1.
Integer
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain

2.
Negative number
–
In mathematics, a negative number is a real number that is less than zero. If positive represents movement to the right, negative represents movement to the left, if positive represents above sea level, then negative represents below level. If positive represents a deposit, negative represents a withdrawal and they are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset, if a quantity may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. In the medical context of fighting a tumor, an expansion could be thought of as a negative shrinkage, negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common idea of an opposite is reflected in arithmetic. For example, − −3 =3 because the opposite of an opposite is the original thing, negative numbers are usually written with a minus sign in front. For example, −3 represents a quantity with a magnitude of three, and is pronounced minus three or negative three. To help tell the difference between a subtraction operation and a number, occasionally the negative sign is placed slightly higher than the minus sign. Conversely, a number that is greater than zero is called positive, the positivity of a number may be emphasized by placing a plus sign before it, e. g. +3. In general, the negativity or positivity of a number is referred to as its sign, every real number other than zero is either positive or negative. The positive whole numbers are referred to as natural numbers, while the positive and negative numbers are referred to as integers. In bookkeeping, amounts owed are often represented by red numbers, or a number in parentheses, Liu Hui established rules for adding and subtracting negative numbers. By the 7th century, Indian mathematicians such as Brahmagupta were describing the use of negative numbers, islamic mathematicians further developed the rules of subtracting and multiplying negative numbers and solved problems with negative coefficients. Western mathematicians accepted the idea of numbers by the 17th century. Prior to the concept of numbers, mathematicians such as Diophantus considered negative solutions to problems false. Negative numbers can be thought of as resulting from the subtraction of a number from a smaller. For example, negative three is the result of subtracting three from zero,0 −3 = −3, in general, the subtraction of a larger number from a smaller yields a negative result, with the magnitude of the result being the difference between the two numbers

3.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number

4.
Factorization
–
In mathematics, factorization or factoring is the decomposition of an object into a product of other objects, or factors, which when multiplied together give the original. For example, the number 15 factors into primes as 3 ×5, in all cases, a product of simpler objects is obtained. The aim of factoring is usually to reduce something to “basic building blocks”, such as numbers to prime numbers, factoring integers is covered by the fundamental theorem of arithmetic and factoring polynomials by the fundamental theorem of algebra. Viètes formulas relate the coefficients of a polynomial to its roots, the opposite of polynomial factorization is expansion, the multiplying together of polynomial factors to an “expanded” polynomial, written as just a sum of terms. Integer factorization for large integers appears to be a difficult problem, there is no known method to carry it out quickly. Its complexity is the basis of the security of some public key cryptography algorithms. A matrix can also be factorized into a product of matrices of special types, One major example of this uses an orthogonal or unitary matrix, and a triangular matrix. There are different types, QR decomposition, LQ, QL, RQ and this situation is generalized by factorization systems. By the fundamental theorem of arithmetic, every integer greater than 1 has a unique prime factorization. Given an algorithm for integer factorization, one can factor any integer down to its constituent primes by repeated application of this algorithm, for very large numbers, no efficient classical algorithm is known. Modern techniques for factoring polynomials are fast and efficient, but use sophisticated mathematical ideas and these techniques are used in the construction of computer routines for carrying out polynomial factorization in Computer algebra systems. This article is concerned with classical techniques. While the general notion of factoring just means writing an expression as a product of simpler expressions, when factoring polynomials this means that the factors are to be polynomials of smaller degree. Thus, while x 2 − y = is a factorization of the expression, another issue concerns the coefficients of the factors. It is not always possible to do this, and a polynomial that can not be factored in this way is said to be irreducible over this type of coefficient, thus, x2 -2 is irreducible over the integers and x2 +4 is irreducible over the reals. In the first example, the integers 1 and -2 can also be thought of as real numbers, and if they are, then x 2 −2 = shows that this polynomial factors over the reals. Similarly, since the integers 1 and 4 can be thought of as real and hence complex numbers, x2 +4 splits over the complex numbers, i. e. x 2 +4 =. The fundamental theorem of algebra can be stated as, Every polynomial of n with complex number coefficients splits completely into n linear factors

5.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made

6.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used

7.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra

8.
Ternary numeral system
–
The ternary numeral system has three as its base. Analogous to a bit, a digit is a trit. One trit is equivalent to bits of information. Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary, for example, decimal 365 corresponds to binary 101101101 and to ternary 111112. However, they are far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary. The value of a number with n bits that are all 1 is 2n −1. Then N = M, N = /, and N = bd −1, for a three-digit ternary number, N =33 −1 =26 =2 ×32 +2 ×31 +2 ×30 =18 +6 +2. Nonary or septemvigesimal can be used for representation of ternary. A base-three system is used in Islam to keep track of counting Tasbih to 99 or to 100 on a hand for counting prayers. In certain analog logic, the state of the circuit is often expressed ternary and this is most commonly seen in Transistor–transistor logic using 7406 open collector logic. The output is said to either be low, high, or open, in this configuration the output of the circuit is actually not connected to any voltage reference at all. Where the signal is usually grounded to a reference, or at a certain voltage level. Thus, the voltage level is sometimes unpredictable. A rare ternary point is used to denote fractional parts of an inning in baseball, since each inning consists of three outs, each out is considered one third of an inning and is denoted as.1. For example, if a player pitched all of the 4th, 5th and 6th innings, plus 2 outs of the 7th inning, his Innings pitched column for that game would be listed as 3.2, meaning 3⅔. In this usage, only the part of the number is written in ternary form. Ternary numbers can be used to convey self-similar structures like the Sierpinski triangle or the Cantor set conveniently, additionally, it turns out that the ternary representation is useful for defining the Cantor set and related point sets, because of the way the Cantor set is constructed. The Cantor set consists of the points from 0 to 1 that have an expression that does not contain any instance of the digit 1

9.
Quaternary numeral system
–
Quaternary is the base-4 numeral system. It uses the digits 0,1,2 and 3 to represent any real number. Four is the largest number within the range and one of two numbers that is both a square and a highly composite number, making quaternary a convenient choice for a base at this scale. Despite being twice as large, its economy is equal to that of binary. However, it no better in the localization of prime numbers. See decimal and binary for a discussion of these properties, as with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix 4,8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit with 2,3 or 4 binary digits, for example, in base 4,302104 =11001001002. Although octal and hexadecimal are widely used in computing and computer programming in the discussion and analysis of binary arithmetic and logic, by analogy with byte and nybble, a quaternary digit is sometimes called a crumb. There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca, the Kharosthi numerals have a partial base 4 counting system from 1 to decimal 10. Quaternary numbers are used in the representation of 2D Hilbert curves, here a real number between 0 and 1 is converted into the quaternary system. Every single digit now indicates in which of the respective 4 sub-quadrants the number will be projected, parallels can be drawn between quaternary numerals and the way genetic code is represented by DNA. The four DNA nucleotides in order, abbreviated A, C, G and T, can be taken to represent the quaternary digits in numerical order 0,1,2. With this encoding, the complementary digit pairs 0↔3, and 1↔2 match the complementation of the pairs, A↔T and C↔G. For example, the nucleotide sequence GATTACA can be represented by the quaternary number 2033010, quaternary line codes have been used for transmission, from the invention of the telegraph to the 2B1Q code used in modern ISDN circuits

10.
Quinary
–
Quinary is a numeral system with five as the base. A possible origination of a system is that there are five fingers on either hand. The base five is stated from 0–4, in the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, today, the main usage of base 5 is as a biquinary system, which is decimal using five as a sub-base. Another example of a system, is sexagesimal, base 60. Each quinary digit has log25 bits of information, many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño and Saraveca. Gumatj is a true 5–25 language, in which 25 is the group of 5. The Gumatj numerals are shown below, In the video game Riven and subsequent games of the Myst franchise, a decimal system with 2 and 5 as a sub-bases is called biquinary, and is found in Wolof and Khmer. Roman numerals are a biquinary system, the numbers 1,5,10, and 50 are written as I, V, X, and L respectively. Eight is VIII and seventy is LXX, most versions of the abacus use a biquinary system to simulate a decimal system for ease of calculation. Urnfield culture numerals and some tally mark systems are also biquinary, units of currencies are commonly partially or wholly biquinary. A vigesimal system with 4 and 5 as a sub-bases is found in Nahuatl, pentimal system Quibinary Yan Tan Tethera References, Quinary Base Conversion, includes fractional part, from Math Is Fun Media related to Quinary numeral system at Wikimedia Commons

11.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion

12.
Octal
–
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping binary digits into groups of three. For example, the representation for decimal 74 is 1001010. Two zeroes can be added at the left,1001010, corresponding the octal digits 112, in the decimal system each decimal place is a power of ten. For example,7410 =7 ×101 +4 ×100 In the octal system each place is a power of eight. The Yuki language in California and the Pamean languages in Mexico have octal systems because the speakers count using the spaces between their fingers rather than the fingers themselves and it has been suggested that the reconstructed Proto-Indo-European word for nine might be related to the PIE word for new. Based on this, some have speculated that proto-Indo-Europeans used a number system. In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number based on 64 instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base would be too difficult, in 1718 Swedenborg wrote a manuscript, En ny rekenkonst som om vexlas wid Thalet 8 i stelle then wanliga wid Thalet 10. The numbers 1-7 are there denoted by the l, s, n, m, t, f, u. Thus 8 = lo,16 = so,24 = no,64 = loo,512 = looo etc, numbers with consecutive consonants are pronounced with vowel sounds between in accordance with a special rule. Writing under the pseudonym Hirossa Ap-Iccim in The Gentlemans Magazine, July 1745, Hugh Jones proposed a system for British coins, weights. In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic and he suggested base 8 for which he coined the term octal. In the mid 19th century, Alfred B. Taylor concluded that Our octonary radix is, therefore, so, for example, the number 65 would be spoken in octonary as under-un. Taylor also republished some of Swedenborgs work on octonary as an appendix to the above-cited publications, in the 2009 film Avatar, the language of the extraterrestrial Navi race employs an octal numeral system, probably due to the fact that they have four fingers on each hand. In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, in the tabletop game series Warhammer 40,000, the Tau race use an octal number system. Octal became widely used in computing systems such as the PDP-8, ICL1900. Octal was an abbreviation of binary for these machines because their word size is divisible by three

13.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer

14.
Hexadecimal
–
In mathematics and computing, hexadecimal is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits, it allows a more human-friendly representation of binary-coded values, one hexadecimal digit represents a nibble, which is half of an octet or byte. For example, a byte can have values ranging from 00000000 to 11111111 in binary form. In a non-programming context, a subscript is typically used to give the radix, several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix 0x is used in C and related languages, where this value might be denoted as 0x2AF3, in contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously, a numerical subscript can give the base explicitly,15910 is decimal 159,15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h. example. com/name%20with%20spaces where %20 is the space character, thus ’, represents the right single quotation mark, Unicode code point number 2019 in hex,8217. In the Unicode standard, a value is represented with U+ followed by the hex value. Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits prefixed with #, white, CSS allows 3-hexdigit abbreviations with one hexdigit per component, #FA3 abbreviates #FFAA33. *nix shells, AT&T assembly language and likewise the C programming language, to output an integer as hexadecimal with the printf function family, the format conversion code %X or %x is used. In Intel-derived assembly languages and Modula-2, hexadecimal is denoted with a suffixed H or h, some assembly languages use the notation HABCD. Ada and VHDL enclose hexadecimal numerals in based numeric quotes, 16#5A3#, for bit vector constants VHDL uses the notation x5A3. Verilog represents hexadecimal constants in the form 8hFF, where 8 is the number of bits in the value, the Smalltalk language uses the prefix 16r, 16r5A3 PostScript and the Bourne shell and its derivatives denote hex with prefix 16#, 16#5A3. For PostScript, binary data can be expressed as unprefixed consecutive hexadecimal pairs, in early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the Sad Mac to tell the user what went wrong. Common Lisp uses the prefixes #x and #16r, setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, MSX BASIC, QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H, &H5A3 BBC BASIC and Locomotive BASIC use & for hex. TI-89 and 92 series uses a 0h prefix, 0h5A3 ALGOL68 uses the prefix 16r to denote hexadecimal numbers, binary, quaternary and octal numbers can be specified similarly

15.
Vigesimal
–
The vigesimal or base 20 numeral system is based on twenty. In a vigesimal system, twenty individual numerals are used. One modern method of finding the extra needed symbols is to write ten as the letter A20, to write nineteen as J20, and this is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters A–F. Another method skips over the letter I, in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, the number twenty is written as 1020. According to this notation,2020 means forty in decimal = + D020 means two hundred and sixty in decimal = +10020 means four hundred in decimal = + +, in the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example,10 means ten,20 means twenty, in decimal, dividing by three twice only gives one digit periods because 9 is the number below ten. 21, however, the adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods, the prime factorization of twenty is 22 ×5, so it is not a perfect power. However, its part,5, is congruent to 1. Thus, according to Artins conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37. 395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a set of bases found that, of the first 15,456 primes. In many European languages,20 is used as a base, vigesimal systems are common in Africa, for example in Yoruba. Ogún,20, is the basic numeric block, ogójì,40, =20 multiplied by 2. Ogota,60, =20 multiplied by 3, ogorin,80, =20 multiplied by 4. Ogorun,100, =20 multiplied by 5, twenty was a base in the Maya and Aztec number systems. The Maya used the names for the powers of twenty, kal, bak, pic, calab, kinchil. See also Maya numerals and Maya calendar, Mayan languages, Yucatec, the Aztec called them, cempoalli, centzontli, cenxiquipilli, cempoalxiquipilli, centzonxiquipilli and cempoaltzonxiquipilli. Note that the ce prefix at the beginning means one and is replaced with the number to get the names of other multiples of the power

16.
Base 36
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion

17.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory

18.
Perfect number
–
In number theory, a perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is, the sum of its positive divisors excluding the number itself. Equivalently, a number is a number that is half the sum of all of its positive divisors i. e. σ1 = 2n. This definition is ancient, appearing as early as Euclids Elements where it is called τέλειος ἀριθμός. Euclid also proved a formation rule whereby q /2 is a perfect number whenever q is a prime of the form 2 p −1 for prime p —what is now called a Mersenne prime. Much later, Euler proved that all even numbers are of this form. This is known as the Euclid–Euler theorem and it is not known whether there are any odd perfect numbers, nor whether infinitely many perfect numbers exist. The first perfect number is 6 and its proper divisors are 1,2, and 3, and 1 +2 +3 =6. Equivalently, the number 6 is equal to half the sum of all its positive divisors, the next perfect number is 28 =1 +2 +4 +7 +14. This is followed by the perfect numbers 496 and 8128, in about 300 BC Euclid showed that if 2p−1 is prime then 2p−1 is perfect. The first four numbers were the only ones known to early Greek mathematics. Philo of Alexandria in his first-century book On the creation mentions perfect numbers, claiming that the world was created in 6 days and the moon orbits in 28 days because 6 and 28 are perfect. Philo is followed by Origen, and by Didymus the Blind, st Augustine defines perfect numbers in City of God in the early 5th century AD, repeating the claim that God created the world in 6 days because 6 is the smallest perfect number. The Egyptian mathematician Ismail ibn Fallūs mentioned the next three numbers and listed a few more which are now known to be incorrect. Euclid proved that 2p−1 is a perfect number whenever 2p −1 is prime. Prime numbers of the form 2p −1 are known as Mersenne primes, after the seventeenth-century monk Marin Mersenne, for 2p −1 to be prime, it is necessary that p itself be prime. However, not all numbers of the form 2p −1 with a prime p are prime, in fact, Mersenne primes are very rare—of the 9,592 prime numbers p less than 100,000, 2p −1 is prime for only 28 of them. Nicomachus conjectured that every number is of the form 2p−1 where 2p −1 is prime. Ibn al-Haytham circa 1000 AD conjectured that every perfect number is of that form

19.
Mersenne prime
–
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a number that can be written in the form Mn = 2n −1 for some integer n. They are named after Marin Mersenne, a French Minim friar, the first four Mersenne primes are 3,7,31, and 127. If n is a number then so is 2n −1. The definition is therefore unchanged when written Mp = 2p −1 where p is assumed prime, more generally, numbers of the form Mn = 2n −1 without the primality requirement are called Mersenne numbers. The smallest composite pernicious Mersenne number is 211 −1 =2047 =23 ×89, Mersenne primes Mp are also noteworthy due to their connection to perfect numbers. As of January 2016,49 Mersenne primes are known, the largest known prime number 274,207,281 −1 is a Mersenne prime. Since 1997, all newly found Mersenne primes have been discovered by the “Great Internet Mersenne Prime Search”, many fundamental questions about Mersenne primes remain unresolved. It is not even whether the set of Mersenne primes is finite or infinite. The Lenstra–Pomerance–Wagstaff conjecture asserts that there are infinitely many Mersenne primes,23 | M11,47 | M23,167 | M83,263 | M131,359 | M179,383 | M191,479 | M239, and 503 | M251. Since for these primes p, 2p +1 is congruent to 7 mod 8, so 2 is a quadratic residue mod 2p +1, since p is a prime, it must be p or 1. The first four Mersenne primes are M2 =3, M3 =7, M5 =31, a basic theorem about Mersenne numbers states that if Mp is prime, then the exponent p must also be prime. This follows from the identity 2 a b −1 = ⋅ = ⋅ and this rules out primality for Mersenne numbers with composite exponent, such as M4 =24 −1 =15 =3 ×5 = ×. Though the above examples might suggest that Mp is prime for all p, this is not the case. The evidence at hand does suggest that a randomly selected Mersenne number is more likely to be prime than an arbitrary randomly selected odd integer of similar size. Nonetheless, prime Mp appear to grow increasingly sparse as p increases, in fact, of the 2,270,720 prime numbers p up to 37,156,667, Mp is prime for only 45 of them. The lack of any simple test to determine whether a given Mersenne number is prime makes the search for Mersenne primes a difficult task, the Lucas–Lehmer primality test is an efficient primality test that greatly aids this task. The search for the largest known prime has somewhat of a cult following, consequently, a lot of computer power has been expended searching for new Mersenne primes, much of which is now done using distributed computing

20.
Harmonic divisor number
–
In mathematics, a harmonic divisor number, or Ore number, is a positive integer whose divisors have a harmonic mean that is an integer. The first few harmonic divisor numbers are 1,6,28,140,270,496,672,1638,2970,6200,8128,8190, for example, the harmonic divisor number 6 has the four divisors 1,2,3, and 6. Their harmonic mean is an integer,411 +12 +13 +16 =2, the number 140 has divisors 1,2,4,5,7,10,14,20,28,35,70, and 140. All of the terms in this formula are multiplicative, but not completely multiplicative, therefore, the harmonic mean H is also multiplicative. This means that, for any integer n, the harmonic mean H can be expressed as the product of the harmonic means for the prime powers in the factorization of n. For any integer M, as Ore observed, the product of the mean and arithmetic mean of its divisors equals M itself. Therefore, M is harmonic, with mean of divisors k, if. Ore showed that every number is harmonic. To see this, observe that the sum of the divisors of a perfect number M is exactly 2M, therefore, the average of the divisors is M, where τ denotes the number of divisors of M. For any M, τ is odd if and only if M is a square number, for otherwise each divisor d of M can be paired with a different divisor M/d. But, no perfect number can be a square, this follows from the form of even perfect numbers. Therefore, for a perfect number M, τ is even, Ore conjectured that no odd harmonic divisor numbers exist other than 1. If the conjecture is true, this would imply the nonexistence of odd perfect numbers. W. H. Mills showed that any odd harmonic divisor number above 1 must have a power factor greater than 107. Cohen & Sorli showed that there are no odd harmonic divisor numbers smaller than 1024, Cohen, Goto, and others starting with Ore himself have performed computer searches listing all small harmonic divisor numbers. From these results, lists are known of all harmonic divisor numbers up to 2×109, an Identity Concerning Averages of Divisors of a Given Integer. Numbers Whose Positive Divisors Have Small Integral Harmonic Mean, Cohen, Graeme L. Sorli, Ronald M. Odd harmonic numbers exceed 1024. On Divisors of Odd Perfect Numbers, on the averages of the divisors of a number

21.
Harmonic mean
–
In mathematics, the harmonic mean is one of several kinds of average, and in particular one of the Pythagorean means. Typically, it is appropriate for situations when the average of rates is desired, the harmonic mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals. As a simple example, the mean of 1,2. The third formula in the equation expresses the harmonic mean as the reciprocal of the arithmetic mean of the reciprocals. From the following formula, H = n ⋅ ∏ j =1 n x j ∑ i =1 n. it is apparent that the harmonic mean is related to the arithmetic and geometric means. Thus, the harmonic mean cannot be arbitrarily large by changing some values to bigger ones. The harmonic mean is one of the three Pythagorean means, the arithmetic mean is often mistakenly used in places calling for the harmonic mean. In the speed example below for instance, the mean of 50 is incorrect. The harmonic mean is related to the other Pythagorean means, as seen in the formula in the above equation. This can be seen by interpreting the denominator to be the mean of the product of numbers n times. That is, for the first term, we multiply all n numbers except the first, for the second, we multiply all n numbers except the second, and so on. The numerator, excluding the n, which goes with the mean, is the geometric mean to the power n. Thus the nth harmonic mean is related to the nth geometric and arithmetic means, the general formula is H = n A = n A. For the special case of just two numbers, x 1 and x 2, the mean can be written H =2 x 1 x 2 x 1 + x 2. In this special case, the mean is related to the arithmetic mean A = x 1 + x 22. Since G A ≤1 by the inequality of arithmetic and geometric means and it also follows that G = A H, meaning the two numbers geometric mean equals the geometric mean of their arithmetic and harmonic means. Three positive numbers H, G, and A are respectively the harmonic, geometric, W n is associated to the dataset x 1. X n, the harmonic mean is defined by H = ∑ i =1 n w i ∑ i =1 n w i x i = −1

22.
Triangular number
–
A triangular number or triangle number counts the objects that can form an equilateral triangle, as in the diagram on the right. The nth triangular number is the number of dots composing a triangle with n dots on a side and it represents the number of distinct pairs that can be selected from n +1 objects, and it is read aloud as n plus one choose two. Carl Friedrich Gauss is said to have found this relationship in his early youth, however, regardless of the truth of this story, Gauss was not the first to discover this formula, and some find it likely that its origin goes back to the Pythagoreans 5th century BC. The two formulae were described by the Irish monk Dicuil in about 816 in his Computus, the triangular number Tn solves the handshake problem of counting the number of handshakes if each person in a room with n +1 people shakes hands once with each person. In other words, the solution to the problem of n people is Tn−1. The function T is the analog of the factorial function. In the limit, the ratio between the two numbers, dots and line segments is lim n → ∞ T n L n =13, Triangular numbers have a wide variety of relations to other figurate numbers. Most simply, the sum of two triangular numbers is a square number, with the sum being the square of the difference between the two. Algebraically, T n + T n −1 = + = + = n 2 =2, alternatively, the same fact can be demonstrated graphically, There are infinitely many triangular numbers that are also square numbers, e. g.1,36,1225. Some of them can be generated by a recursive formula. All square triangular numbers are found from the recursion S n =34 S n −1 − S n −2 +2 with S0 =0 and S1 =1. Also, the square of the nth triangular number is the same as the sum of the cubes of the integers 1 to n and this can also be expressed as ∑ k =1 n k 3 =2. The sum of the all triangular numbers up to the nth triangular number is the nth tetrahedral number, more generally, the difference between the nth m-gonal number and the nth -gonal number is the th triangular number. For example, the sixth heptagonal number minus the sixth hexagonal number equals the triangular number,15. Every other triangular number is a hexagonal number, knowing the triangular numbers, one can reckon any centered polygonal number, the nth centered k-gonal number is obtained by the formula C k n = k T n −1 +1 where T is a triangular number. The positive difference of two numbers is a trapezoidal number. Triangular numbers correspond to the case of Faulhabers formula. Alternating triangular numbers are also hexagonal numbers, every even perfect number is triangular, given by the formula M p 2 p −1 = M p 2 = T M p where Mp is a Mersenne prime

23.
Hexagonal number
–
A hexagonal number is a figurate number. The formula for the nth hexagonal number h n =2 n 2 − n = n =2 n ×2. The first few numbers are,1,6,15,28,45,66,91,120,153,190,231,276,325,378,435,496,561,630,703,780,861,946. Every hexagonal number is a number, but only every other triangular number is a hexagonal number. Like a triangular number, the root in base 10 of a hexagonal number can only be 1,3,6. The digital root pattern, repeating every nine terms, is 166193139. Every even perfect number is hexagonal, given by the formula M p 2 p −1 = M p /2 = h /2 = h 2 p −1 where Mp is a Mersenne prime. No odd perfect numbers are known, hence all known perfect numbers are hexagonal, for example, the 2nd hexagonal number is 2×3 =6, the 4th is 4×7 =28, the 16th is 16×31 =496, and the 64th is 64×127 =8128. The largest number that cannot be written as a sum of at most four hexagonal numbers is 130, adrien-Marie Legendre proved in 1830 that any integer greater than 1791 can be expressed in this way. Hexagonal numbers can be rearranged into rectangular numbers of n by. Hexagonal numbers should not be confused with centered hexagonal numbers, which model the standard packaging of Vienna sausages, to avoid ambiguity, hexagonal numbers are sometimes called cornered hexagonal numbers. One can efficiently test whether a positive x is an hexagonal number by computing n =8 x +1 +14. If n is an integer, then x is the nth hexagonal number, if n is not an integer, then x is not hexagonal. The nth number of the sequence can also be expressed by using Sigma notation as h n = ∑ i =0 n −1 where the empty sum is taken to be 0. Centered hexagonal number Mathworld entry on Hexagonal Number

24.
Centered nonagonal number
–
A centered nonagonal number is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers. The centered nonagonal number for n is given by the formula N c =2. Thus, the first few centered nonagonal numbers are 1,10,28,55,91,136,190,253,325,406,496,595,703,820,946, the list above includes the perfect numbers 28 and 496. All even perfect numbers are numbers whose index is an odd Mersenne prime. Since every Mersenne prime greater than 3 is congruent to 1 modulo 3, in 1850, Sir Frederick Pollock conjectured that every natural number is the sum of at most eleven centered nonagonal numbers, which has been neither proven nor disproven

25.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n

26.
Euler's phi function
–
In number theory, Eulers totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as φ or ϕ and it can be defined more formally as the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd is equal to 1. The integers k of this form are referred to as totatives of n. For example, the totatives of n =9 are the six numbers 1,2,4,5,7 and 8. They are all relatively prime to 9, but the three numbers in this range,3,6, and 9 are not, because gcd = gcd =3. As another example, φ =1 since for n =1 the only integer in the range from 1 to n is 1 itself, Eulers totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ = φφ. This function gives the order of the group of integers modulo n. It also plays a key role in the definition of the RSA encryption system, leonhard Euler introduced the function in 1763. However, he did not at that time choose any specific symbol to denote it. In a 1784 publication, Euler studied the function further, choosing the Greek letter π to denote it, he wrote πD for the multitude of less than D. This definition varies from the current definition for the totient function at D =1 but is otherwise the same, the now-standard notation φ comes from Gausss 1801 treatise Disquisitiones Arithmeticae. Although Gauss didnt use parentheses around the argument and wrote φA, thus, it is often called Eulers phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, so it is referred to as Eulers totient function. Jordans totient is a generalization of Eulers, the cototient of n is defined as n − φ. It counts the number of positive integers less than or equal to n that have at least one factor in common with n. There are several formulas for computing φ and it states φ = n ∏ p ∣ n, where the product is over the distinct prime numbers dividing n. The proof of Eulers product formula depends on two important facts and this means that if gcd =1, then φ = φ φ. If p is prime and k ≥1, then φ = p k − p k −1 = p k −1 = p k, proof, since p is a prime number the only possible values of gcd are 1, p, p2

27.
E8 (mathematics)
–
The E8 algebra is the largest and most complicated of these exceptional cases. Wilhelm Killing discovered the complex Lie algebra E8 during his classification of simple compact Lie algebras, though he did not prove its existence, Cartan determined that a complex simple Lie algebra of type E8 admits three real forms. Each of them rise to a simple Lie group of dimension 248. Chevalley introduced algebraic groups and Lie algebras of type E8 over other fields, for example, the Lie group E8 has dimension 248. Its rank, which is the dimension of its maximal torus, is 8, therefore, the vectors of the root system are in eight-dimensional Euclidean space, they are described explicitly later in this article. The Weyl group of E8, which is the group of symmetries of the maximal torus which are induced by conjugations in the group, has order 21435527 =696729600. There is a Lie algebra Ek for every integer k ≥3, there is a unique complex Lie algebra of type E8, corresponding to a complex group of complex dimension 248. The complex Lie group E8 of complex dimension 248 can be considered as a simple real Lie group of real dimension 496 and this is simply connected, has maximal compact subgroup the compact form of E8, and has an outer automorphism group of order 2 generated by complex conjugation. The split form, EVIII, which has maximal compact subgroup Spin/, EIX, which has maximal compact subgroup E7×SU/, fundamental group of order 2 and has trivial outer automorphism group. For a complete list of forms of simple Lie algebras. Over finite fields, the Lang–Steinberg theorem implies that H1=0, meaning that E8 has no twisted forms, the characters of finite dimensional representations of the real and complex Lie algebras and Lie groups are all given by the Weyl character formula. There are two non-isomorphic irreducible representations of dimension 8634368000, the fundamental representations are those with dimensions 3875,6696000,6899079264,146325270,2450240,30380,248 and 147250. The values at 1 of the Lusztig–Vogan polynomials give the coefficients of the matrices relating the standard representations with the irreducible representations. These matrices were computed after four years of collaboration by a group of 18 mathematicians and computer scientists, led by Jeffrey Adams, the most difficult case is the split real form of E8, where the largest matrix is of size 453060×453060. The Lusztig–Vogan polynomials for all other simple groups have been known for some time. The announcement of the result in March 2007 received extraordinary attention from the media, the representations of the E8 groups over finite fields are given by Deligne–Lusztig theory. One can construct the E8 group as the group of the corresponding e8 Lie algebra. This algebra has a 120-dimensional subalgebra so generated by Jij as well as 128 new generators Qa that transform as a Weyl–Majorana spinor of spin and it is then possible to check that the Jacobi identity is satisfied

28.
Superstring theory
–
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modelling them as vibrations of tiny supersymmetric strings. Since the second superstring revolution, the five superstring theories are regarded as different limits of a single theory tentatively called M-theory, the development of a quantum field theory of a force invariably results in infinite possibilities. Development of quantum theory of gravity therefore requires different means than those used for the other forces, according to the theory, the fundamental constituents of reality are strings of the Planck length that vibrate at resonant frequencies. Every string, in theory, has a resonance, or harmonic. Different harmonics determine different fundamental particles, the tension in a string is on the order of the Planck force. The graviton, for example, is predicted by the theory to be a string with wave amplitude zero, since its beginnings in late sixties, the theory was developed through several decades of intense research and combined effort of numerous scientists. It has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, superstring theory is based on supersymmetry. No supersymmetric particles have been discovered and recent research at LHC, for instance, the mass constraint of the Minimal Supersymmetric Standard Model squarks has been up to 1.1 TeV, and gluinos up to 500 GeV. No report on suggesting large extra dimensions has been delivered from LHC, there have been no principles so far to limit the number of vacua in the concept of a landscape of vacua. Our physical space is observed to have three spatial dimensions and, along with time, is a boundless four-dimensional continuum known as spacetime. However, nothing prevents a theory from including more than 4 dimensions, in the case of string theory, consistency requires spacetime to have 10 dimensions. If the extra dimensions are compactified, then the six dimensions must be in the form of a Calabi–Yau manifold. Within the more complete framework of M-theory, they would have to form of a G2 manifold. Calabi-Yaus are interesting mathematical spaces in their own right, a particular exact symmetry of string/M-theory called T-duality, has led to the discovery of equivalences between different Calabi-Yaus called Mirror Symmetry. Superstring theory is not the first theory to propose extra spatial dimensions and it can be seen as building upon the Kaluza–Klein theory, which proposed a 4+1-dimensional theory of gravity. When compactified on a circle, the gravity in the extra dimension precisely describes electromagnetism from the perspective of the 3 remaining large space dimensions, also, to obtain a consistent, fundamental, quantum theory requires the upgrade to string theory—not just the extra dimensions. Theoretical physicists were troubled by the existence of five separate superstring theories, the five consistent superstring theories are, The type I string has one supersymmetry in the ten-dimensional sense. This theory is special in the sense that it is based on unoriented open and closed strings, the type II string theories have two supersymmetries in the ten-dimensional sense

29.
John H. Schwarz
–
John Henry Schwarz is an American theoretical physicist. Along with Yoichiro Nambu, Holger Bech Nielsen, Joël Scherk, Gabriele Veneziano, Michael Green and he studied mathematics at Harvard College and theoretical physics at the University of California at Berkeley, where his graduate advisor was Geoffrey Chew. For several years he was one of the few physicists who pursued string theory as a viable theory of quantum gravity. Schwarz was an assistant professor at Princeton University from 1966 to 1972 and he then moved to the California Institute of Technology, where he is currently the Harold Brown Professor of Theoretical Physics. He was a fellow of the MacArthur Foundation in 1987, on December 12,2013, John Schwarz shared the Fundamental Physics Prize with Michael Green for opening new perspectives on quantum gravity and the unification of forces. Cleaver Neil Marcus Augusto Sagnotti Mina Aganagic Michael R, susan Sisley at the University of Arizona at Phoenix attempted to conduct clinical trials of marijuana treatments for American veterans suffering from extreme post-traumatic stress disorder. She won FDA approval for a pilot study on 50 veterans. Winning FDA approval would be sufficient for research on any other drug, with marijuana, however, scientists must also apply to the National Institute on Drug Abuse in order to purchase the only legal supply of marijuana. NIDA turned down Dr. Sisley’s request, as their director explained, NIDA’s mission is to support research into the harms, not the benefits, of marijuana. Essentially, NIDA’s mission is to any research that could undermine the Schedule I status of marijuana as a dangerous narcotic. The acceptance of science has come a long way since Galileo was arrested as a heretic for questioning the order of the Universe, Green, M. John H. Schwarz, and E. Witten. Cambridge, UK, Cambridge University Press,1988, vol.2, Loop Amplitutes, Anomalies and Phenomenology. Cambridge, UK, Cambridge University Press,1988, faculty website John Schwarz, Google Scholar

30.
Dimension
–
In physics and mathematics, the dimension of a mathematical space is informally defined as the minimum number of coordinates needed to specify any point within it. Thus a line has a dimension of one only one coordinate is needed to specify a point on it – for example. The inside of a cube, a cylinder or a sphere is three-dimensional because three coordinates are needed to locate a point within these spaces, in classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a space but not the one that was found necessary to describe electromagnetism. The four dimensions of spacetime consist of events that are not absolutely defined spatially and temporally, Minkowski space first approximates the universe without gravity, the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity. Ten dimensions are used to string theory, and the state-space of quantum mechanics is an infinite-dimensional function space. The concept of dimension is not restricted to physical objects, high-dimensional spaces frequently occur in mathematics and the sciences. They may be parameter spaces or configuration spaces such as in Lagrangian or Hamiltonian mechanics, in mathematics, the dimension of an object is an intrinsic property independent of the space in which the object is embedded. This intrinsic notion of dimension is one of the ways the mathematical notion of dimension differs from its common usages. The dimension of Euclidean n-space En is n, when trying to generalize to other types of spaces, one is faced with the question what makes En n-dimensional. One answer is that to cover a ball in En by small balls of radius ε. This observation leads to the definition of the Minkowski dimension and its more sophisticated variant, the Hausdorff dimension, for example, the boundary of a ball in En looks locally like En-1 and this leads to the notion of the inductive dimension. While these notions agree on En, they turn out to be different when one looks at more general spaces, a tesseract is an example of a four-dimensional object. The rest of this section some of the more important mathematical definitions of the dimensions. A complex number has a real part x and an imaginary part y, a single complex coordinate system may be applied to an object having two real dimensions. For example, an ordinary two-dimensional spherical surface, when given a complex metric, complex dimensions appear in the study of complex manifolds and algebraic varieties. The dimension of a space is the number of vectors in any basis for the space. This notion of dimension is referred to as the Hamel dimension or algebraic dimension to distinguish it from other notions of dimension