Astronomical unit

The astronomical unit is a unit of length the distance from Earth to the Sun. However, that distance varies as Earth orbits the Sun, from a maximum to a minimum and back again once a year. Conceived as the average of Earth's aphelion and perihelion, since 2012 it has been defined as 149597870700 metres or about 150 million kilometres; the astronomical unit is used for measuring distances within the Solar System or around other stars. It is a fundamental component in the definition of another unit of astronomical length, the parsec. A variety of unit symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A to denote a length equal to the astronomical unit. In the astronomical literature, the symbol AU was common. In 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In the non-normative Annex C to ISO 80000-3, the symbol of the astronomical unit is "ua". In 2012, the IAU, noting "that various symbols are presently in use for the astronomical unit", recommended the use of the symbol "au".

In the 2014 revision of the SI Brochure, the BIPM used the unit symbol "au". Earth's orbit around the Sun is an ellipse; the semi-major axis of this elliptic orbit is defined to be half of the straight line segment that joins the perihelion and aphelion. The centre of the Sun lies on this straight line segment, but not at its midpoint; because ellipses are well-understood shapes, measuring the points of its extremes defined the exact shape mathematically, made possible calculations for the entire orbit as well as predictions based on observation. In addition, it mapped out the largest straight-line distance that Earth traverses over the course of a year, defining times and places for observing the largest parallax in nearby stars. Knowing Earth's shift and a star's shift enabled the star's distance to be calculated, but all measurements are subject to some degree of error or uncertainty, the uncertainties in the length of the astronomical unit only increased uncertainties in the stellar distances.

Improvements in precision have always been a key to improving astronomical understanding. Throughout the twentieth century, measurements became precise and sophisticated, more dependent on accurate observation of the effects described by Einstein's theory of relativity and upon the mathematical tools it used. Improving measurements were continually checked and cross-checked by means of improved understanding of the laws of celestial mechanics, which govern the motions of objects in space; the expected positions and distances of objects at an established time are calculated from these laws, assembled into a collection of data called an ephemeris. NASA's Jet Propulsion Laboratory HORIZONS System provides one of several ephemeris computation services. In 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition. Although directly based on the then-best available observational measurements, the definition was recast in terms of the then-best mathematical derivations from celestial mechanics and planetary ephemerides.

It stated that "the astronomical unit of length is that length for which the Gaussian gravitational constant takes the value 0.01720209895 when the units of measurement are the astronomical units of length and time". Equivalently, by this definition, one AU is "the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass, moving with an angular frequency of 0.01720209895 radians per day". Subsequent explorations of the Solar System by space probes made it possible to obtain precise measurements of the relative positions of the inner planets and other objects by means of radar and telemetry; as with all radar measurements, these rely on measuring the time taken for photons to be reflected from an object. Because all photons move at the speed of light in vacuum, a fundamental constant of the universe, the distance of an object from the probe is calculated as the product of the speed of light and the measured time. However, for precision the calculations require adjustment for things such as the motions of the probe and object while the photons are transiting.

In addition, the measurement of the time itself must be translated to a standard scale that accounts for relativistic time dilation. Comparison of the ephemeris positions with time measurements expressed in the TDB scale leads to a value for the speed of light in astronomical units per day. By 2009, the IAU had updated its standard measures to reflect improvements, calculated the speed of light at 173.1446326847 AU/d. In 1983, the International Committee for Weights and Measures modified the International System of Units to make the metre defined as the distance travelled in a vacuum by light in 1/299792458 second; this replaced the previous definition, valid between 1960 and 1983, that the metre equalled a certain number of wavelengths of a certain emission line of krypton-86. The speed of light could be expressed as c0 = 299792458 m/s, a standard adopted by the IERS numerical standards. From this definition and the 2009 IAU standard, the time for light to traverse an AU is found to be

Asteroid family

An asteroid family is a population of asteroids that share similar proper orbital elements, such as semimajor axis and orbital inclination. The members of the families are thought to be fragments of past asteroid collisions. An asteroid family is a more specific term than asteroid group whose members, while sharing some broad orbital characteristics, may be otherwise unrelated to each other. Large prominent families contain several hundred recognized asteroids. Small, compact families may have only about ten identified members. About 33% to 35% of asteroids in the main belt are family members. There are about 20 to 30 reliably recognized families, with several tens of less certain groupings. Most asteroid families are found in the main asteroid belt, although several family-like groups such as the Pallas family, Hungaria family, the Phocaea family lie at smaller semi-major axis or larger inclination than the main belt. One family has been identified associated with the dwarf planet Haumea; some studies have tried to find evidence of collisional families among the trojan asteroids, but at present the evidence is inconclusive.

The families are thought to form as a result of collisions between asteroids. In many or most cases the parent body was shattered, but there are several families which resulted from a large cratering event which did not disrupt the parent body; such cratering families consist of a single large body and a swarm of asteroids that are much smaller. Some families have complex internal structures which are not satisfactorily explained at the moment, but may be due to several collisions in the same region at different times. Due to the method of origin, all the members have matching compositions for most families. Notable exceptions are those families. Asteroid families are thought to have lifetimes of the order of a billion years, depending on various factors; this is shorter than the Solar System's age, so few if any are relics of the early Solar System. Decay of families occurs both because of slow dissipation of the orbits due to perturbations from Jupiter or other large bodies, because of collisions between asteroids which grind them down to small bodies.

Such small asteroids become subject to perturbations such as the Yarkovsky effect that can push them towards orbital resonances with Jupiter over time. Once there, they are rapidly ejected from the asteroid belt. Tentative age estimates have been obtained for some families, ranging from hundreds of millions of years to less than several million years as for the compact Karin family. Old families are thought to contain few small members, this is the basis of the age determinations, it is supposed that many old families have lost all the smaller and medium-sized members, leaving only a few of the largest intact. A suggested example of such old family remains are 113 Amalthea pair. Further evidence for a large number of past families comes from analysis of chemical ratios in iron meteorites; these show that there must have once been at least 50 to 100 parent bodies large enough to be differentiated, that have since been shattered to expose their cores and produce the actual meteorites. When the orbital elements of main belt asteroids are plotted, a number of distinct concentrations are seen against the rather uniform distribution of non-family background asteroids.

These concentrations are the asteroid families. Interlopers are asteroids classified as family members based on their so-called proper orbital elements but having spectroscopic properties distinct from the bulk of the family, suggesting that they, contrary to the true family members, did not originate from the same parent body that once fragmented upon a collisional impact. Speaking and their membership are identified by analysing the proper orbital elements rather than the current osculating orbital elements, which fluctuate on timescales of tens of thousands of years; the proper elements are related constants of motion that remain constant for times of at least tens of millions of years, longer. The Japanese astronomer Kiyotsugu Hirayama pioneered the estimation of proper elements for asteroids, first identified several of the most prominent families in 1918. In his honor, asteroid families are sometimes called Hirayama families; this applies to the five prominent groupings discovered by him.

Present day computer-assisted searches have identified more than a hundred asteroid families. The most prominent algorithms have been the hierarchical clustering method, which looks for groupings with small nearest-neighbour distances in orbital element space, wavelet analysis, which builds a density-of-asteroids map in orbital element space, looks for density peaks; the boundaries of the families are somewhat vague because at the edges they blend into the background density of asteroids in the main belt. For this reason the number of members among discovered asteroids is only known and membership is uncertain for asteroids near the edges. Additionally, some interlopers from the heterogeneous background asteroid population are expected in the central regions of a family. Since the true family members caused by the collision are expected to have similar compositions, most such interlopers can in principle be recognised by spectral properties which do not matc

Orbital eccentricity

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit, greater than 1 is a hyperbola; the term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is used for the isolated two-body problem, but extensions exist for objects following a Klemperer rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit; the eccentricity of this Kepler orbit is a non-negative number. The eccentricity may take the following values: circular orbit: e = 0 elliptic orbit: 0 < e < 1 parabolic trajectory: e = 1 hyperbolic trajectory: e > 1 The eccentricity e is given by e = 1 + 2 E L 2 m red α 2 where E is the total orbital energy, L is the angular momentum, mred is the reduced mass, α the coefficient of the inverse-square law central force such as gravity or electrostatics in classical physics: F = α r 2 or in the case of a gravitational force: e = 1 + 2 ε h 2 μ 2 where ε is the specific orbital energy, μ the standard gravitational parameter based on the total mass, h the specific relative angular momentum.

For values of e from 0 to 1 the orbit's shape is an elongated ellipse. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola. Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, one must calculate the inverse sine to find the projection angle of 11.86 degrees. Next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity; the word "eccentricity" comes from Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros "out of the center", from ἐκ- ek-, "out of" + κέντρον kentron "center".

"Eccentric" first appeared in English in 1551, with the definition "a circle in which the earth, sun. Etc. deviates from its center". By five years in 1556, an adjectival form of the word had developed; the eccentricity of an orbit can be calculated from the orbital state vectors as the magnitude of the eccentricity vector: e = | e | where: e is the eccentricity vector. For elliptical orbits it can be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p = 1 − 2 r a r p + 1 where: ra is the radius at apoapsis. Rp is the radius at periapsis; the eccentricity of an elliptical orbit can be used to obtain the ratio of the periapsis to the apoapsis: r p r a = 1 − e 1 + e For Earth, orbital eccentricity ≈ 0.0167, apoapsis= aphelion and periapsis= perihelion relative to sun. For Earth's annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈ 1.034 relative to center point of path. The eccentricity of the Earth's orbit is about 0.0167.

Ve

Jupiter trojan

The Jupiter trojans called Trojan asteroids or Trojans, are a large group of asteroids that share the planet Jupiter's orbit around the Sun. Relative to Jupiter, each Trojan librates around one of Jupiter's two stable Lagrange points: L4, lying 60° ahead of the planet in its orbit, L5, 60° behind. Jupiter trojans are distributed in two elongated, curved regions around these Lagrangian points with an average semi-major axis of about 5.2 AU. The first Jupiter trojan discovered, 588 Achilles, was spotted in 1906 by German astronomer Max Wolf. A total of 7,040 Jupiter trojans have been found as of October 2018. By convention, they are each named from Greek mythology after a figure of the Trojan War, hence the name "Trojan"; the total number of Jupiter trojans larger than 1 km in diameter is believed to be about 1 million equal to the number of asteroids larger than 1 km in the asteroid belt. Like main-belt asteroids, Jupiter trojans form families. Jupiter trojans are dark bodies with featureless spectra.

No firm evidence of the presence of water, or any other specific compound on their surface has been obtained, but it is thought that they are coated in tholins, organic polymers formed by the Sun's radiation. The Jupiter trojans' densities vary from 0.8 to 2.5 g·cm−3. Jupiter trojans are thought to have been captured into their orbits during the early stages of the Solar System's formation or later, during the migration of giant planets; the term "Trojan Asteroid" refers to the asteroids co-orbital with Jupiter, but the general term "trojan" is sometimes more applied to other small Solar System bodies with similar relationships to larger bodies: for example, there are both Mars trojans and Neptune trojans, as well as a recently-discovered Earth trojan. The term "Trojan asteroid" is understood to mean the Jupiter trojans because the first Trojans were discovered near Jupiter's orbit and Jupiter has by far the most known Trojans. In 1772, Italian-born mathematician Joseph-Louis Lagrange, in studying the restricted three-body problem, predicted that a small body sharing an orbit with a planet but lying 60° ahead or behind it will be trapped near these points.

The trapped body will librate around the point of equilibrium in a tadpole or horseshoe orbit. These leading and trailing points are called the L5 Lagrange points; the first asteroids trapped in Lagrange points were observed more than a century after Lagrange's hypothesis. Those associated with Jupiter were the first to be discovered. E. E. Barnard made the first recorded observation of a trojan, 1999 RM11, in 1904, but neither he nor others appreciated its significance at the time. Barnard believed he had seen the discovered Saturnian satellite Phoebe, only two arc-minutes away in the sky at the time, or an asteroid; the object's identity was not understood until its orbit was calculated in 1999. The first accepted discovery of a trojan occurred in February 1906, when astronomer Max Wolf of Heidelberg-Königstuhl State Observatory discovered an asteroid at the L4 Lagrangian point of the Sun–Jupiter system named 588 Achilles. In 1906–1907 two more Jupiter trojans were found by fellow German astronomer August Kopff.

Hektor, like Achilles, belonged to the L4 swarm, whereas Patroclus was the first asteroid known to reside at the L5 Lagrangian point. By 1938, 11 Jupiter trojans had been detected; this number increased to 14 only in 1961. As instruments improved, the rate of discovery grew rapidly: by January 2000, a total of 257 had been discovered; as of October 2018 there are 4,601 known Jupiter trojans at L4 and 2,439 at L5. The custom of naming all asteroids in Jupiter's L4 and L5 points after famous heroes of the Trojan War was suggested by Johann Palisa of Vienna, the first to calculate their orbits. Asteroids in the leading orbit are named after Greek heroes, those at the trailing orbit are named after the heroes of Troy; the asteroids 617 Patroclus and 624 Hektor were named before the Greece/Troy rule was devised, resulting in a Greek spy in the Trojan node and a Trojan spy in the Greek node. Estimates of the total number of Jupiter trojans are based on deep surveys of limited areas of the sky; the L4 swarm is believed to hold between 160–240,000 asteroids with diameters larger than 2 km and about 600,000 with diameters larger than 1 km.

If the L5 swarm contains a comparable number of objects, there are more than 1 million Jupiter trojans 1 km in size or larger. For the objects brighter than absolute magnitude 9.0 the population is complete. These numbers are similar to that of comparable asteroids in the asteroid belt; the total mass of the Jupiter trojans is estimated at 0.0001 of the mass of Earth or one-fifth of the mass of the asteroid belt. Two more recent studies indicate that the above numbers may overestimate the number of Jupiter trojans by several-fold; this overestimate is caused by the assumption that all Jupiter trojans have a low albedo of about 0.04, whereas small bodies may have an average albedo as high as 0.12. According to the new estimates, the total number of Jupiter trojans with a diameter larger than 2 km is 6,300 ± 1,000 and 3,400 ± 500 in the L4 and L5 swarms, respectively; these numbers would be reduced by a factor of 2 if small Jupiter trojans are more reflective than large ones. The number of Jupiter trojans observed in the L4

Density

The density, or more the volumetric mass density, of a substance is its mass per unit volume. The symbol most used for density is ρ, although the Latin letter D can be used. Mathematically, density is defined as mass divided by volume: ρ = m V where ρ is the density, m is the mass, V is the volume. In some cases, density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more called specific weight. For a pure substance the density has the same numerical value as its mass concentration. Different materials have different densities, density may be relevant to buoyancy and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. To simplify comparisons of density across different systems of units, it is sometimes replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the density of the material to that of a standard material water.

Thus a relative density less than one means. The density of a material varies with pressure; this variation is small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object and thus increases its density. Increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a fluid results in convection of the heat from the bottom to the top, due to the decrease in the density of the heated fluid; this causes it to rise relative to more dense unheated material. The reciprocal of the density of a substance is called its specific volume, a term sometimes used in thermodynamics. Density is an intensive property in that increasing the amount of a substance does not increase its density. In a well-known but apocryphal tale, Archimedes was given the task of determining whether King Hiero's goldsmith was embezzling gold during the manufacture of a golden wreath dedicated to the gods and replacing it with another, cheaper alloy.

Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated and compared with the mass. Baffled, Archimedes is said to have taken an immersion bath and observed from the rise of the water upon entering that he could calculate the volume of the gold wreath through the displacement of the water. Upon this discovery, he leapt from his bath and ran naked through the streets shouting, "Eureka! Eureka!". As a result, the term "eureka" entered common parlance and is used today to indicate a moment of enlightenment; the story first appeared in written form in Vitruvius' books of architecture, two centuries after it took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time. From the equation for density, mass density has units of mass divided by volume; as there are many units of mass and volume covering many different magnitudes there are a large number of units for mass density in use.

The SI unit of kilogram per cubic metre and the cgs unit of gram per cubic centimetre are the most used units for density. One g/cm3 is equal to one thousand kg/m3. One cubic centimetre is equal to one millilitre. In industry, other larger or smaller units of mass and or volume are more practical and US customary units may be used. See below for a list of some of the most common units of density. A number of techniques as well as standards exist for the measurement of density of materials; such techniques include the use of a hydrometer, Hydrostatic balance, immersed body method, air comparison pycnometer, oscillating densitometer, as well as pour and tap. However, each individual method or technique measures different types of density, therefore it is necessary to have an understanding of the type of density being measured as well as the type of material in question; the density at all points of a homogeneous object equals its total mass divided by its total volume. The mass is measured with a scale or balance.

To determine the density of a liquid or a gas, a hydrometer, a dasymeter or a Coriolis flow meter may be used, respectively. Hydrostatic weighing uses the displacement of water due to a submerged object to determine the density of the object. If the body is not homogeneous its density varies between different regions of the object. In that case the density around any given location is determined by calculating the density of a small volume around that location. In the limit of an infinitesimal volume the density of an inhomogeneous object at a point becomes: ρ = d m / d V, where d V is an elementary volume at position r; the mass of the body t

Mass

Mass is both a property of a physical body and a measure of its resistance to acceleration when a net force is applied. The object's mass determines the strength of its gravitational attraction to other bodies; the basic SI unit of mass is the kilogram. In physics, mass is not the same as weight though mass is determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity, but it would still have the same mass; this is because weight is a force, while mass is the property that determines the strength of this force. There are several distinct phenomena. Although some theorists have speculated that some of these phenomena could be independent of each other, current experiments have found no difference in results regardless of how it is measured: Inertial mass measures an object's resistance to being accelerated by a force. Active gravitational mass measures the gravitational force exerted by an object.

Passive gravitational mass measures the gravitational force exerted on an object in a known gravitational field. The mass of an object determines its acceleration in the presence of an applied force; the inertia and the inertial mass describe the same properties of physical bodies at the qualitative and quantitative level by other words, the mass quantitatively describes the inertia. According to Newton's second law of motion, if a body of fixed mass m is subjected to a single force F, its acceleration a is given by F/m. A body's mass determines the degree to which it generates or is affected by a gravitational field. If a first body of mass mA is placed at a distance r from a second body of mass mB, each body is subject to an attractive force Fg = GmAmB/r2, where G = 6.67×10−11 N kg−2 m2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass. Repeated experiments since the 17th century have demonstrated that inertial and gravitational mass are identical.

The standard International System of Units unit of mass is the kilogram. The kilogram is 1000 grams, first defined in 1795 as one cubic decimeter of water at the melting point of ice. However, because precise measurement of a decimeter of water at the proper temperature and pressure was difficult, in 1889 the kilogram was redefined as the mass of the international prototype kilogram of cast iron, thus became independent of the meter and the properties of water. However, the mass of the international prototype and its identical national copies have been found to be drifting over time, it is expected that the re-definition of the kilogram and several other units will occur on May 20, 2019, following a final vote by the CGPM in November 2018. The new definition will use only invariant quantities of nature: the speed of light, the caesium hyperfine frequency, the Planck constant. Other units are accepted for use in SI: the tonne is equal to 1000 kg. the electronvolt is a unit of energy, but because of the mass–energy equivalence it can be converted to a unit of mass, is used like one.

In this context, the mass has units of eV/c2. The electronvolt and its multiples, such as the MeV, are used in particle physics; the atomic mass unit is 1/12 of the mass of a carbon-12 atom 1.66×10−27 kg. The atomic mass unit is convenient for expressing the masses of molecules. Outside the SI system, other units of mass include: the slug is an Imperial unit of mass; the pound is a unit of both mass and force, used in the United States. In scientific contexts where pound and pound need to be distinguished, SI units are used instead; the Planck mass is the maximum mass of point particles. It is used in particle physics; the solar mass is defined as the mass of the Sun. It is used in astronomy to compare large masses such as stars or galaxies; the mass of a small particle may be identified by its inverse Compton wavelength. The mass of a large star or black hole may be identified with its Schwarzschild radius. In physical science, one may distinguish conceptually between at least seven different aspects of mass, or seven physical notions that involve the concept of mass.

Every experiment to date has shown these seven values to be proportional, in some cases equal, this proportionality gives rise to the abstract concept of mass. There are a number of ways mass can be measured or operationally defined: Inertial mass is a measure of an object's resistance to acceleration when a force is applied, it is determined by applying a force to an object and measuring the acceleration that results from that force. An object with small inertial mass will accelerate more than an object with large inertial mass when acted upon by the same force. One says. Active gravitational mass is a measure of the strength of an object's gravitational flux. Gravitational field can be measured by allowing a small "test object" to fall and measuring its free-fall acceleration. For example, an object in free fall near the Moon is subject to a smaller gravitational field, hence

ArXiv

ArXiv is a repository of electronic preprints approved for posting after moderation, but not full peer review. It consists of scientific papers in the fields of mathematics, astronomy, electrical engineering, computer science, quantitative biology, mathematical finance and economics, which can be accessed online. In many fields of mathematics and physics all scientific papers are self-archived on the arXiv repository. Begun on August 14, 1991, arXiv.org passed the half-million-article milestone on October 3, 2008, had hit a million by the end of 2014. By October 2016 the submission rate had grown to more than 10,000 per month. ArXiv was made possible by the compact TeX file format, which allowed scientific papers to be transmitted over the Internet and rendered client-side. Around 1990, Joanne Cohn began emailing physics preprints to colleagues as TeX files, but the number of papers being sent soon filled mailboxes to capacity. Paul Ginsparg recognized the need for central storage, in August 1991 he created a central repository mailbox stored at the Los Alamos National Laboratory which could be accessed from any computer.

Additional modes of access were soon added: FTP in 1991, Gopher in 1992, the World Wide Web in 1993. The term e-print was adopted to describe the articles, it began as a physics archive, called the LANL preprint archive, but soon expanded to include astronomy, computer science, quantitative biology and, most statistics. Its original domain name was xxx.lanl.gov. Due to LANL's lack of interest in the expanding technology, in 2001 Ginsparg changed institutions to Cornell University and changed the name of the repository to arXiv.org. It is now hosted principally with eight mirrors around the world, its existence was one of the precipitating factors that led to the current movement in scientific publishing known as open access. Mathematicians and scientists upload their papers to arXiv.org for worldwide access and sometimes for reviews before they are published in peer-reviewed journals. Ginsparg was awarded a MacArthur Fellowship in 2002 for his establishment of arXiv; the annual budget for arXiv is $826,000 for 2013 to 2017, funded jointly by Cornell University Library, the Simons Foundation and annual fee income from member institutions.

This model arose in 2010, when Cornell sought to broaden the financial funding of the project by asking institutions to make annual voluntary contributions based on the amount of download usage by each institution. Each member institution pledges a five-year funding commitment to support arXiv. Based on institutional usage ranking, the annual fees are set in four tiers from $1,000 to $4,400. Cornell's goal is to raise at least $504,000 per year through membership fees generated by 220 institutions. In September 2011, Cornell University Library took overall administrative and financial responsibility for arXiv's operation and development. Ginsparg was quoted in the Chronicle of Higher Education as saying it "was supposed to be a three-hour tour, not a life sentence". However, Ginsparg remains on the arXiv Scientific Advisory Board and on the arXiv Physics Advisory Committee. Although arXiv is not peer reviewed, a collection of moderators for each area review the submissions; the lists of moderators for many sections of arXiv are publicly available, but moderators for most of the physics sections remain unlisted.

Additionally, an "endorsement" system was introduced in 2004 as part of an effort to ensure content is relevant and of interest to current research in the specified disciplines. Under the system, for categories that use it, an author must be endorsed by an established arXiv author before being allowed to submit papers to those categories. Endorsers are not asked to review the paper for errors, but to check whether the paper is appropriate for the intended subject area. New authors from recognized academic institutions receive automatic endorsement, which in practice means that they do not need to deal with the endorsement system at all. However, the endorsement system has attracted criticism for restricting scientific inquiry. A majority of the e-prints are submitted to journals for publication, but some work, including some influential papers, remain purely as e-prints and are never published in a peer-reviewed journal. A well-known example of the latter is an outline of a proof of Thurston's geometrization conjecture, including the Poincaré conjecture as a particular case, uploaded by Grigori Perelman in November 2002.

Perelman appears content to forgo the traditional peer-reviewed journal process, stating: "If anybody is interested in my way of solving the problem, it's all there – let them go and read about it". Despite this non-traditional method of publication, other mathematicians recognized this work by offering the Fields Medal and Clay Mathematics Millennium Prizes to Perelman, both of which he refused. Papers can be submitted in any of several formats, including LaTeX, PDF printed from a word processor other than TeX or LaTeX; the submission is rejected by the arXiv software if generating the final PDF file fails, if any image file is too large, or if the total size of the submission is too large. ArXiv now allows one to store and modify an incomplete submission, only finalize the submission when ready; the time stamp on the article is set. The standard access route is through one of several mirrors. Sev