 December 1251 by King Henry III of England. Bolton became a town and borough by a charter from the Earl of Derby, William de Ferrers, on 14 January 1253. Burgage plots were laid out on Churchgate and Deansgate in the centre of the town close to where Ye Olde Man & Scythe public house. In 1337 Flemish weavers settled and introduced the manufacture of woollen cloth, more Flemish weavers, fleeing the Huguenot persecutions, settled here in the 17th century
30.
Stockport
–
Stockport /ˈstɒkpɔːrt/ is a large town in Greater Manchester, England,7 miles south-east of Manchester city centre, where the River Goyt and Tame merge to create the River Mersey. The town is the largest settlement in the borough of the same name. Historically, most of the town was in Cheshire, but the area to the north of the Mersey was in Lancashire. Stockport in the 16th century was a small town entirely on the bank of the Mersey. In the 18th century the town had one of the first mechanised factories in the British Isles. However, Stockports predominant industries of the 19th century were the cotton, Stockport was also at the centre of the countrys hatting industry, which by 1884 was exporting more than six million hats a year, the last hat works in Stockport closed in 1997. Dominating the western approaches to the town is the Stockport Viaduct, built in 1840, the viaducts 27 brick arches carry the mainline railways from Manchester to Birmingham and London over the River Mersey. This structure featured as the background in many paintings by L. S. Lowry, Stockport was recorded as Stokeport in 1170. The currently accepted etymology is Old English port, a place, with stoc, a hamlet, hence. Older derivations include stock, a place or castle, with port. The castle probably refers to Stockport Castle, a 12th-century motte-and-bailey first mentioned in 1173, other derivations are based on early variants such as Stopford and Stockford. There is evidence that a ford across the Mersey existed at the foot of Bridge Street Brow, Stopford retains a use in the adjectival form, Stopfordian, for Stockport-related items, and pupils of Stockport Grammar School style themselves Stopfordians. By contrast, former pupils of Stockport School are known as Old Stoconians, Stopfordian is used as the general term, or demonym used for people from Stockport, much as someone from London would be a Londoner. Stockport has never been a sea or river port as the Mersey is not navigable here, in the centre of Stockport it has been culverted and the main shopping street, Merseyway, built above it. The earliest evidence of occupation in the wider area are microliths from the hunter-gatherers of the Mesolithic period and weapons. Early Bronze Age remains include stone hammers, flint knives, palstaves, there is a gap in the age of finds between about 1200 BC and the start of the Roman period in about 70 AD, which may indicate depopulation, possibly due to a poorer climate. Despite a strong tradition, there is little evidence of a Roman military station at Stockport. It is assumed that roads from Cheadle to Ardotalia and Manchester to Buxton crossed close to the town centre