1.
Pentagon
–
In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting, a self-intersecting regular pentagon is called a pentagram. A regular pentagon has Schläfli symbol and interior angles are 108°, a regular pentagon has five lines of reflectional symmetry, and rotational symmetry of order 5. The diagonals of a regular pentagon are in the golden ratio to its sides. The area of a regular convex pentagon with side length t is given by A = t 225 +1054 =5 t 2 tan 4 ≈1.720 t 2. A pentagram or pentangle is a regular star pentagon and its sides form the diagonals of a regular convex pentagon – in this arrangement the sides of the two pentagons are in the golden ratio. The area of any polygon is, A =12 P r where P is the perimeter of the polygon. Substituting the regular pentagons values for P and r gives the formula A =12 ×5 t × t tan 2 =5 t 2 tan 4 with side length t, like every regular convex polygon, the regular convex pentagon has an inscribed circle. The apothem, which is the r of the inscribed circle. Like every regular polygon, the regular convex pentagon has a circumscribed circle. For a regular pentagon with successive vertices A, B, C, D, E, the regular pentagon is constructible with compass and straightedge, as 5 is a Fermat prime. A variety of methods are known for constructing a regular pentagon, one method to construct a regular pentagon in a given circle is described by Richmond and further discussed in Cromwells Polyhedra. The top panel shows the construction used in Richmonds method to create the side of the inscribed pentagon, the circle defining the pentagon has unit radius. Its center is located at point C and a midpoint M is marked halfway along its radius and this point is joined to the periphery vertically above the center at point D. Angle CMD is bisected, and the bisector intersects the axis at point Q. A horizontal line through Q intersects the circle at point P, to determine the length of this side, the two right triangles DCM and QCM are depicted below the circle. Using Pythagoras theorem and two sides, the hypotenuse of the triangle is found as 5 /2
2.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
3.
Golden ratio
–
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship, expressed algebraically, for quantities a and b with a > b >0, a + b a = a b = def φ, where the Greek letter phi represents the golden ratio. Its value is, φ =1 +52 =1.6180339887 …, A001622 The golden ratio is also called the golden mean or golden section. Other names include extreme and mean ratio, medial section, divine proportion, divine section, golden proportion, golden cut, the golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other plant parts. The golden ratio has also used to analyze the proportions of natural objects as well as man-made systems such as financial markets. Two quantities a and b are said to be in the golden ratio φ if a + b a = a b = φ, one method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ, a + b a =1 + b a =1 +1 φ, multiplying by φ gives φ +1 = φ2 which can be rearranged to φ2 − φ −1 =0. First, the line segment A B ¯ is about doubled and then the semicircle with the radius A S ¯ around the point S is drawn, now the semicircle is drawn with the radius A B ¯ around the point B. The arising intersection point E corresponds 2 φ, next up, the perpendicular on the line segment A E ¯ from the point D will be establish. The subsequent parallel F S ¯ to the line segment C M ¯, produces, as it were and it is well recognizable, this triangle and the triangle M S C are similar to each other. The hypotenuse F S ¯ has due to the cathetuses S D ¯ =1 and D F ¯ =2 according the Pythagorean theorem, finally, the circle arc is drawn with the radius 5 around the point F. The golden ratio has been claimed to have held a fascination for at least 2,400 years. But the fascination with the Golden Ratio is not confined just to mathematicians, biologists, artists, musicians, historians, architects, psychologists, and even mystics have pondered and debated the basis of its ubiquity and appeal. In fact, it is fair to say that the Golden Ratio has inspired thinkers of all disciplines like no other number in the history of mathematics. Ancient Greek mathematicians first studied what we now call the golden ratio because of its frequent appearance in geometry, the division of a line into extreme and mean ratio is important in the geometry of regular pentagrams and pentagons. Euclid explains a construction for cutting a line in extreme and mean ratio, throughout the Elements, several propositions and their proofs employ the golden ratio. The golden ratio is explored in Luca Paciolis book De divina proportione, since the 20th century, the golden ratio has been represented by the Greek letter φ or less commonly by τ. Timeline according to Priya Hemenway, Phidias made the Parthenon statues that seem to embody the golden ratio, plato, in his Timaeus, describes five possible regular solids, some of which are related to the golden ratio
4.
Stereographic projection
–
In geometry, the stereographic projection is a particular mapping that projects a sphere onto a plane. The projection is defined on the sphere, except at one point. Where it is defined, the mapping is smooth and bijective and it is conformal, meaning that it preserves angles. It is neither isometric nor area-preserving, that is, it preserves neither distances nor the areas of figures, intuitively, then, the stereographic projection is a way of picturing the sphere as the plane, with some inevitable compromises. In practice, the projection is carried out by computer or by using a special kind of graph paper called a stereographic net, shortened to stereonet. The stereographic projection was known to Hipparchus, Ptolemy and probably earlier to the Egyptians and it was originally known as the planisphere projection. Planisphaerium by Ptolemy is the oldest surviving document that describes it, one of its most important uses was the representation of celestial charts. The term planisphere is still used to refer to such charts, in the 16th and 17th century, the equatorial aspect of the stereographic projection was commonly used for maps of the Eastern and Western Hemispheres. It is believed that already the map created in 1507 by Gualterius Lud was in stereographic projection, as were later the maps of Jean Roze, Rumold Mercator, in star charts, even this equatorial aspect had been utilised already by the ancient astronomers like Ptolemy. François dAguilon gave the stereographic projection its current name in his 1613 work Opticorum libri sex philosophis juxta ac mathematicis utiles, in 1695, Edmond Halley, motivated by his interest in star charts, published the first mathematical proof that this map is conformal. He used the recently established tools of calculus, invented by his friend Isaac Newton and this section focuses on the projection of the unit sphere from the north pole onto the plane through the equator. Other formulations are treated in later sections, the unit sphere in three-dimensional space R3 is the set of points such that x2 + y2 + z2 =1. Let N = be the pole, and let M be the rest of the sphere. The plane z =0 runs through the center of the sphere, for any point P on M, there is a unique line through N and P, and this line intersects the plane z =0 in exactly one point P′. Define the stereographic projection of P to be this point P′ in the plane, in Cartesian coordinates on the sphere and on the plane, the projection and its inverse are given by the formulas =, =. In spherical coordinates on the sphere and polar coordinates on the plane, here, φ is understood to have value π when R =0. Also, there are ways to rewrite these formulas using trigonometric identities. In cylindrical coordinates on the sphere and polar coordinates on the plane, the projection is not defined at the projection point N =
5.
Platonic solid
–
In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent regular polygonal faces with the number of faces meeting at each vertex. Five solids meet those criteria, Geometers have studied the mathematical beauty and they are named for the ancient Greek philosopher Plato who theorized in his dialogue, the Timaeus, that the classical elements were made of these regular solids. The Platonic solids have been known since antiquity, dice go back to the dawn of civilization with shapes that predated formal charting of Platonic solids. The ancient Greeks studied the Platonic solids extensively, some sources credit Pythagoras with their discovery. In any case, Theaetetus gave a description of all five. The Platonic solids are prominent in the philosophy of Plato, their namesake, Plato wrote about them in the dialogue Timaeus c.360 B. C. in which he associated each of the four classical elements with a regular solid. Earth was associated with the cube, air with the octahedron, water with the icosahedron, there was intuitive justification for these associations, the heat of fire feels sharp and stabbing. Air is made of the octahedron, its components are so smooth that one can barely feel it. Water, the icosahedron, flows out of hand when picked up. By contrast, a highly nonspherical solid, the hexahedron represents earth and these clumsy little solids cause dirt to crumble and break when picked up in stark difference to the smooth flow of water. Moreover, the cubes being the regular solid that tessellates Euclidean space was believed to cause the solidity of the Earth. Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarks. the god used for arranging the constellations on the whole heaven. Aristotle added an element, aithēr and postulated that the heavens were made of this element. Euclid completely mathematically described the Platonic solids in the Elements, the last book of which is devoted to their properties, propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid Euclid finds the ratio of the diameter of the sphere to the edge length. In Proposition 18 he argues there are no further convex regular polyhedra. Andreas Speiser has advocated the view that the construction of the 5 regular solids is the goal of the deductive system canonized in the Elements
6.
Triangular tiling
–
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane. Because the internal angle of the triangle is 60 degrees. The triangular tiling has Schläfli symbol of, Conway calls it a deltille, named from the triangular shape of the Greek letter delta. The triangular tiling can also be called a kishextille by a kis operation that adds a center point and it is one of three regular tilings of the plane. The other two are the square tiling and the hexagonal tiling, there are 9 distinct uniform colorings of a triangular tiling. Three of them can be derived from others by repeating colors,111212 and 111112 from 121213 by combining 1 and 3, there is one class of Archimedean colorings,111112, which is not 1-uniform, containing alternate rows of triangles where every third is colored. The example shown is 2-uniform, but there are many such Archimedean colorings that can be created by arbitrary horizontal shifts of the rows. The vertex arrangement of the tiling is called an A2 lattice. It is the 2-dimensional case of a simplectic honeycomb, the A*2 lattice can be constructed by the union of all three A2 lattices, and equivalent to the A2 lattice. + + = dual of = The vertices of the tiling are the centers of the densest possible circle packing. Every circle is in contact with 6 other circles in the packing, the packing density is π⁄√12 or 90. 69%. Since the union of 3 A2 lattices is also an A2 lattice, the voronoi cell of a triangular tiling is a hexagon, and so the voronoi tessellation, the hexagonal tiling has a direct correspondence to the circle packings. Triangular tilings can be made with the equivalent topology as the regular tiling, with identical faces and vertex-transitivity, there are 5 variations. Symmetry given assumes all faces are the same color, the planar tilings are related to polyhedra. Putting fewer triangles on a vertex leaves a gap and allows it to be folded into a pyramid and these can be expanded to Platonic solids, five, four and three triangles on a vertex define an icosahedron, octahedron, and tetrahedron respectively. This tiling is related as a part of sequence of regular polyhedra with Schläfli symbols. It is also related as a part of sequence of Catalan solids with face configuration Vn.6.6. Like the uniform there are eight uniform tilings that can be based from the regular hexagonal tiling
7.
Pentagram
–
A pentagram is the shape of a five-pointed star drawn with five straight strokes. The word pentagram comes from the Greek word πεντάγραμμον, from πέντε, five + γραμμή, the word pentacle is sometimes used synonymously with pentagram The word pentalpha is a learned modern revival of a post-classical Greek name of the shape. The pentagram is the simplest regular star polygon, the pentagram contains ten points and fifteen line segments. It is represented by the Schläfli symbol, like a regular pentagon, and a regular pentagon with a pentagram constructed inside it, the regular pentagram has as its symmetry group the dihedral group of order 10. The pentagram can be constructed by connecting alternate vertices of a pentagon and it can also be constructed as a stellation of a pentagon, by extending the edges of a pentagon until the lines intersect. Each intersection of edges sections the edges in the golden ratio, also, the ratio of the length of the shorter segment to the segment bounded by the two intersecting edges is φ. As the four-color illustration shows, r e d g r e e n = g r e e n b l u e = b l u e m a g e n t a = φ. The pentagram includes ten isosceles triangles, five acute and five obtuse isosceles triangles, in all of them, the ratio of the longer side to the shorter side is φ. The acute triangles are golden triangles, the obtuse isosceles triangle highlighted via the colored lines in the illustration is a golden gnomon. The pentagram of Venus is the apparent path of the planet Venus as observed from Earth, the tips of the five loops at the center of the figure have the same geometric relationship to one another as the five vertices, or points, of a pentagram. Groups of five intersections of curves, equidistant from the center, have the same geometric relationship. In early monumental Sumerian script, or cuneiform, a pentagram glyph served as a logogram for the word ub, meaning corner, angle, nook, the word Pentemychos was the title of the cosmogony of Pherecydes of Syros. Here, the five corners are where the seeds of Chronos are placed within the Earth in order for the cosmos to appear. The pentangle plays an important symbolic role in the 14th-century English poem Sir Gawain, heinrich Cornelius Agrippa and others perpetuated the popularity of the pentagram as a magic symbol, attributing the five neoplatonic elements to the five points, in typical Renaissance fashion. By the mid-19th century a distinction had developed amongst occultists regarding the pentagrams orientation. With a single point upwards it depicted spirit presiding over the four elements of matter, however, the influential writer Eliphas Levi called it evil whenever the symbol appeared the other way up. It is the goat of lust attacking the heavens with its horns and it is the sign of antagonism and fatality. It is the goat of lust attacking the heavens with its horns, faust, The pentagram thy peace doth mar
8.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
9.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
10.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
11.
Isotoxal figure
–
In geometry, a polytope, or a tiling, is isotoxal or edge-transitive if its symmetries act transitively on its edges. The term isotoxal is derived from the Greek τοξον meaning arc, an isotoxal polygon is an equilateral polygon, but not all equilateral polygons are isotoxal. The duals of isotoxal polygons are isogonal polygons, in general, an isotoxal 2n-gon will have Dn dihedral symmetry. A rhombus is a polygon with D2 symmetry. All regular polygons are isotoxal, having double the symmetry order. A regular 2n-gon is a polygon and can be marked with alternately colored vertices. An isotoxal polyhedron or tiling must be either isogonal or isohedral or both, regular polyhedra are isohedral, isogonal and isotoxal. Quasiregular polyhedra are isogonal and isotoxal, but not isohedral, their duals are isohedral and isotoxal, not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal. An isotoxal polyhedron has the dihedral angle for all edges. There are nine convex isotoxal polyhedra formed from the Platonic solids,8 formed by the Kepler–Poinsot polyhedra, cS1 maint, Multiple names, authors list Coxeter, Harold Scott MacDonald, Longuet-Higgins, M. S. Miller, J. C. P. Uniform polyhedra, Philosophical Transactions of the Royal Society of London, mathematical and Physical Sciences,246, 401–450, doi,10. 1098/rsta.1954.0003, ISSN 0080-4614, JSTOR91532, MR0062446
12.
Dihedral angle
–
A dihedral angle is the angle between two intersecting planes. In chemistry it is the angle between planes through two sets of three atoms, having two atoms in common, in solid geometry it is defined as the union of a line and two half-planes that have this line as a common edge. In higher dimension, a dihedral angle represents the angle between two hyperplanes, a dihedral angle is an angle between two intersecting planes on a third plane perpendicular to the line of intersection. A torsion angle is an example of a dihedral angle. In stereochemistry every set of three atoms of a molecule defines a plane, when two such planes intersect, the angle between them is a dihedral angle. Dihedral angles are used to specify the molecular conformation, stereochemical arrangements corresponding to angles between 0° and ±90° are called syn, those corresponding to angles between ±90° and 180° anti. Similarly, arrangements corresponding to angles between 30° and 150° or between −30° and −150° are called clinal and those between 0° and ±30° or ±150° and 180° are called periplanar. The synperiplanar conformation is also known as the syn- or cis-conformation, antiperiplanar as anti or trans, for example, with n-butane two planes can be specified in terms of the two central carbon atoms and either of the methyl carbon atoms. The syn-conformation shown above, with an angle of 60° is less stable than the anti-configuration with a dihedral angle of 180°. For macromolecular usage the symbols T, C, G+, G−, A+, a Ramachandran plot, originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, is a way to visualize energetically allowed regions for backbone dihedral angles ψ against φ of amino acid residues in protein structure, the figure at right illustrates the definition of the φ and ψ backbone dihedral angles. In a protein chain three dihedral angles are defined as φ, ψ and ω, as shown in the diagram, the planarity of the peptide bond usually restricts ω to be 180° or 0°. The distance between the Cα atoms in the trans and cis isomers is approximately 3.8 and 2.9 Å, the cis isomer is mainly observed in Xaa–Pro peptide bonds. The sidechain dihedral angles tend to cluster near 180°, 60°, and −60°, which are called the trans, gauche+, the stability of certain sidechain dihedral angles is affected by the values φ and ψ. For instance, there are steric interactions between the Cγ of the side chain in the gauche+ rotamer and the backbone nitrogen of the next residue when ψ is near -60°. An alternative method is to calculate the angle between the vectors, nA and nB, which are normal to the planes. Cos φ = − n A ⋅ n B | n A | | n B | where nA · nB is the dot product of the vectors and |nA| |nB| is the product of their lengths. Any plane can also be described by two non-collinear vectors lying in that plane, taking their cross product yields a vector to the plane