1.
La Silla Observatory
–
La Silla Observatory is an astronomical observatory in Chile with three telescopes built and operated by the European Southern Observatory. Several other telescopes are located at the site and are maintained by ESO. The observatory is one of the largest in the Southern Hemisphere and was the first in Chile to be used by ESO. The La Silla telescopes and instruments are located 150 km northeast of La Serena at the outskirts of the Chilean Atacama Desert, following the decision in 1963 to approve Chile as the site for the ESO observatory, scouting parties were sent to various locations to assess their suitability. The site that was decided upon was La Silla in the part of the Atacama desert,600 km north of Santiago de Chile. Besides being government property, it had the benefits of being in a dry, flat and easily accessible area, yet isolated and remote from any artificial light. Originally named the Cinchado, it was renamed La Silla after its saddle-like shape, on October 30,1964, the contracts were signed and an area of 245 square miles was purchased the following year. During 1965, temporary facilities were erected with living quarters, a workshop, the dedication ceremony of the road to the top took place in March 1966, two months after its completion. On 25 March 1969, the ESO site at La Silla was finally inaugurated by President Eduardo Frei Montalva. With a permanent base of dormitories, workshops, hotels and several functioning telescopes, the observatory was fully operational. The ESO1. 5-metre and ESO 1-metre telescopes had been erected in the late 1960s and these three telescopes can be seen in this order from right to left in the background of the adjunct image from June 1968. By 1976, the largest telescope planned, the § ESO3.6 m Telescope and it was subsequently to have a 1. 4m CAT attached. In 1984, the 2. 2m telescope began operations, while in March 1989, a 1-metre telescope owned by Marseille Observatory opened in 1998, followed by a 1. 2-metre telescope from Geneva Observatory in 2000. ESO operates three major optical and near infrared telescopes at the La Silla site, the New Technology Telescope, the 3. 6-m ESO Telescope, and these telescopes are not operated by ESO and hence do not fall under the responsibility of La Silla Science Operations. The telescope hosts HARPS, the High Accuracy Radial velocity Planet Searcher, HARPS is a spectrograph with unrivalled precision and is the most successful finder of low-mass exoplanets to date. Since April 2008, HARPS is the instrument available at the 3.6 m telescope. The ESO New Technology Telescope is an Alt-Az,3. 58-metre Richey-Chretien telescope which pioneered the use of active optics, the telescope and its enclosure had a revolutionary design for optimal image quality. NTT saw first light in March 1989, the telescope chamber is ventilated by a system of flaps which optimize the air flow across the NTT minimizing the dome and mirror seeing
2.
Minor planet
–
A minor planet is an astronomical object in direct orbit around the Sun that is neither a planet nor exclusively classified as a comet. Minor planets can be dwarf planets, asteroids, trojans, centaurs, Kuiper belt objects, as of 2016, the orbits of 709,706 minor planets were archived at the Minor Planet Center,469,275 of which had received permanent numbers. The first minor planet to be discovered was Ceres in 1801, the term minor planet has been used since the 19th century to describe these objects. The term planetoid has also used, especially for larger objects such as those the International Astronomical Union has called dwarf planets since 2006. Historically, the asteroid, minor planet, and planetoid have been more or less synonymous. This terminology has become complicated by the discovery of numerous minor planets beyond the orbit of Jupiter. A Minor planet seen releasing gas may be classified as a comet. Before 2006, the IAU had officially used the term minor planet, during its 2006 meeting, the IAU reclassified minor planets and comets into dwarf planets and small Solar System bodies. Objects are called dwarf planets if their self-gravity is sufficient to achieve hydrostatic equilibrium, all other minor planets and comets are called small Solar System bodies. The IAU stated that the minor planet may still be used. However, for purposes of numbering and naming, the distinction between minor planet and comet is still used. Hundreds of thousands of planets have been discovered within the Solar System. The Minor Planet Center has documented over 167 million observations and 729,626 minor planets, of these,20,570 have official names. As of March 2017, the lowest-numbered unnamed minor planet is 1974 FV1, as of March 2017, the highest-numbered named minor planet is 458063 Gustavomuler. There are various broad minor-planet populations, Asteroids, traditionally, most have been bodies in the inner Solar System. Near-Earth asteroids, those whose orbits take them inside the orbit of Mars. Further subclassification of these, based on distance, is used, Apohele asteroids orbit inside of Earths perihelion distance. Aten asteroids, those that have semi-major axes of less than Earths, Apollo asteroids are those asteroids with a semimajor axis greater than Earths, while having a perihelion distance of 1.017 AU or less. Like Aten asteroids, Apollo asteroids are Earth-crossers, amor asteroids are those near-Earth asteroids that approach the orbit of Earth from beyond, but do not cross it
3.
Asteroid belt
–
The asteroid belt is the circumstellar disc in the Solar System located roughly between the orbits of the planets Mars and Jupiter. It is occupied by numerous irregularly shaped bodies called asteroids or minor planets, the asteroid belt is also termed the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System such as near-Earth asteroids and trojan asteroids. About half the mass of the belt is contained in the four largest asteroids, Ceres, Vesta, Pallas, the total mass of the asteroid belt is approximately 4% that of the Moon, or 22% that of Pluto, and roughly twice that of Plutos moon Charon. Ceres, the belts only dwarf planet, is about 950 km in diameter, whereas Vesta, Pallas. The remaining bodies range down to the size of a dust particle, the asteroid material is so thinly distributed that numerous unmanned spacecraft have traversed it without incident. Nonetheless, collisions between large asteroids do occur, and these can form a family whose members have similar orbital characteristics. Individual asteroids within the belt are categorized by their spectra. The asteroid belt formed from the solar nebula as a group of planetesimals. Planetesimals are the precursors of the protoplanets. Between Mars and Jupiter, however, gravitational perturbations from Jupiter imbued the protoplanets with too much energy for them to accrete into a planet. Collisions became too violent, and instead of fusing together, the planetesimals, as a result,99. 9% of the asteroid belts original mass was lost in the first 100 million years of the Solar Systems history. Some fragments eventually found their way into the inner Solar System, Asteroid orbits continue to be appreciably perturbed whenever their period of revolution about the Sun forms an orbital resonance with Jupiter. At these orbital distances, a Kirkwood gap occurs as they are swept into other orbits. Classes of small Solar System bodies in other regions are the objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids. On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on Ceres, the detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding was unexpected because comets, not asteroids, are considered to sprout jets. According to one of the scientists, The lines are becoming more and more blurred between comets and asteroids. This pattern, now known as the Titius–Bode law, predicted the semi-major axes of the six planets of the provided one allowed for a gap between the orbits of Mars and Jupiter
4.
Kirkwood gap
–
A Kirkwood gap is a gap or dip in the distribution of the semi-major axes of the orbits of main-belt asteroids. They correspond to the locations of orbital resonances with Jupiter, for example, there are very few asteroids with semimajor axis near 2.50 AU, period 3.95 years, which would make three orbits for each orbit of Jupiter. Other orbital resonances correspond to orbital periods whose lengths are simple fractions of Jupiters, the weaker resonances lead only to a depletion of asteroids, while spikes in the histogram are often due to the presence of a prominent asteroid family. The orbital elements of the asteroids vary chaotically as a result, the 2,1 MMR has a few relatively stable islands within the resonance, however. These islands are depleted due to slow diffusion onto less stable orbits and this process, which has been linked to Jupiter and Saturn being near a 5,2 resonance, may have been more rapid when Jupiters and Saturns orbits were closer together. More recently, a small number of asteroids have been found to possess high eccentricity orbits which do lie within the Kirkwood gaps. Examples include the Alinda family and the Griqua family and these orbits slowly increase their eccentricity on a timescale of tens of millions of years, and will eventually break out of the resonance due to close encounters with a major planet. The most prominent Kirkwood gaps are located at mean orbital radii of,2.06 AU2.5 AU, home to the Alinda family of asteroids 2.82 AU2.95 AU3.27 AU, home to the Griqua family of asteroids. Weaker and/or narrower gaps are found at,1.9 AU2.25 AU2.33 AU2.71 AU3.03 AU3.075 AU3.47 AU3.7 AU. Orbital resonance Alinda family Griqua family Article on Kirkwood gaps at Wolframs scienceworld
5.
Perihelion and aphelion
–
The perihelion is the point in the orbit of a celestial body where it is nearest to its orbital focus, generally a star. It is the opposite of aphelion, which is the point in the orbit where the body is farthest from its focus. The word perihelion stems from the Ancient Greek words peri, meaning around or surrounding, aphelion derives from the preposition apo, meaning away, off, apart. According to Keplers first law of motion, all planets, comets. Hence, a body has a closest and a farthest point from its parent object, that is, a perihelion. Each extreme is known as an apsis, orbital eccentricity measures the flatness of the orbit. Because of the distance at aphelion, only 93. 55% of the solar radiation from the Sun falls on a given area of land as does at perihelion. However, this fluctuation does not account for the seasons, as it is summer in the northern hemisphere when it is winter in the southern hemisphere and vice versa. Instead, seasons result from the tilt of Earths axis, which is 23.4 degrees away from perpendicular to the plane of Earths orbit around the sun. Winter falls on the hemisphere where sunlight strikes least directly, and summer falls where sunlight strikes most directly, in the northern hemisphere, summer occurs at the same time as aphelion. Despite this, there are larger land masses in the northern hemisphere, consequently, summers are 2.3 °C warmer in the northern hemisphere than in the southern hemisphere under similar conditions. Apsis Ellipse Solstice Dates and times of Earths perihelion and aphelion, 2000–2025 from the United States Naval Observatory
6.
Astronomical unit
–
The astronomical unit is a unit of length, roughly the distance from Earth to the Sun. However, that varies as Earth orbits the Sun, from a maximum to a minimum. Originally conceived as the average of Earths aphelion and perihelion, it is now defined as exactly 149597870700 metres, the astronomical unit is used primarily as a convenient yardstick for measuring distances within the Solar System or around other stars. However, it is also a component in the definition of another unit of astronomical length. A variety of symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A for the astronomical unit, in 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In 2012, the IAU, noting that various symbols are presently in use for the astronomical unit, in the 2014 revision of the SI Brochure, the BIPM used the unit symbol au. In ISO 80000-3, the symbol of the unit is ua. Earths orbit around the Sun is an ellipse, the semi-major axis of this ellipse is defined to be half of the straight line segment that joins the aphelion and perihelion. The centre of the sun lies on this line segment. In addition, it mapped out exactly the largest straight-line distance that Earth traverses over the course of a year, knowing Earths shift and a stars shift enabled the stars distance to be calculated. But all measurements are subject to some degree of error or uncertainty, improvements in precision have always been a key to improving astronomical understanding. Improving measurements were continually checked and cross-checked by means of our understanding of the laws of celestial mechanics, the expected positions and distances of objects at an established time are calculated from these laws, and assembled into a collection of data called an ephemeris. NASAs Jet Propulsion Laboratory provides one of several ephemeris computation services, in 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition. Equivalently, by definition, one AU is the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass. As with all measurements, these rely on measuring the time taken for photons to be reflected from an object. However, for precision the calculations require adjustment for such as the motions of the probe. In addition, the measurement of the time itself must be translated to a scale that accounts for relativistic time dilation
7.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction
8.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit
9.
Mean anomaly
–
In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. Define T as the time required for a body to complete one orbit. In time T, the radius vector sweeps out 2π radians or 360°. The average rate of sweep, n, is then n =2 π T or n =360 ∘ T, define τ as the time at which the body is at the pericenter. From the above definitions, a new quantity, M, the mean anomaly can be defined M = n, because the rate of increase, n, is a constant average, the mean anomaly increases uniformly from 0 to 2π radians or 0° to 360° during each orbit. It is equal to 0 when the body is at the pericenter, π radians at the apocenter, if the mean anomaly is known at any given instant, it can be calculated at any later instant by simply adding n δt where δt represents the time difference. Mean anomaly does not measure an angle between any physical objects and it is simply a convenient uniform measure of how far around its orbit a body has progressed since pericenter. The mean anomaly is one of three parameters that define a position along an orbit, the other two being the eccentric anomaly and the true anomaly. Define l as the longitude, the angular distance of the body from the same reference direction. Thus mean anomaly is also M = l − ϖ, mean angular motion can also be expressed, n = μ a 3, where μ is a gravitational parameter which varies with the masses of the objects, and a is the semi-major axis of the orbit. Mean anomaly can then be expanded, M = μ a 3, and here mean anomaly represents uniform angular motion on a circle of radius a
10.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
11.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky
12.
Longitude of the ascending node
–
The longitude of the ascending node is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a direction, called the origin of longitude, to the direction of the ascending node. The ascending node is the point where the orbit of the passes through the plane of reference. Commonly used reference planes and origins of longitude include, For a geocentric orbit, Earths equatorial plane as the plane. In this case, the longitude is called the right ascension of the ascending node. The angle is measured eastwards from the First Point of Aries to the node, for a heliocentric orbit, the ecliptic as the reference plane, and the First Point of Aries as the origin of longitude. The angle is measured counterclockwise from the First Point of Aries to the node, the angle is measured eastwards from north to the node. pp.40,72,137, chap. In the case of a star known only from visual observations, it is not possible to tell which node is ascending. In this case the orbital parameter which is recorded is the longitude of the node, Ω, here, n=<nx, ny, nz> is a vector pointing towards the ascending node. The reference plane is assumed to be the xy-plane, and the origin of longitude is taken to be the positive x-axis, K is the unit vector, which is the normal vector to the xy reference plane. For non-inclined orbits, Ω is undefined, for computation it is then, by convention, set equal to zero, that is, the ascending node is placed in the reference direction, which is equivalent to letting n point towards the positive x-axis. Kepler orbits Equinox Orbital node perturbation of the plane can cause revolution of the ascending node
13.
Argument of periapsis
–
The argument of periapsis, symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the ascending node to its periapsis. For specific types of orbits, words such as perihelion, perigee, periastron, an argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the body will reach periapsis at its northmost distance from the plane of reference. Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis, however, especially in discussions of binary stars and exoplanets, the terms longitude of periapsis or longitude of periastron are often used synonymously with argument of periapsis. In the case of equatorial orbits, the argument is strictly undefined, where, ex and ey are the x- and y-components of the eccentricity vector e. In the case of circular orbits it is assumed that the periapsis is placed at the ascending node. Kepler orbit Orbital mechanics Orbital node
14.
Asteroid
–
Asteroids are minor planets, especially those of the inner Solar System. The larger ones have also been called planetoids and these terms have historically been applied to any astronomical object orbiting the Sun that did not show the disc of a planet and was not observed to have the characteristics of an active comet. As minor planets in the outer Solar System were discovered and found to have volatile-based surfaces that resemble those of comets, in this article, the term asteroid refers to the minor planets of the inner Solar System including those co-orbital with Jupiter. There are millions of asteroids, many thought to be the remnants of planetesimals. The large majority of known asteroids orbit in the belt between the orbits of Mars and Jupiter, or are co-orbital with Jupiter. However, other orbital families exist with significant populations, including the near-Earth objects, individual asteroids are classified by their characteristic spectra, with the majority falling into three main groups, C-type, M-type, and S-type. These were named after and are identified with carbon-rich, metallic. The size of asteroids varies greatly, some reaching as much as 1000 km across, asteroids are differentiated from comets and meteoroids. In the case of comets, the difference is one of composition, while asteroids are composed of mineral and rock, comets are composed of dust. In addition, asteroids formed closer to the sun, preventing the development of the aforementioned cometary ice, the difference between asteroids and meteoroids is mainly one of size, meteoroids have a diameter of less than one meter, whereas asteroids have a diameter of greater than one meter. Finally, meteoroids can be composed of either cometary or asteroidal materials, only one asteroid,4 Vesta, which has a relatively reflective surface, is normally visible to the naked eye, and this only in very dark skies when it is favorably positioned. Rarely, small asteroids passing close to Earth may be visible to the eye for a short time. As of March 2016, the Minor Planet Center had data on more than 1.3 million objects in the inner and outer Solar System, the United Nations declared June 30 as International Asteroid Day to educate the public about asteroids. The date of International Asteroid Day commemorates the anniversary of the Tunguska asteroid impact over Siberia, the first asteroid to be discovered, Ceres, was found in 1801 by Giuseppe Piazzi, and was originally considered to be a new planet. In the early half of the nineteenth century, the terms asteroid. Asteroid discovery methods have improved over the past two centuries. This task required that hand-drawn sky charts be prepared for all stars in the band down to an agreed-upon limit of faintness. On subsequent nights, the sky would be charted again and any moving object would, hopefully, the expected motion of the missing planet was about 30 seconds of arc per hour, readily discernible by observers
15.
Ecliptic
–
The ecliptic is the apparent path of the Sun on the celestial sphere, and is the basis for the ecliptic coordinate system. It also refers to the plane of this path, which is coplanar with the orbit of Earth around the Sun, the motions as described above are simplifications. Due to the movement of Earth around the Earth–Moon center of mass, due to further perturbations by the other planets of the Solar System, the Earth–Moon barycenter wobbles slightly around a mean position in a complex fashion. The ecliptic is actually the apparent path of the Sun throughout the course of a year, because Earth takes one year to orbit the Sun, the apparent position of the Sun also takes the same length of time to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day, again, this is a simplification, based on a hypothetical Earth that orbits at uniform speed around the Sun. The actual speed with which Earth orbits the Sun varies slightly during the year, for example, the Sun is north of the celestial equator for about 185 days of each year, and south of it for about 180 days. The variation of orbital speed accounts for part of the equation of time, if the equator is projected outward to the celestial sphere, forming the celestial equator, it crosses the ecliptic at two points known as the equinoxes. The Sun, in its apparent motion along the ecliptic, crosses the equator at these points, one from south to north. The crossing from south to north is known as the equinox, also known as the first point of Aries. The crossing from north to south is the equinox or descending node. Likewise, the ecliptic itself is not fixed, the gravitational perturbations of the other bodies of the Solar System cause a much smaller motion of the plane of Earths orbit, and hence of the ecliptic, known as planetary precession. The combined action of two motions is called general precession, and changes the position of the equinoxes by about 50 arc seconds per year. Once again, this is a simplification, periodic motions of the Moon and apparent periodic motions of the Sun cause short-term small-amplitude periodic oscillations of Earths axis, and hence the celestial equator, known as nutation. Obliquity of the ecliptic is the used by astronomers for the inclination of Earths equator with respect to the ecliptic. It is about 23. 4° and is currently decreasing 0.013 degrees per hundred years due to planetary perturbations, the angular value of the obliquity is found by observation of the motions of Earth and other planets over many years. From 1984, the Jet Propulsion Laboratorys DE series of computer-generated ephemerides took over as the ephemeris of the Astronomical Almanac. Obliquity based on DE200, which analyzed observations from 1911 to 1979, was calculated, jPLs fundamental ephemerides have been continually updated. J. Laskar computed an expression to order T10 good to 0″. 04/1000 years over 10,000 years, all of these expressions are for the mean obliquity, that is, without the nutation of the equator included
16.
Crimean Astrophysical Observatory
–
The Crimean Astrophysical Observatory is located at Nauchnyj research campus, near the Central Crimean city of Bakhchysarai, on the Crimean peninsula. CrAO is often called simply by its location and campus name, Crimea-Nauchnij, crAO has also been publishing the Bulletin of the Crimean Astrophysical Observatory since 1947, in English since 1977. The observatory facilities are located on territory of settlement of Nauchny since the mid-1950s, before that, they were further south, the latter facilities still see some use, and are referred to as the Crimean Astrophysical Observatory-Simeis. As of 2016, the Minor Planet Center gives a total of 1286 numbered minor planets that were discovered at the Crimea-Nauchnij observatory site during 1966–2007, as a peculiarity, British astronomer and long-time MPC director Brian G
17.
Wide-field Infrared Survey Explorer
–
Wide-field Infrared Survey Explorer is a NASA infrared-wavelength astronomical space telescope launched in December 2009, and placed in hibernation in February 2011 when its transmitter turned off. WISE discovered thousands of planets and numerous star clusters. Its observations also supported the discovery of the first Y Dwarf, WISE performed an all-sky astronomical survey with images in 3.4,4.6,12 and 22 μm wavelength range bands, over ten months using a 40 cm diameter infrared telescope in Earth orbit. After its hydrogen coolant depleted, a mission extension called NEOWISE was conducted to search for near-Earth objects such as comets. The All-Sky data including processed images, source catalogs and raw data, was released to the public on March 14,2012, in August 2013, NASA announced it would reactivate the WISE telescope for a new three-year mission to search for asteroids that could collide with Earth. Science operations and data processing for WISE and NEOWISE take place at the Infrared Processing, the mission was planned to create infrared images of 99 percent of the sky, with at least eight images made of each position on the sky in order to increase accuracy. The spacecraft was placed in a 525 km, circular, polar, Sun-synchronous orbit for its mission, during which it has taken 1.5 million images. Each image covers a 47-arcminute field of view, which means a 6-arcsecond resolution, each area of the sky was scanned at least 10 times at the equator, the poles were scanned at theoretically every revolution due to the overlapping of the images. The produced image library contains data on the local Solar System, the Milky Way, among the objects WISE studied are asteroids, cool, dim stars such as brown dwarfs, and the most luminous infrared galaxies. Stellar nurseries, which are covered by interstellar dust, are detectable in infrared, Infrared measurements from the WISE astronomical survey have been particularly effective at unveiling previously undiscovered star clusters. Examples of such embedded star clusters are Camargo 18, Camargo 440, Majaess 101, in addition, galaxies of the young Universe and interacting galaxies, where star formation is intensive, are bright in infrared. On this wavelength the interstellar gas clouds are also detectable, as well as proto-planetary discs, WISE satellite was expected to find at least 1,000 of those proto-planetary discs. WISE was not able to detect Kuiper belt objects, because their temperatures are too low and it was able to detect any objects warmer than 70–100 K. A Neptune-sized object would be out to 700 AU, a Jupiter-mass object out to 1 light year. A larger object of 2–3 Jupiter masses would be visible at a distance of up to 7–10 light years and that translates to about 1000 new main-belt asteroids per day, and 1–3 NEOs per day. The peak of magnitude distribution for NEOs will be about 21–22 V, WISE would detect each typical Solar System object 10–12 times over about 36 hours in intervals of 3 hours. Construction of the WISE telescope was divided between Ball Aerospace & Technologies, SSG Precision Optronics, Inc, DRS and Rockwell, Lockheed Martin, and Space Dynamics Laboratory. The program was managed through the Jet Propulsion Laboratory, the WISE instrument was built by the Space Dynamics Laboratory in Logan, Utah
18.
Albedo
–
Albedo is a measure for reflectance or optical brightness. It is dimensionless and measured on a scale from zero to one, surface albedo is defined as the ratio of radiation reflected to the radiation incident on a surface. The proportion reflected is not only determined by properties of the surface itself and these factors vary with atmospheric composition, geographic location and time. While bi-hemispherical reflectance is calculated for an angle of incidence. The temporal resolution may range from seconds to daily, seasonal or annual averages, unless given for a specific wavelength, albedo refers to the entire spectrum of solar radiation. Due to measurement constraints, it is given for the spectrum in which most solar energy reaches the surface. This spectrum includes visible light, which explains why surfaces with a low albedo appear dark, albedo is an important concept in climatology, astronomy, and environmental management. The term albedo was introduced into optics by Johann Heinrich Lambert in his 1760 work Photometria, any albedo in visible light falls within a range of about 0.9 for fresh snow to about 0.04 for charcoal, one of the darkest substances. Deeply shadowed cavities can achieve an effective albedo approaching the zero of a black body, when seen from a distance, the ocean surface has a low albedo, as do most forests, whereas desert areas have some of the highest albedos among landforms. Most land areas are in a range of 0.1 to 0.4. The average albedo of Earth is about 0.3 and this is far higher than for the ocean primarily because of the contribution of clouds. Earths surface albedo is regularly estimated via Earth observation satellite sensors such as NASAs MODIS instruments on board the Terra, thereby, the BRDF allows to translate observations of reflectance into albedo. Earths average surface temperature due to its albedo and the effect is currently about 15 °C. If Earth were frozen entirely, the temperature of the planet would drop below −40 °C. If only the land masses became covered by glaciers, the mean temperature of the planet would drop to about 0 °C. In contrast, if the entire Earth was covered by water — a so-called aquaplanet — the average temperature on the planet would rise to almost 27 °C, hence, the actual albedo α can then be given as, α = α ¯ + D α ¯ ¯. Directional-hemispherical reflectance is sometimes referred to as black-sky albedo and bi-hemispherical reflectance as white-sky albedo and these terms are important because they allow the albedo to be calculated for any given illumination conditions from a knowledge of the intrinsic properties of the surface. The albedos of planets, satellites and asteroids can be used to infer much about their properties, the study of albedos, their dependence on wavelength, lighting angle, and variation in time comprises a major part of the astronomical field of photometry
19.
Cincinnati Observatory
–
The Cincinnati Observatory is located in Cincinnati, Ohio on top of Mt. Lookout. It consists of two buildings housing an 11 inch and 16 inch aperture refracting telescope. It is the oldest professional observatory in the United States and it was a key facility for astronomical research and education at the University of Cincinnati and currently operates as a 19th-century observatory. There are regular viewings through both historical telescopes as well as tours and additional programs, the observatory also has an extensive outreach program, providing astronomical education for the Ohio/Kentucky/Indiana region. The Cincinnati Observatory is a property to the Observatory Historic District. Cincinnati Observatory was built by Ormsby M. Mitchel at the peak of Mount Ida, nicholas Longworth donated 4 acres of land for the purpose. The Holy Cross Monastery and Chapel stands today at the site, the cornerstone was laid on November 9,1843, and presiding over the occasion was former President John Quincy Adams, with an introduction by Judge Jacob Burnet. At 77 years old, it was to be his last public speech, the ground on which it stands was given to the city by John Kilgour in 1872. A smaller structure, the Mitchel Building, holds the original telescope taken from the Mount Adams observatory, the 1873 building was built by the firm of Cincinnati architect Samuel Hannaford. In 1998 the Observatory was declared a National Historic Landmark, the asteroid 1373 Cincinnati was named to honor the staff of the observatory. The 1845 Merz und Mahler 11 inch refractor – Housed in the Mitchel Building, may be the oldest continually used telescope in the world. It is currently used for education programs. The 1904 Alvan Clark & Sons 16 inch refractor – Housed in the Herget Building, used in public education programs and graduate research. List of observatories Cincinnati Observatory Center Cincinnati Observatory Center Clear Sky Clock Forecasts of observing conditions
20.
Star Gazers
–
Star Gazers is a five-minute astronomy show on American public television previously hosted by Jack Foley Horkheimer, executive director of the Miami Space Transit Planetarium. The program is free to all Public Broadcasting Service public television stations, educational institutions. A month of episodes can be recorded from a satellite feed which occurs two weeks before the official broadcast dates. In 1964, Jack Horkheimer started working at the Miami Space Transit Planetarium for the Miami Museum of Science after meeting the museums president, by the early 1970s, he was appearing on news programs talking about astronomy. He was approached by Floridas PBS affiliate, WPBT, to do a series of programs about astronomy. Horkheimer agreed on the condition that WPBT help him create a series of 5-minute shows on stargazing and this was the beginning of Jack Horkheimer, Star Hustler. The show debuted on November 6,1976 on Florida public television, from 1976 until 1985, the show was very studious, with Horkheimer being calm and speaking quietly like an educator rather than an entertainer. This changed in 1985 after the executive producer, Ed Waglin, told Horkheimer that he needed to appeal to a general audience. In May 1985, the show went national, being broadcast on PBS stations around the United States with the enthusiastic Horkheimer that most people are familiar with. For the first two years of the national broadcast, Horkheimer hated the show and would not watch it, saying, after that, Horkheimer realized that he was playing a character in order to generate enthusiasm for the show. The show started broadcasting in foreign markets in 1989, from its inception until 1997, the show was named Jack Horkheimer, Star Hustler. As a result, the renamed the show Star Gazer to avert any confusion. On August 20,2010, Jack Horkheimer died, during that time, the program continued to use the same format with a series of guest hosts filling in for Horkheimer. The shows theme music from its debut in 1976 until October 2011 was Isao Tomitas electronic rendition of Claude Debussys Arabesque No,1, from Tomitas album Snowflakes Are Dancing. According to the former Star Gazer website, this is the most frequently asked question the producers receive, on October 3,2011, the programs name was changed to Star Gazers. The shows new opening sequence featured a new logo and new theme music done in a rock style. With the name change, the format was also changed to include two co-hosts who appeared together in each episode. A new website for the show was launched as well, the show still retains the old format of the show using Green Screens, and still ends with Horkeimers closing phrase, Keep Looking Up
21.
Jet Propulsion Laboratory
–
The Jet Propulsion Laboratory is a federally funded research and development center and NASA field center in La Cañada Flintridge, California and Pasadena, California, United States. The JPL is managed by the nearby California Institute of Technology for NASA, the laboratorys primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASAs Deep Space Network and they are also responsible for managing the JPL Small-Body Database, and provides physical data and lists of publications for all known small Solar System bodies. The JPLs Space Flight Operations Facility and Twenty-Five-Foot Space Simulator are designated National Historic Landmarks, JPL traces its beginnings to 1936 in the Guggenheim Aeronautical Laboratory at the California Institute of Technology when the first set of rocket experiments were carried out in the Arroyo Seco. Malinas thesis advisor was engineer/aerodynamicist Theodore von Kármán, who arranged for U. S. Army financial support for this GALCIT Rocket Project in 1939. In 1941, Malina, Parsons, Forman, Martin Summerfield, in 1943, von Kármán, Malina, Parsons, and Forman established the Aerojet Corporation to manufacture JATO motors. The project took on the name Jet Propulsion Laboratory in November 1943, during JPLs Army years, the laboratory developed two deployed weapon systems, the MGM-5 Corporal and MGM-29 Sergeant intermediate range ballistic missiles. These missiles were the first US ballistic missiles developed at JPL and it also developed a number of other weapons system prototypes, such as the Loki anti-aircraft missile system, and the forerunner of the Aerobee sounding rocket. At various times, it carried out testing at the White Sands Proving Ground, Edwards Air Force Base. A lunar lander was developed in 1938-39 which influenced design of the Apollo Lunar Module in the 1960s. The team lost that proposal to Project Vanguard, and instead embarked on a project to demonstrate ablative re-entry technology using a Jupiter-C rocket. They carried out three successful flights in 1956 and 1957. Using a spare Juno I, the two organizations then launched the United States first satellite, Explorer 1, on February 1,1958, JPL was transferred to NASA in December 1958, becoming the agencys primary planetary spacecraft center. JPL engineers designed and operated Ranger and Surveyor missions to the Moon that prepared the way for Apollo, JPL also led the way in interplanetary exploration with the Mariner missions to Venus, Mars, and Mercury. In 1998, JPL opened the Near-Earth Object Program Office for NASA, as of 2013, it has found 95% of asteroids that are a kilometer or more in diameter that cross Earths orbit. JPL was early to employ women mathematicians, in the 1940s and 1950s, using mechanical calculators, women in an all-female computations group performed trajectory calculations. In 1961, JPL hired Dana Ulery as their first woman engineer to work alongside male engineers as part of the Ranger and Mariner mission tracking teams, when founded, JPLs site was a rocky flood-plain just outside the city limits of Pasadena. Almost all of the 177 acres of the U. S, the city of La Cañada Flintridge, California was incorporated in 1976, well after JPL attained international recognition with a Pasadena address
22.
ArXiv
–
In many fields of mathematics and physics, almost all scientific papers are self-archived on the arXiv repository. Begun on August 14,1991, arXiv. org passed the half-million article milestone on October 3,2008, by 2014 the submission rate had grown to more than 8,000 per month. The arXiv was made possible by the low-bandwidth TeX file format, around 1990, Joanne Cohn began emailing physics preprints to colleagues as TeX files, but the number of papers being sent soon filled mailboxes to capacity. Additional modes of access were added, FTP in 1991, Gopher in 1992. The term e-print was quickly adopted to describe the articles and its original domain name was xxx. lanl. gov. Due to LANLs lack of interest in the rapidly expanding technology, in 1999 Ginsparg changed institutions to Cornell University and it is now hosted principally by Cornell, with 8 mirrors around the world. Its existence was one of the factors that led to the current movement in scientific publishing known as open access. Mathematicians and scientists regularly upload their papers to arXiv. org for worldwide access, Ginsparg was awarded a MacArthur Fellowship in 2002 for his establishment of arXiv. The annual budget for arXiv is approximately $826,000 for 2013 to 2017, funded jointly by Cornell University Library, annual donations were envisaged to vary in size between $2,300 to $4,000, based on each institution’s usage. As of 14 January 2014,174 institutions have pledged support for the period 2013–2017 on this basis, in September 2011, Cornell University Library took overall administrative and financial responsibility for arXivs operation and development. Ginsparg was quoted in the Chronicle of Higher Education as saying it was supposed to be a three-hour tour, however, Ginsparg remains on the arXiv Scientific Advisory Board and on the arXiv Physics Advisory Committee. The lists of moderators for many sections of the arXiv are publicly available, additionally, an endorsement system was introduced in 2004 as part of an effort to ensure content that is relevant and of interest to current research in the specified disciplines. Under the system, for categories that use it, an author must be endorsed by an established arXiv author before being allowed to submit papers to those categories. Endorsers are not asked to review the paper for errors, new authors from recognized academic institutions generally receive automatic endorsement, which in practice means that they do not need to deal with the endorsement system at all. However, the endorsement system has attracted criticism for allegedly restricting scientific inquiry, perelman appears content to forgo the traditional peer-reviewed journal process, stating, If anybody is interested in my way of solving the problem, its all there – let them go and read about it. The arXiv generally re-classifies these works, e. g. in General mathematics, papers can be submitted in any of several formats, including LaTeX, and PDF printed from a word processor other than TeX or LaTeX. The submission is rejected by the software if generating the final PDF file fails, if any image file is too large. ArXiv now allows one to store and modify an incomplete submission, the time stamp on the article is set when the submission is finalized
23.
Small Solar System body
–
A Small Solar System Body is an object in the Solar System that is neither a planet, nor a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union, all other objects, except satellites, orbiting the Sun shall be referred to collectively as Small Solar System Bodies. These currently include most of the Solar System asteroids, most Trans-Neptunian Objects, comets and this encompasses all comets and all minor planets other than those that are dwarf planets. Except for the largest, which are in equilibrium, natural satellites differ from small Solar System bodies not in size. The orbits of satellites are not centered on the Sun, but around other Solar System objects such as planets, dwarf planets. Some of the larger small Solar System bodies may be reclassified in future as dwarf planets, the orbits of the vast majority of small Solar System bodies are located in two distinct areas, namely the asteroid belt and the Kuiper belt. These two belts possess some internal structure related to perturbations by the planets, and have fairly loosely defined boundaries. Other areas of the Solar System also encompass small bodies in smaller concentrations and these include the near-Earth asteroids, centaurs, comets, and scattered disc objects
24.
Minor-planet moon
–
A minor-planet moon is an astronomical object that orbits a minor planet as its natural satellite. It is thought that many asteroids and Kuiper belt objects may possess moons, the first modern era mention of the possibility of an asteroid satellite was in connection with an occultation of the bright star Gamma Ceti by the minor planet Hebe in 1977. The observer, amateur astronomer Paul D. Maley, detected an unmistakable 0.5 second disappearance of this naked eye star from a site near Victoria, many hours later, several observations were reported in Mexico attributed to the occultation by Hebe itself. Although not confirmed this documents the first formally documented case of a companion of an asteroid. As of October 2016, there are over 300 minor planets known to have moons, in addition to the terms satellite and moon, the term binary is sometimes used for minor planets with moons, and triple for minor planets with two moons. If one object is much bigger it can be referred to as the primary, when binary minor planets are similar in size, the Minor Planet Center refers to them as binary companions instead of referring to the smaller body as a satellite. A good example of a true binary is the 90 Antiope system, small satellites are often referred to as moonlets. As of February 2017, over 330 moons of planets have been discovered. For example, in 1978, stellar occultation observations were claimed as evidence of a satellite for the asteroid 532 Herculina, however, later more-detailed imaging by the Hubble Telescope did not reveal a satellite, and the current consensus is that Herculina does not have a significant satellite. There were other reports of asteroids having companions in the following years. In 1993, the first asteroid moon was confirmed when the Galileo probe discovered the small Dactyl orbiting 243 Ida in the asteroid belt, the second was discovered around 45 Eugenia in 1998. In 2001,617 Patroclus and its same-sized companion Menoetius became the first known asteroids in the Jupiter trojans. The first trans-Neptunian binary after Pluto–Charon,1998 WW31, was resolved in 2002. Triple asteroids, or trinary asteroids, are known since 2005 and this was followed by the discovery of a second moon orbiting 45 Eugenia. Also in 2005, the Kuiper belt object Haumea was discovered to have two moons, making it the second KBO after Pluto known to have more than one moon, additionally,216 Kleopatra and 93 Minerva were discovered to be trinary asteroids in 2008 and 2009 respectively. Since the first few trinary asteroids were discovered, more continue to be discovered at a rate of one a year. Most recently discovered was a moon orbiting the belt asteroid 130 Elektra. List of multiple planets, The data about the populations of binary objects are still patchy
25.
Aten asteroid
–
The Aten asteroids are a group of asteroids, whose orbit brings them into proximity with Earth. The group is named after 2062 Aten, the first of its kind, since then, more than 1,000 Atens have been discovered, of which many are classified as potentially hazardous asteroids. For a list of existing articles, see Aten asteroids and List of Aten asteroids, Aten asteroids are defined by having a semi-major axis of less than one astronomical unit, the average distance from the Earth to the Sun. They also have a greater than 0.983 AU. Asteroids orbits can be highly eccentric, an Aten orbit need not be entirely contained within Earths orbit, as nearly all known Aten asteroids have their aphelion greater than 1 AU although their semi-major axis is less than 1 AU. Observation of objects inferior to the Earths orbit is difficult and this difficulty may be the cause of some sampling bias in the apparent preponderance of eccentric Atens, Aten asteroids account for only about 6% of the known near-Earth asteroid population. Many more Apollo-class asteroids are known than Aten-class asteroids, possibly because of the sampling bias, the shortest semi-major axis for any known Aten asteroid is 2008 EY5 at 0.626 AU. A very small possibility of impact remained for 2036, but this was also eliminated, there are also sixteen known Apohele asteroids, traditionally listed as a subclass of Atens, but generally regarded a separate class of their own. Unlike Atens, Apoheles permanently stay within Earths orbit and do not cross it