1.
Integer
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain
2.
Negative number
–
In mathematics, a negative number is a real number that is less than zero. If positive represents movement to the right, negative represents movement to the left, if positive represents above sea level, then negative represents below level. If positive represents a deposit, negative represents a withdrawal and they are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset, if a quantity may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. In the medical context of fighting a tumor, an expansion could be thought of as a negative shrinkage, negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common idea of an opposite is reflected in arithmetic. For example, − −3 =3 because the opposite of an opposite is the original thing, negative numbers are usually written with a minus sign in front. For example, −3 represents a quantity with a magnitude of three, and is pronounced minus three or negative three. To help tell the difference between a subtraction operation and a number, occasionally the negative sign is placed slightly higher than the minus sign. Conversely, a number that is greater than zero is called positive, the positivity of a number may be emphasized by placing a plus sign before it, e. g. +3. In general, the negativity or positivity of a number is referred to as its sign, every real number other than zero is either positive or negative. The positive whole numbers are referred to as natural numbers, while the positive and negative numbers are referred to as integers. In bookkeeping, amounts owed are often represented by red numbers, or a number in parentheses, Liu Hui established rules for adding and subtracting negative numbers. By the 7th century, Indian mathematicians such as Brahmagupta were describing the use of negative numbers, islamic mathematicians further developed the rules of subtracting and multiplying negative numbers and solved problems with negative coefficients. Western mathematicians accepted the idea of numbers by the 17th century. Prior to the concept of numbers, mathematicians such as Diophantus considered negative solutions to problems false. Negative numbers can be thought of as resulting from the subtraction of a number from a smaller. For example, negative three is the result of subtracting three from zero,0 −3 = −3, in general, the subtraction of a larger number from a smaller yields a negative result, with the magnitude of the result being the difference between the two numbers
3.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number
4.
Factorization
–
In mathematics, factorization or factoring is the decomposition of an object into a product of other objects, or factors, which when multiplied together give the original. For example, the number 15 factors into primes as 3 ×5, in all cases, a product of simpler objects is obtained. The aim of factoring is usually to reduce something to “basic building blocks”, such as numbers to prime numbers, factoring integers is covered by the fundamental theorem of arithmetic and factoring polynomials by the fundamental theorem of algebra. Viètes formulas relate the coefficients of a polynomial to its roots, the opposite of polynomial factorization is expansion, the multiplying together of polynomial factors to an “expanded” polynomial, written as just a sum of terms. Integer factorization for large integers appears to be a difficult problem, there is no known method to carry it out quickly. Its complexity is the basis of the security of some public key cryptography algorithms. A matrix can also be factorized into a product of matrices of special types, One major example of this uses an orthogonal or unitary matrix, and a triangular matrix. There are different types, QR decomposition, LQ, QL, RQ and this situation is generalized by factorization systems. By the fundamental theorem of arithmetic, every integer greater than 1 has a unique prime factorization. Given an algorithm for integer factorization, one can factor any integer down to its constituent primes by repeated application of this algorithm, for very large numbers, no efficient classical algorithm is known. Modern techniques for factoring polynomials are fast and efficient, but use sophisticated mathematical ideas and these techniques are used in the construction of computer routines for carrying out polynomial factorization in Computer algebra systems. This article is concerned with classical techniques. While the general notion of factoring just means writing an expression as a product of simpler expressions, when factoring polynomials this means that the factors are to be polynomials of smaller degree. Thus, while x 2 − y = is a factorization of the expression, another issue concerns the coefficients of the factors. It is not always possible to do this, and a polynomial that can not be factored in this way is said to be irreducible over this type of coefficient, thus, x2 -2 is irreducible over the integers and x2 +4 is irreducible over the reals. In the first example, the integers 1 and -2 can also be thought of as real numbers, and if they are, then x 2 −2 = shows that this polynomial factors over the reals. Similarly, since the integers 1 and 4 can be thought of as real and hence complex numbers, x2 +4 splits over the complex numbers, i. e. x 2 +4 =. The fundamental theorem of algebra can be stated as, Every polynomial of n with complex number coefficients splits completely into n linear factors
5.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made
6.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
7.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
8.
Ternary numeral system
–
The ternary numeral system has three as its base. Analogous to a bit, a digit is a trit. One trit is equivalent to bits of information. Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary, for example, decimal 365 corresponds to binary 101101101 and to ternary 111112. However, they are far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary. The value of a number with n bits that are all 1 is 2n −1. Then N = M, N = /, and N = bd −1, for a three-digit ternary number, N =33 −1 =26 =2 ×32 +2 ×31 +2 ×30 =18 +6 +2. Nonary or septemvigesimal can be used for representation of ternary. A base-three system is used in Islam to keep track of counting Tasbih to 99 or to 100 on a hand for counting prayers. In certain analog logic, the state of the circuit is often expressed ternary and this is most commonly seen in Transistor–transistor logic using 7406 open collector logic. The output is said to either be low, high, or open, in this configuration the output of the circuit is actually not connected to any voltage reference at all. Where the signal is usually grounded to a reference, or at a certain voltage level. Thus, the voltage level is sometimes unpredictable. A rare ternary point is used to denote fractional parts of an inning in baseball, since each inning consists of three outs, each out is considered one third of an inning and is denoted as.1. For example, if a player pitched all of the 4th, 5th and 6th innings, plus 2 outs of the 7th inning, his Innings pitched column for that game would be listed as 3.2, meaning 3⅔. In this usage, only the part of the number is written in ternary form. Ternary numbers can be used to convey self-similar structures like the Sierpinski triangle or the Cantor set conveniently, additionally, it turns out that the ternary representation is useful for defining the Cantor set and related point sets, because of the way the Cantor set is constructed. The Cantor set consists of the points from 0 to 1 that have an expression that does not contain any instance of the digit 1
9.
Quaternary numeral system
–
Quaternary is the base-4 numeral system. It uses the digits 0,1,2 and 3 to represent any real number. Four is the largest number within the range and one of two numbers that is both a square and a highly composite number, making quaternary a convenient choice for a base at this scale. Despite being twice as large, its economy is equal to that of binary. However, it no better in the localization of prime numbers. See decimal and binary for a discussion of these properties, as with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix 4,8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit with 2,3 or 4 binary digits, for example, in base 4,302104 =11001001002. Although octal and hexadecimal are widely used in computing and computer programming in the discussion and analysis of binary arithmetic and logic, by analogy with byte and nybble, a quaternary digit is sometimes called a crumb. There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca, the Kharosthi numerals have a partial base 4 counting system from 1 to decimal 10. Quaternary numbers are used in the representation of 2D Hilbert curves, here a real number between 0 and 1 is converted into the quaternary system. Every single digit now indicates in which of the respective 4 sub-quadrants the number will be projected, parallels can be drawn between quaternary numerals and the way genetic code is represented by DNA. The four DNA nucleotides in order, abbreviated A, C, G and T, can be taken to represent the quaternary digits in numerical order 0,1,2. With this encoding, the complementary digit pairs 0↔3, and 1↔2 match the complementation of the pairs, A↔T and C↔G. For example, the nucleotide sequence GATTACA can be represented by the quaternary number 2033010, quaternary line codes have been used for transmission, from the invention of the telegraph to the 2B1Q code used in modern ISDN circuits
10.
Quinary
–
Quinary is a numeral system with five as the base. A possible origination of a system is that there are five fingers on either hand. The base five is stated from 0–4, in the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, today, the main usage of base 5 is as a biquinary system, which is decimal using five as a sub-base. Another example of a system, is sexagesimal, base 60. Each quinary digit has log25 bits of information, many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño and Saraveca. Gumatj is a true 5–25 language, in which 25 is the group of 5. The Gumatj numerals are shown below, In the video game Riven and subsequent games of the Myst franchise, a decimal system with 2 and 5 as a sub-bases is called biquinary, and is found in Wolof and Khmer. Roman numerals are a biquinary system, the numbers 1,5,10, and 50 are written as I, V, X, and L respectively. Eight is VIII and seventy is LXX, most versions of the abacus use a biquinary system to simulate a decimal system for ease of calculation. Urnfield culture numerals and some tally mark systems are also biquinary, units of currencies are commonly partially or wholly biquinary. A vigesimal system with 4 and 5 as a sub-bases is found in Nahuatl, pentimal system Quibinary Yan Tan Tethera References, Quinary Base Conversion, includes fractional part, from Math Is Fun Media related to Quinary numeral system at Wikimedia Commons
11.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
12.
Octal
–
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping binary digits into groups of three. For example, the representation for decimal 74 is 1001010. Two zeroes can be added at the left,1001010, corresponding the octal digits 112, in the decimal system each decimal place is a power of ten. For example,7410 =7 ×101 +4 ×100 In the octal system each place is a power of eight. The Yuki language in California and the Pamean languages in Mexico have octal systems because the speakers count using the spaces between their fingers rather than the fingers themselves and it has been suggested that the reconstructed Proto-Indo-European word for nine might be related to the PIE word for new. Based on this, some have speculated that proto-Indo-Europeans used a number system. In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number based on 64 instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base would be too difficult, in 1718 Swedenborg wrote a manuscript, En ny rekenkonst som om vexlas wid Thalet 8 i stelle then wanliga wid Thalet 10. The numbers 1-7 are there denoted by the l, s, n, m, t, f, u. Thus 8 = lo,16 = so,24 = no,64 = loo,512 = looo etc, numbers with consecutive consonants are pronounced with vowel sounds between in accordance with a special rule. Writing under the pseudonym Hirossa Ap-Iccim in The Gentlemans Magazine, July 1745, Hugh Jones proposed a system for British coins, weights. In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic and he suggested base 8 for which he coined the term octal. In the mid 19th century, Alfred B. Taylor concluded that Our octonary radix is, therefore, so, for example, the number 65 would be spoken in octonary as under-un. Taylor also republished some of Swedenborgs work on octonary as an appendix to the above-cited publications, in the 2009 film Avatar, the language of the extraterrestrial Navi race employs an octal numeral system, probably due to the fact that they have four fingers on each hand. In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, in the tabletop game series Warhammer 40,000, the Tau race use an octal number system. Octal became widely used in computing systems such as the PDP-8, ICL1900. Octal was an abbreviation of binary for these machines because their word size is divisible by three
13.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer
14.
Hexadecimal
–
In mathematics and computing, hexadecimal is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits, it allows a more human-friendly representation of binary-coded values, one hexadecimal digit represents a nibble, which is half of an octet or byte. For example, a byte can have values ranging from 00000000 to 11111111 in binary form. In a non-programming context, a subscript is typically used to give the radix, several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix 0x is used in C and related languages, where this value might be denoted as 0x2AF3, in contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously, a numerical subscript can give the base explicitly,15910 is decimal 159,15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h. example. com/name%20with%20spaces where %20 is the space character, thus ’, represents the right single quotation mark, Unicode code point number 2019 in hex,8217. In the Unicode standard, a value is represented with U+ followed by the hex value. Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits prefixed with #, white, CSS allows 3-hexdigit abbreviations with one hexdigit per component, #FA3 abbreviates #FFAA33. *nix shells, AT&T assembly language and likewise the C programming language, to output an integer as hexadecimal with the printf function family, the format conversion code %X or %x is used. In Intel-derived assembly languages and Modula-2, hexadecimal is denoted with a suffixed H or h, some assembly languages use the notation HABCD. Ada and VHDL enclose hexadecimal numerals in based numeric quotes, 16#5A3#, for bit vector constants VHDL uses the notation x5A3. Verilog represents hexadecimal constants in the form 8hFF, where 8 is the number of bits in the value, the Smalltalk language uses the prefix 16r, 16r5A3 PostScript and the Bourne shell and its derivatives denote hex with prefix 16#, 16#5A3. For PostScript, binary data can be expressed as unprefixed consecutive hexadecimal pairs, in early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the Sad Mac to tell the user what went wrong. Common Lisp uses the prefixes #x and #16r, setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, MSX BASIC, QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H, &H5A3 BBC BASIC and Locomotive BASIC use & for hex. TI-89 and 92 series uses a 0h prefix, 0h5A3 ALGOL68 uses the prefix 16r to denote hexadecimal numbers, binary, quaternary and octal numbers can be specified similarly
15.
Vigesimal
–
The vigesimal or base 20 numeral system is based on twenty. In a vigesimal system, twenty individual numerals are used. One modern method of finding the extra needed symbols is to write ten as the letter A20, to write nineteen as J20, and this is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters A–F. Another method skips over the letter I, in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, the number twenty is written as 1020. According to this notation,2020 means forty in decimal = + D020 means two hundred and sixty in decimal = +10020 means four hundred in decimal = + +, in the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example,10 means ten,20 means twenty, in decimal, dividing by three twice only gives one digit periods because 9 is the number below ten. 21, however, the adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods, the prime factorization of twenty is 22 ×5, so it is not a perfect power. However, its part,5, is congruent to 1. Thus, according to Artins conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37. 395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a set of bases found that, of the first 15,456 primes. In many European languages,20 is used as a base, vigesimal systems are common in Africa, for example in Yoruba. Ogún,20, is the basic numeric block, ogójì,40, =20 multiplied by 2. Ogota,60, =20 multiplied by 3, ogorin,80, =20 multiplied by 4. Ogorun,100, =20 multiplied by 5, twenty was a base in the Maya and Aztec number systems. The Maya used the names for the powers of twenty, kal, bak, pic, calab, kinchil. See also Maya numerals and Maya calendar, Mayan languages, Yucatec, the Aztec called them, cempoalli, centzontli, cenxiquipilli, cempoalxiquipilli, centzonxiquipilli and cempoaltzonxiquipilli. Note that the ce prefix at the beginning means one and is replaced with the number to get the names of other multiples of the power
16.
Base 36
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
17.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
18.
Greater Richmond Region
–
The Greater Richmond Region, also known as Richmond-Petersburg and the Richmond metropolitan area, is a region and metropolitan area in the U. S. state of Virginia, centered on Richmond. The U. S. Office of Management and Budget defines the area as the Richmond, VA Metropolitan Statistical Area, the OMB defines the area as comprising thirteen counties, including the principal cities of Richmond, Petersburg, Hopewell, and Colonial Heights. As of 2016, it had a population of 1,263,617, the Greater Richmond Region is located in the central part of Virginia. It straddles the line, where the coastal plain and the Piedmont come together on the James River at Richmond. The English established each as colonial ports in the 17th century, since a state constitutional change in 1871, all cities in Virginia are independent cities and they are not legally located in any county. The OMB considers these independent cities to be county-equivalents for the purpose of defining MSAs in Virginia, each MSA is listed by its counties, then cities, each in alphabetical order, and not by size. The following counties are included in the Richmond MSA, Town of Ashland Town of Bowling Green The Richmond-Petersburg metropolitan area includes many unincorporated towns, note, This is only a partial listing. The Richmond Metropolitan Statistical Area which includes 3 other cities, the Richmond Region is growing at a fast rate, one of the fastest growing metro areas in the country, adding nearly 400,000 residents in the past decade or so. This has resulted in suburban sprawl, particularly in Henrico and Chesterfield. This also resulted in boosts in its economy, the building of malls, more national attention, and major sporting events and concerts coming to Richmond. The population has seen its ups and downs, with the city of Richmond itself dropping a bit below 200,000, the region is located approximately equidistant from Northern Virginia, Hampton Roads, and Lynchburg. The area is home to the center of gravity of population—which. The Median age for the MSA was 36.7 years, one percent reported two or more races. Three percent of the people in the Richmond/Petersburg MSA were Hispanic, sixty-three percent of the people in the Richmond/Petersburg MSA were White non-Hispanic. People of Hispanic origin may be of any race, the median house income for the MSA was $59,468. The median family income was $65,289, the Per Capita income was $27,887. In 2004, seven percent of people were in poverty, poverty status is determined by the U. S. Census Bureau and is based on family composition, size, and income level. In the Richmond/Petersburg MSA nine percent of children under age 18 were below the poverty line, five percent of all families and 15 percent of families with a female householder and no husband present had incomes below the poverty level
19.
Area code 804
–
North American telephone area code 804 serves the east-central portion of commonwealth of Virginia. The area code is anchored by Virginias capital, Richmond, other communities using 804 include Chesterfield, Henrico, Hopewell, Mechanicsville, Powhatan, Midlothian, Petersburg, and Colonial Heights. The 804 code also includes the Northern Neck and the Middle Peninsula, Area code 804 was split from Virginias original area code, area code 703, on Sunday, June 24,1973, with an official permissive dialing period ending January 1,1974. Originally, it stretched across the eastern two-thirds of the state, despite the rapid growth of the Richmond-Petersburg and Hampton Roads areas, this configuration remained in place for 23 years. On July 1,1996, the Eastern Shore and most of Hampton Roads became area code 757, as a result,804 was split again on June 1,2001, when most of the western portion became area code 434. Area code 804 is known among area code aficionados as the one created during what is considered the most stable time of NANPAs existence. List of Virginia area codes List of NANP area codes North American Numbering Plan NANPA Area Code Map of Virginia List of exchanges from AreaCodeDownload. com,804 Area Code
20.
Sphenic number
–
In number theory, a sphenic number is a positive integer that is the product of three distinct prime numbers. A sphenic number is a product pqr where p, q and this definition is more stringent than simply requiring the integer to have exactly three prime factors. For instance,60 =22 ×3 ×5 has exactly 3 prime factors, the smallest sphenic number is 30 =2 ×3 ×5, the product of the smallest three primes. The first few numbers are 30,42,66,70,78,102,105,110,114,130,138,154,165. As of January 2016 the largest known number is × ×. It is the product of the three largest known primes, all sphenic numbers have exactly eight divisors. If we express the number as n = p ⋅ q ⋅ r, where p, q. For example,24 is not a number, but it has exactly eight divisors. All sphenic numbers are by definition squarefree, because the factors must be distinct. The Möbius function of any number is −1. The cyclotomic polynomials Φ n, taken over all sphenic numbers n, the first case of two consecutive sphenic integers is 230 = 2×5×23 and 231 = 3×7×11. The first case of three is 1309 = 7×11×17,1310 = 2×5×131, and 1311 = 3×19×23, there is no case of more than three, because every fourth consecutive positive integer is divisible by 4 = 2×2 and therefore not squarefree. The numbers 2013,2014, and 2015 are all sphenic, the next three consecutive sphenic years will be 2665,2666 and 2667. Semiprimes, products of two prime numbers
21.
Eisenstein prime
–
In mathematics, an Eisenstein prime is an Eisenstein integer z = a + b ω that is irreducible in the ring-theoretic sense, its only Eisenstein divisors are the units, a + bω itself and its associates. The associates and the conjugate of any Eisenstein prime are also prime. It follows that the absolute value squared of every Eisenstein prime is a prime or the square of a natural prime. The first few Eisenstein primes that equal a natural prime 3n −1 are,2,5,11,17,23,29,41,47,53,59,71,83,89,101. Natural primes that are congruent to 0 or 1 modulo 3 are not Eisenstein primes, some non-real Eisenstein primes are 2 + ω,3 + ω,4 + ω,5 + 2ω,6 + ω,7 + ω,7 + 3ω. Up to conjugacy and unit multiples, the primes listed above, as of March 2017, the largest known Eisenstein prime is the seventh largest known prime 10223 ×231172165 +1, discovered by Péter Szabolcs and PrimeGrid. All larger known primes are Mersenne primes, discovered by GIMPS, real Eisenstein primes are congruent to 2 mod 3, and Mersenne primes are congruent to 1 mod 3, thus no Mersenne prime is an Eisenstein prime
22.
Mertens function
–
In number theory, the Mertens function is defined for all positive integers n as M = ∑ k =1 n μ where μ is the Möbius function. The function is named in honour of Franz Mertens and this definition can be extended to positive real numbers as follows, M = M. Less formally, M is the count of square-free integers up to x that have a number of prime factors. Because the Möbius function only takes the values −1,0, and +1, the Mertens conjecture went further, stating that there would be no x where the absolute value of the Mertens function exceeds the square root of x. The Mertens conjecture was proven false in 1985 by Andrew Odlyzko, however, the Riemann hypothesis is equivalent to a weaker conjecture on the growth of M, namely M = O. Since high values for M grow at least as fast as the root of x. Here, O refers to Big O notation, the true rate of growth of M is not known. An unpublished conjecture of Steve Gonek states that 0 < lim sup x → ∞ | M | x 5 /4 < ∞, probabilistic evidence towards this conjecture is given by Nathan Ng. Using the Euler product one finds that 1 ζ = ∏ p = ∑ n =1 ∞ μ n s where ζ is the Riemann zeta function and the product is taken over primes. Then, using this Dirichlet series with Perrons formula, one obtains,12 π i ∫ c − i ∞ c + i ∞ x s s ζ d s = M where c >1. Conversely, one has the Mellin transform 1 ζ = s ∫1 ∞ M x s +1 d x which holds for R e >1. A curious relation given by Mertens himself involving the second Chebyshev function is ψ = M log + M log + M log + ⋯. Assuming that there are not multiple non-trivial roots of ζ we have the formula by the residue theorem. Weyl conjectured that the Mertens function satisfied the approximate functional-differential equation y 2 − ∑ r =1 N B2 r. Another formula for the Mertens function is M = ∑ a ∈ F n e 2 π i a where F n is the Farey sequence of order n and this formula is used in the proof of the Franel–Landau theorem. M is the determinant of the n × n Redheffer matrix, using sieve methods similar to those used in prime counting, the Mertens function has been computed for all integers up to an increasing range of x. The Mertens function for all values up to x may be computed in O time. Combinatorial based algorithms can compute isolated values of M in O time, see A084237 for values of M at powers of 10
23.
Pronic number
–
A pronic number is a number which is the product of two consecutive integers, that is, a number of the form n. The study of these dates back to Aristotle. They are also called oblong numbers, heteromecic numbers, or rectangular numbers, however, the rectangular number name has also been applied to the composite numbers. The first few numbers are,0,2,6,12,20,30,42,56,72,90,110,132,156,182,210,240,272,306,342,380,420,462 …. The nth pronic number is also the difference between the odd square 2 and the st centered hexagonal number. The sum of the reciprocals of the numbers is a telescoping series that sums to 1,1 =12 +16 +112 ⋯ = ∑ i =1 ∞1 i. The partial sum of the first n terms in this series is ∑ i =1 n 1 i = n n +1, the nth pronic number is the sum of the first n even integers. It follows that all numbers are even, and that 2 is the only prime pronic number. It is also the only number in the Fibonacci sequence. The number of entries in a square matrix is always a pronic number. The fact that consecutive integers are coprime and that a number is the product of two consecutive integers leads to a number of properties. Each distinct prime factor of a number is present in only one of the factors n or n+1. Thus a pronic number is squarefree if and only if n and n +1 are also squarefree, the number of distinct prime factors of a pronic number is the sum of the number of distinct prime factors of n and n +1. If 25 is appended to the representation of any pronic number. This is because 2 =100 n 2 +100 n +25 =100 n +25
24.
Padovan sequence
–
The Padovan sequence is the sequence of integers P defined by the initial values P = P = P =1, and the recurrence relation P = P + P. The first few values of P are 1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114,151,200,265. The Padovan sequence is named after Richard Padovan who attributed its discovery to Dutch architect Hans van der Laan in his 1994 essay Dom, Hans van der Laan, Modern Primitive. The sequence was described by Ian Stewart in his Scientific American column Mathematical Recreations in June 1996 and he also writes about it in one of his books, Math Hysteria, Fun Games With Mathematics. The above definition is the one given by Ian Stewart and by MathWorld, other sources may start the sequence at a different place, in which case some of the identities in this article must be adjusted with appropriate offsets. This is a property of recurrence relations, the Perrin sequence can be obtained from the Padovan sequence by the following formula, P e r r i n = P + P. e. The Padovan sequence also satisfies the identity P2 − P P = P. The Padovan sequence is related to sums of binomial coefficients by the following identity, P = ∑2 m + n = k = ∑ m = ⌈ k /3 ⌉ ⌊ k /2 ⌋. For example, for k =12, the values for the pair with 2m + n =12 which give non-zero binomial coefficients are, and, and, + + =1 +10 +1 =12 = P. The Padovan sequence numbers can be written in terms of powers of the roots of the equation x 3 − x −1 =0 and this equation has 3 roots, one real root p and two complex conjugate roots q and r. Given these three roots, the Padovan sequence can be expressed by a formula involving p, q and r, P = a p n + b q n + c r n where a, b and c are constants. Since the magnitudes of the complex roots q and r are both less than 1, the powers of these roots approach 0 for large n, and P − a p n tends to zero. For all n ≥0, P is the integer closest to p n −1 s, the ratio of successive terms in the Padovan sequence approaches p, which has a value of approximately 1.324718. This constant bears the same relationship to the Padovan sequence and the Perrin sequence as the ratio does to the Fibonacci sequence. P is the number of ways of writing n +2 as a sum in which each term is either 2 or 3. This can be used to prove identities involving products of the Padovan sequence with geometric terms, such as, ∑ n =0 ∞ P α n = α2 α3 − α −1. A Padovan prime is P that is prime, the first few Padovan primes are 2,3,5,7,37,151,3329,23833. Also, if you count the number of As, Bs and Cs in each string, then for the nth string, you have P As, P Bs, the count of BB pairs, AA pairs and CC pairs are also Padovan numbers
25.
Centered hexagonal number
–
The nth centered hexagonal number is given by the formula n 3 −3 =3 n +1. Expressing the formula as 1 +6 shows that the centered hexagonal number for n is 1 more than 6 times the th triangular number. The first few centered hexagonal numbers are,1,7,19,37,61,91,127,169,217,271,331,397,469,547,631,721,817,919. In base 10 one can notice that the hexagonal numbers rightmost digits follow the pattern 1–7–9–7–1, the sum of the first n centered hexagonal numbers is n3. That is, centered hexagonal pyramidal numbers and cubes are the same numbers, viewed from the opposite perspective, centered hexagonal numbers are differences of two consecutive cubes, so that the centered hexagonal numbers are the gnomon of the cubes. In particular, prime centered hexagonal numbers are cuban primes, the difference between 2 and the nth centered hexagonal number is a number of the form 3n2 + 3n −1, while the difference between 2 and the nth centered hexagonal number is a pronic number. Hexagonal number Magic hexagon Star number
26.
Square pyramidal number
–
In mathematics, a pyramid number, or square pyramidal number, is a figurate number that represents the number of stacked spheres in a pyramid with a square base. Square pyramidal numbers also solve the problem of counting the number of squares in an n × n grid. The first few square pyramidal numbers are,1,5,14,30,55,91,140,204,285,385,506,650,819 and this is a special case of Faulhabers formula, and may be proved by a mathematical induction. An equivalent formula is given in Fibonaccis Liber Abaci, in modern mathematics, figurate numbers are formalized by the Ehrhart polynomials. The Ehrhart polynomial L of a polyhedron P is a polynomial that counts the number of points in a copy of P that is expanded by multiplying all its coordinates by the number t. The Ehrhart polynomial of a pyramid base is a unit square with integer coordinates. The square pyramidal numbers can also be expressed as sums of binomial coefficients, the smaller tetrahedral number represents 1 +3 +6 + ⋯ + T and the larger 1 +3 +6 + ⋯ + T. Offsetting the larger and adding, we arrive at 1,1 +3,3 +6 …, Square pyramidal numbers are also related to tetrahedral numbers in a different way, P n =14. The sum of two square pyramidal numbers is an octahedral number. Augmenting a pyramid whose base edge has n balls by adding to one of its faces a tetrahedron whose base edge has n −1 balls produces a triangular prism. Equivalently, a pyramid can be expressed as the result of subtracting a tetrahedron from a prism and this geometric dissection leads to another relation, P n = n −. Besides 1, there is one other number that is both a square and a pyramid number,4900, which is both the 70th square number and the 24th square pyramidal number. This fact was proven by G. N. Watson in 1918, in the same way that the square pyramidal numbers can be defined as a sum of consecutive squares, the squared triangular numbers can be defined as a sum of consecutive cubes. Also, P n = − which is the difference of two pentatope numbers and this can be seen by expanding, n − n = n = n and dividing through by 24. A common mathematical puzzle involves finding the number of squares in a n by n square grid. This number can be derived as follows, The number of 1 ×1 boxes found in the grid is n2, the number of 2 ×2 boxes found in the grid is 2. These can be counted by counting all of the possible upper-left corners of 2 ×2 boxes, the number of k × k boxes found in the grid is 2. These can be counted by counting all of the possible upper-left corners of k × k boxes and it follows that the number of squares in an n × n square grid is, n 2 +2 +2 +2 + … +12 = n 6
27.
Triangular number
–
A triangular number or triangle number counts the objects that can form an equilateral triangle, as in the diagram on the right. The nth triangular number is the number of dots composing a triangle with n dots on a side and it represents the number of distinct pairs that can be selected from n +1 objects, and it is read aloud as n plus one choose two. Carl Friedrich Gauss is said to have found this relationship in his early youth, however, regardless of the truth of this story, Gauss was not the first to discover this formula, and some find it likely that its origin goes back to the Pythagoreans 5th century BC. The two formulae were described by the Irish monk Dicuil in about 816 in his Computus, the triangular number Tn solves the handshake problem of counting the number of handshakes if each person in a room with n +1 people shakes hands once with each person. In other words, the solution to the problem of n people is Tn−1. The function T is the analog of the factorial function. In the limit, the ratio between the two numbers, dots and line segments is lim n → ∞ T n L n =13, Triangular numbers have a wide variety of relations to other figurate numbers. Most simply, the sum of two triangular numbers is a square number, with the sum being the square of the difference between the two. Algebraically, T n + T n −1 = + = + = n 2 =2, alternatively, the same fact can be demonstrated graphically, There are infinitely many triangular numbers that are also square numbers, e. g.1,36,1225. Some of them can be generated by a recursive formula. All square triangular numbers are found from the recursion S n =34 S n −1 − S n −2 +2 with S0 =0 and S1 =1. Also, the square of the nth triangular number is the same as the sum of the cubes of the integers 1 to n and this can also be expressed as ∑ k =1 n k 3 =2. The sum of the all triangular numbers up to the nth triangular number is the nth tetrahedral number, more generally, the difference between the nth m-gonal number and the nth -gonal number is the th triangular number. For example, the sixth heptagonal number minus the sixth hexagonal number equals the triangular number,15. Every other triangular number is a hexagonal number, knowing the triangular numbers, one can reckon any centered polygonal number, the nth centered k-gonal number is obtained by the formula C k n = k T n −1 +1 where T is a triangular number. The positive difference of two numbers is a trapezoidal number. Triangular numbers correspond to the case of Faulhabers formula. Alternating triangular numbers are also hexagonal numbers, every even perfect number is triangular, given by the formula M p 2 p −1 = M p 2 = T M p where Mp is a Mersenne prime
28.
Motzkin number
–
In mathematics, a Motzkin number for a given number n is the number of different ways of drawing non-intersecting chords between n points on a circle. The Motzkin numbers are named after Theodore Motzkin, and have diverse applications in geometry, combinatorics. The following figure shows the 9 ways to draw non-intersecting chords between 4 points on a circle, the following figure shows the 21 ways to draw non-intersecting chords between 5 points on a circle. Motzkin numbers can be expressed in terms of binomial coefficients and Catalan numbers, a Motzkin prime is a Motzkin number that is prime. Guibert, Pergola & Pinzani showed that vexillary involutions are enumerated by Motzkin numbers
29.
Weird number
–
In number theory, a weird number is a natural number that is abundant but not semiperfect. In other words, the sum of the divisors of the number is greater than the number. The smallest weird number is 70 and its proper divisors are 1,2,5,7,10,14, and 35, these sum to 74, but no subset of these sums to 70. The number 12, for example, is abundant but not weird, because the divisors of 12 are 1,2,3,4, and 6, which sum to 16. The first few numbers are 70,836,4030,5830,7192,7912,9272,10430,10570,10792,10990,11410,11690,12110,12530,12670,13370,13510,13790,13930,14770. It is easy to see that a number of weird numbers exist. For example, 70p is weird for all primes p ≥149, in fact, the set of weird numbers has positive asymptotic density. It is not known if any odd weird numbers exist, if so, they must be greater than 230 ≈ 1×109, with this formula, he found a large weird number n =256 ⋅ ⋅153722867280912929 ≈2 ⋅1052. A property of weird numbers is that if n is weird and this leads to the definition of primitive weird numbers, i. e. weird numbers that are not multiple of other weird numbers. There are only 24 primitive weird numbers smaller than a million and it is conjectured that there exist infinitely many primitive numbers, and Melfi has shown that the infiniteness of primitive weird numbers is a consequence of Cramérs conjecture
30.
Highly composite number
–
A highly composite number is a positive integer with more divisors than any smaller positive integer has. The term was coined by Ramanujan, the related concept of largely composite number refers to a positive integer which has at least as many divisors as any smaller positive integer. The initial or smallest 38 highly composite numbers are listed in the table below, the number of divisors is given in the column labeled d. The table below shows all the divisors of one of these numbers, the 15, 000th highly composite number can be found on Achim Flammenkamps website. Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, also, except in two special cases n =4 and n =36, the last exponent ck must equal 1. It means that 1,4, and 36 are the only square highly composite numbers, saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials. Note, that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example,96 =25 ×3 satisfies the conditions and has 12 divisors but is not highly composite since there is a smaller number 60 which has the same number of divisors. If Q denotes the number of composite numbers less than or equal to x. The first part of the inequality was proved by Paul Erdős in 1944 and we have 1.13862 < lim inf log Q log log x ≤1.44 and lim sup log Q log log x ≤1.71. Highly composite numbers higher than 6 are also abundant numbers, one need only look at the three or four highest divisors of a particular highly composite number to ascertain this fact. It is false that all composite numbers are also Harshad numbers in base 10. The first HCN that is not a Harshad number is 245,044,800, which has a sum of 27. 10 of the first 38 highly composite numbers are highly composite numbers. The sequence of composite numbers is a subset of the sequence of smallest numbers k with exactly n divisors. A positive integer n is a composite number if d ≥ d for all m ≤ n. The counting function QL of largely composite numbers satisfies c ≤ log Q L ≤ d for positive c, d with 0.2 ≤ c ≤ d ≤0.5. Because the prime factorization of a composite number uses all of the first k primes
31.
Centered octagonal number
–
A centered octagonal number is a centered figurate number that represents an octagon with a dot in the center and all other dots surrounding the center dot in successive octagonal layers. The centered octagonal numbers are the same as the odd square numbers, thus, the nth centered octagonal number is given by the formula 2 =4 n 2 −4 n +1. The first few centered octagonal numbers are 1,9,25,49,81,121,169,225,289,361,441,529,625,729,841,961,1089. Calculating Ramanujans tau function on an octagonal number yields an odd number
32.
Credit score (United States)
–
A credit score in the United States is a number representing the creditworthiness of a person, the likelihood that person will pay his or her debts. Lenders, such as banks and credit card companies, use credit scores to evaluate the risk posed by lending money to consumers. Widespread use of credit scores has made more widely available. The FICO score was first introduced in 1989 by FICO, then called Fair, Isaac, and Company. The FICO model is used by the vast majority of banks and credit grantors, because a consumers credit file may contain different information at each of the bureaus, FICO scores can vary depending on which bureau provides the information to FICO to generate the score. Credit scores are designed to measure the risk of default by taking into account various factors in a persons financial history, bankruptcy, liens, judgments, settlements, charge offs, repossessions, foreclosures, and late payments can cause a FICO score to drop. 30%, debt burden, This category considers a number of debt specific measurements, 15%, length of credit history aka Time in File, As a credit history ages it can have a positive impact on its FICO score. There are two metrics in this category, the age of the accounts on your report and the age of the oldest account. 10%, types of credit used, Consumers can benefit by having a history of managing different types of credit. 10%, recent searches for credit, hard credit inquiries, which occur when consumers apply for a card or loan, can hurt scores. Further, mortgage, auto, and student loan inquiries do not count at all in a FICO score if they are less than 30 days old. While all credit inquiries are recorded and displayed on personal credit reports for two years, they have no effect after the first year because FICOs scoring system ignores them after 12 months, soft inquires are not considered by credit scoring systems. Getting a higher credit limit can help a credit score, the higher the credit limit on the credit card, the lower the utilization ratio average for all of a borrowers credit card accounts. The utilization ratio is the amount owed divided by the amount extended by the creditor and the lower it is the better a FICO rating, in general. So if a person has one card with a used balance of $500 and a limit of $1,000 as well as another with a used balance of $700 and $2,000 limit. If the first credit card company raises the limit to $2,000, the ratio lowers to 30 percent, there are other special factors which can weigh on the FICO score. Any money owed because of a judgment, tax lien, etc. carries an additional negative penalty. Having one or more newly opened consumer finance credit accounts may also be a negative, there are several types of FICO credit score, classic or generic, bankcard, personal finance, mortgage, installment loan, auto loan, and NextGen score
33.
On-Line Encyclopedia of Integer Sequences
–
The On-Line Encyclopedia of Integer Sequences, also cited simply as Sloanes, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs, Sloane continues to be involved in the OEIS in his role as President of the OEIS Foundation. OEIS records information on integer sequences of interest to professional mathematicians and amateurs, and is widely cited. As of 30 December 2016 it contains nearly 280,000 sequences, the database is searchable by keyword and by subsequence. Neil Sloane started collecting integer sequences as a student in 1965 to support his work in combinatorics. The database was at first stored on punched cards and he published selections from the database in book form twice, A Handbook of Integer Sequences, containing 2,372 sequences in lexicographic order and assigned numbers from 1 to 2372. The Encyclopedia of Integer Sequences with Simon Plouffe, containing 5,488 sequences and these books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service, as a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998. The database continues to grow at a rate of some 10,000 entries a year, Sloane has personally managed his sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database. In 2004, Sloane celebrated the addition of the 100, 000th sequence to the database, A100000, in 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS. org was created to simplify the collaboration of the OEIS editors and contributors, besides integer sequences, the OEIS also catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences. Sequences of rationals are represented by two sequences, the sequence of numerators and the sequence of denominators, important irrational numbers such as π =3.1415926535897. are catalogued under representative integer sequences such as decimal expansions, binary expansions, or continued fraction expansions. The OEIS was limited to plain ASCII text until 2011, yet it still uses a form of conventional mathematical notation. Greek letters are represented by their full names, e. g. mu for μ. Every sequence is identified by the letter A followed by six digits, sometimes referred to without the leading zeros, individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces, a represents the nth term of the sequence. Zero is often used to represent non-existent sequence elements, for example, A104157 enumerates the smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists. The value of a is 2, a is 1480028129, but there is no such 2×2 magic square, so a is 0
34.
Centered cube number
–
Equivalently, it is the number of points in a body-centered cubic pattern within a cube that has n +1 points along each of its edges. The first few centered cube numbers are 1,9,35,91,189,341,559,855,1241,1729,2331,3059,3925,4941,6119,7471,9009. The centered cube number for a pattern with n concentric layers around the point is given by the formula n 3 +3 =. The same number can also be expressed as a number, or a sum of consecutive numbers. Because of the factorization, it is impossible for a cube number to be a prime number. The only centered cube number that is also a number is 9. Cube number Weisstein, Eric W. Centered Cube Number
35.
Hexagonal number
–
A hexagonal number is a figurate number. The formula for the nth hexagonal number h n =2 n 2 − n = n =2 n ×2. The first few numbers are,1,6,15,28,45,66,91,120,153,190,231,276,325,378,435,496,561,630,703,780,861,946. Every hexagonal number is a number, but only every other triangular number is a hexagonal number. Like a triangular number, the root in base 10 of a hexagonal number can only be 1,3,6. The digital root pattern, repeating every nine terms, is 166193139. Every even perfect number is hexagonal, given by the formula M p 2 p −1 = M p /2 = h /2 = h 2 p −1 where Mp is a Mersenne prime. No odd perfect numbers are known, hence all known perfect numbers are hexagonal, for example, the 2nd hexagonal number is 2×3 =6, the 4th is 4×7 =28, the 16th is 16×31 =496, and the 64th is 64×127 =8128. The largest number that cannot be written as a sum of at most four hexagonal numbers is 130, adrien-Marie Legendre proved in 1830 that any integer greater than 1791 can be expressed in this way. Hexagonal numbers can be rearranged into rectangular numbers of n by. Hexagonal numbers should not be confused with centered hexagonal numbers, which model the standard packaging of Vienna sausages, to avoid ambiguity, hexagonal numbers are sometimes called cornered hexagonal numbers. One can efficiently test whether a positive x is an hexagonal number by computing n =8 x +1 +14. If n is an integer, then x is the nth hexagonal number, if n is not an integer, then x is not hexagonal. The nth number of the sequence can also be expressed by using Sigma notation as h n = ∑ i =0 n −1 where the empty sum is taken to be 0. Centered hexagonal number Mathworld entry on Hexagonal Number
36.
Magic constant
–
The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a constant of 15. In general M = n ⋅ n 2 +12, the term magic constant or magic sum is similarly applied to other magic figures such as magic stars and magic cubes. The magic constant of a normal magic star is M =4 n +2. In 2013 Dirk Kinnaes found the magic series polytope, the number of unique sequences that form the magic constant is now known up to n =1000. In the mass model the value in each cell specifies the mass for that cell and this model has two notable properties. First it demonstrates the nature of all magic squares. If such a model is suspended from the cell the structure balances. The second property that can be calculated is the moment of inertia, summing the individual moments of inertia gives the moment of inertia for the magic square
37.
Magic square
–
In recreational mathematics, a magic square is a n × n square grid filled with distinct positive integers in the range 1,2. N2 such that each contains a different integer and the sum of the integers in each row, column. The sum is called the constant or magic sum of the magic square. A square grid with n cells on each side is said to have order n. In regard to magic sum, the problem of magic squares only requires the sum of row, column and diagonal to be equal. Thus, although magic squares may contain negative integers, they are just variations by adding or multiplying a number to every positive integer in the original square. Magic squares are called normal magic squares, in the sense that there are non-normal magic squares which integers are not restricted in 1,2. However, in places, magic squares is used as a general term to cover both the normal and non-normal ones, especially when non-normal ones are under discussion. Moreover, the term magic squares is also used to refer to various types of word squares. Magic squares have a history, dating back to at least 650 BC in China. At various times they have acquired magical or mythical significance, and have appeared as symbols in works of art, the constant that is the sum of every row, column and diagonal is called the magic constant or magic sum, M. Every normal magic square has a constant dependent on the n, calculated by the formula M = n /2. N2 is n 2 /2 which when divided by the n is the magic constant. For normal magic squares of orders n =3,4,5,6,7, and 8, the constants are, respectively,15,34,65,111,175. Normal magic squares of all sizes can be constructed except 2×2, any magic square can be rotated and reflected to produce 8 trivially distinct squares. In magic square theory, all of these are deemed equivalent. Excluding rotations and reflections, there is exactly one 3×3 magic square, exactly 880 4×4 magic squares, for the 6×6 case, there are estimated to be approximately 1.8 ×1019 squares. Then all magic squares of an order have the same moment of inertia as each other
38.
Eight queens puzzle
–
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two share the same row, column, or diagonal. Chess composer Max Bezzel published the eight queens puzzle in 1848, franz Nauck published the first solutions in 1850. Nauck also extended the puzzle to the n queens problem, with n queens on a chessboard of n × n squares, since then, many mathematicians, including Carl Friedrich Gauss, have worked on both the eight queens puzzle and its generalized n-queens version. In 1874, S. Gunther proposed a method using determinants to find solutions, in 1972, Edsger Dijkstra used this problem to illustrate the power of what he called structured programming. It is possible to use shortcuts that reduce computational requirements or rules of thumb that avoids brute-force computational techniques, generating permutations further reduces the possibilities to just 40,320, which are then checked for diagonal attacks. Martin Richards published a program to count solutions to the problem using bitwise operations. The eight queens puzzle has 92 distinct solutions, if solutions that differ only by the symmetry operations of rotation and reflection of the board are counted as one, the puzzle has 12 solutions. These are called solutions, representatives of each are shown below. A fundamental solution usually has eight variants obtained by rotating 90,180, or 270°, however, should a solution be equivalent to its own 90° rotation, that fundamental solution will have only two variants. Should a solution be equivalent to its own 180° rotation, it will have four variants, if n >1, it is not possible for a solution to be equivalent to its own reflection because that would require two queens to be facing each other. The different fundamental solutions are presented below, Solution 10 has the property that no three queens are in a straight line. These brute-force algorithms to count the number of solutions are computationally manageable for n =8, if the goal is to find a single solution then explicit solutions exist for all n ≥4, requiring no combinatorial search whatsoever. The explicit solutions exhibit stair-stepped patterns, as in the examples for n =8,9 and 10. Let be the square in column i and row j on the n × n chessboard, if n is even and n ≠ 6k +2, then place queens at and for i =1,2. If n is even and n ≠ 6k, then place queens at, if n is odd, then use one of the patterns above for and add a queen at. If the remainder is 2, swap 1 and 3 in odd list, if the remainder is 3, move 2 to the end of even list and 1,3 to the end of odd list. Append odd list to the even list and place queens in the rows given by these numbers, for N =8 this results in fundamental solution 1 above
39.
Bell number
–
In combinatorial mathematics, the Bell numbers count the number of partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan, but they are named after Eric Temple Bell, who wrote about them in the 1930s. The nth of these numbers, Bn, counts the number of different ways to partition a set that has n elements, or equivalently. Outside of mathematics, the number also counts the number of different rhyme schemes for n-line poems. As well as appearing in counting problems, these numbers have a different interpretation, in particular, Bn is the nth moment of a Poisson distribution with mean 1. In general, Bn is the number of partitions of a set of size n, a partition of a set S is defined as a set of nonempty, pairwise disjoint subsets of S whose union is S. For example, B3 =5 because the 3-element set can be partitioned in 5 distinct ways, b0 is 1 because there is exactly one partition of the empty set. Every member of the empty set is a nonempty set, therefore, the empty set is the only partition of itself. As suggested by the set notation above, we consider neither the order of the partitions nor the order of elements within each partition and this means that the following partitionings are all considered identical. If, instead, different orderings of the sets are considered to be different partitions, If a number N is a squarefree positive integer, then Bn gives the number of different multiplicative partitions of N. These are factorizations of N into numbers greater than one, treating two factorizations as the same if they have the same factors in a different order. A rhyme scheme describes which lines rhyme with other. Thus, the 15 possible four-line rhyme schemes are AAAA, AAAB, AABA, AABB, AABC, ABAA, ABAB, ABAC, ABBA, ABBB, ABBC, ABCA, ABCB, ABCC, and ABCD. The Bell numbers come up in a card shuffling problem mentioned in the addendum to Gardner, of these, the number that return the deck to its original sorted order is exactly Bn. Thus, the probability that the deck is in its original order after shuffling it in this way is Bn/nn, probability that would describe a uniformly random permutation of the deck. Related to card shuffling are several problems of counting special kinds of permutations that are also answered by the Bell numbers. For instance, the nth Bell number equals number of permutations on n items in which no three values that are in sorted order have the last two of three consecutive. The permutations that avoid the generalized patterns 12-3, 32-1, 3-21, 1-32, 3-12, 21-3, the permutations in which every 321 pattern can be extended to a 3241 pattern are also counted by the Bell numbers
40.
Prime gap
–
A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn or g is the difference between the -th and the prime numbers, i. e. g n = p n +1 − p n. We have g1 =1, g2 = g3 =2, the sequence of prime gaps has been extensively studied, however many questions and conjectures remain unanswered. By the definition of gn every prime can be written as p n +1 =2 + ∑ i =1 n g i. The first, smallest, and only odd prime gap is 1 between the only prime number,2, and the first odd prime,3. All other prime gaps are even, there is only one pair of gaps between three consecutive odd natural numbers for which all are prime. These gaps are g2 and g3 between the primes 3,5, and 7, for any prime number P, we write P# for P primorial, that is, the product of all prime numbers up to and including P. Therefore, there exist gaps between primes that are large, i. e. for any prime number P. Another way to see that arbitrarily large prime gaps must exist is the fact that the density of primes approaches zero, in fact, by this theorem, P# is very roughly a number the size of exp, and near exp the average distance between consecutive primes is P. In reality, prime gaps of P numbers can occur at much smaller than P#. Although the average gap between primes increases as the logarithm of the integer, the ratio of the prime gap to the integers involved decreases. This is a consequence of the prime number theorem, see below, on the other hand, the ratio of the gap to the number of digits of the integers involved does increase without bound. This is a consequence of a result by Westzynthius, see below, in the opposite direction, the twin prime conjecture asserts that gn =2 for infinitely many integers n. As of March 2017 the largest known prime gap with identified probable prime gap ends has length 5103138, with 216849-digit probable primes found by Robert W. Smith. The largest known prime gap with identified proven primes as gap ends has length 1113106, with 18662-digit primes found by P. Cami, M. Jansen and we say that gn is a maximal gap, if gm < gn for all m < n. As of August 2016 the largest known maximal gap has length 1476 and it is the 75th maximal gap, and it occurs after the prime 1425172824437699411. Other record maximal gap terms can be found at A002386, usually the ratio of gn / ln is called the merit of the gap gn. In 1931, E. Westzynthius proved that maximal prime gaps grow more than logarithmically and that is, lim sup n → ∞ g n log p n = ∞
41.
Octahedral number
–
In number theory, an octahedral number is a figurate number that represents the number of spheres in an octahedron formed from close-packed spheres. The nth octahedral number O n can be obtained by the formula, the first few octahedral numbers are,1,6,19,44,85,146,231,344,489,670,891. The octahedral numbers have a function z 24 = ∑ n =1 ∞ O n z n = z +6 z 2 +19 z 3 + ⋯. Sir Frederick Pollock conjectured in 1850 that every number is the sum of at most 7 octahedral numbers, in chemistry, octahedral numbers may be used to describe the numbers of atoms in octahedral clusters, in this context they are called magic numbers. An octahedral packing of spheres may be partitioned into two square pyramids, one upside-down underneath the other, by splitting it along a square cross-section. Therefore, the nth octahedral number O n can be obtained by adding two consecutive square pyramidal numbers together, O n = P n −1 + P n. If O n is the nth octahedral number and T n is the nth tetrahedral number then O n +4 T n −1 = T2 n −1. This represents the fact that gluing a tetrahedron onto each of four non-adjacent faces of an octahedron produces a tetrahedron of twice the size. If two tetrahedra are attached to opposite faces of an octahedron, the result is a rhombohedron, the number of close-packed spheres in the rhombohedron is a cube, justifying the equation O n +2 T n −1 = n 3. The difference between two consecutive numbers is a centered square number, O n − O n −1 = C4, n = n 2 +2. The number of cubes in a formed by stacking centered squares is a centered octahedral number. These numbers are 1,7,25,63,129,231,377,575,833,1159,1561,2047,2625, given by the formula O n + O n −1 =3 for n =1,2,3
42.
Japan
–
Japan is a sovereign island nation in Eastern Asia. Located in the Pacific Ocean, it lies off the eastern coast of the Asia Mainland and stretches from the Sea of Okhotsk in the north to the East China Sea, the kanji that make up Japans name mean sun origin. 日 can be read as ni and means sun while 本 can be read as hon, or pon, Japan is often referred to by the famous epithet Land of the Rising Sun in reference to its Japanese name. Japan is an archipelago consisting of about 6,852 islands. The four largest are Honshu, Hokkaido, Kyushu and Shikoku, the country is divided into 47 prefectures in eight regions. Hokkaido being the northernmost prefecture and Okinawa being the southernmost one, the population of 127 million is the worlds tenth largest. Japanese people make up 98. 5% of Japans total population, approximately 9.1 million people live in the city of Tokyo, the capital of Japan. Archaeological research indicates that Japan was inhabited as early as the Upper Paleolithic period, the first written mention of Japan is in Chinese history texts from the 1st century AD. Influence from other regions, mainly China, followed by periods of isolation, from the 12th century until 1868, Japan was ruled by successive feudal military shoguns who ruled in the name of the Emperor. Japan entered into a period of isolation in the early 17th century. The Second Sino-Japanese War of 1937 expanded into part of World War II in 1941, which came to an end in 1945 following the bombings of Hiroshima and Nagasaki. Japan is a member of the UN, the OECD, the G7, the G8, the country has the worlds third-largest economy by nominal GDP and the worlds fourth-largest economy by purchasing power parity. It is also the worlds fourth-largest exporter and fourth-largest importer, although Japan has officially renounced its right to declare war, it maintains a modern military with the worlds eighth-largest military budget, used for self-defense and peacekeeping roles. Japan is a country with a very high standard of living. Its population enjoys the highest life expectancy and the third lowest infant mortality rate in the world, in ancient China, Japan was called Wo 倭. It was mentioned in the third century Chinese historical text Records of the Three Kingdoms in the section for the Wei kingdom, Wa became disliked because it has the connotation of the character 矮, meaning dwarf. The 倭 kanji has been replaced with the homophone Wa, meaning harmony, the Japanese word for Japan is 日本, which is pronounced Nippon or Nihon and literally means the origin of the sun. The earliest record of the name Nihon appears in the Chinese historical records of the Tang dynasty, at the start of the seventh century, a delegation from Japan introduced their country as Nihon
43.
Yakuza
–
Yakuza, also known as gokudō, are members of transnational organized crime syndicates originating in Japan. The Japanese police, and media by request of the police, call them bōryokudan, the yakuza are notorious for their strict codes of conduct and organized fiefdom-nature. They have a presence in the Japanese media and operate internationally with an estimated 102,000 members. Tekiya were considered one of the lowest social groups in Edo, as they began to form organizations of their own, they took over some administrative duties relating to commerce, such as stall allocation and protection of their commercial activities. During Shinto festivals, these peddlers opened stalls and some members were hired to act as security, each peddler paid rent in exchange for a stall assignment and protection during the fair. The Edo government eventually formally recognized such tekiya organizations and granted the oyabun of tekiya a surname as well as permission to carry a sword—the wakizashi and this was a major step forward for the traders, as formerly only samurai and noblemen were allowed to carry swords. Bakuto had a lower social standing even than traders, as gambling was illegal. Many small gambling houses cropped up in abandoned temples or shrines at the edge of towns, most of these gambling houses ran loan sharking businesses for clients, and they usually maintained their own security personnel. The roots of the yakuza can still be today in initiation ceremonies. During the formation of the yakuza, they adopted the traditional Japanese hierarchical structure of oyabun-kobun where kobun owe their allegiance to the oyabun, in a much later period, the code of jingi was developed where loyalty and respect are a way of life. The oyabun-kobun relationship is formalized by ceremonial sharing of sake from a single cup and this ritual is not exclusive to the yakuza—it is also commonly performed in traditional Japanese Shinto weddings, and may have been a part of sworn brotherhood relationships. However, after the war, the yakuza adapted again, prospective yakuza come from all walks of life. The most romantic tales tell how yakuza accept sons who have been abandoned or exiled by their parents, many yakuza start out in junior high school or high school as common street thugs or members of bōsōzoku gangs. Perhaps because of its lower status, numerous yakuza members come from Burakumin. Yakuza groups are headed by an oyabun or kumichō who gives orders to his subordinates, in this respect, the organization is a variation of the traditional Japanese senpai-kōhai model. Members of yakuza gangs cut their ties and transfer their loyalty to the gang boss. They refer to other as family members - fathers and elder and younger brothers. The yakuza is populated almost entirely by men, and there are few women involved who are called ane-san