1.
Siding Spring Observatory
–
The observatory is situated 1,165 metres above sea level in the Warrumbungle National Park on Mount Woorat, also known as Siding Spring Mountain. Siding Spring Observatory is owned by the Australian National University and is part of the Mount Stromlo, more than A$100 million worth of research equipment is located at the observatory. There are 52 telescopes on site, the original Mount Stromlo Observatory was set up by the Commonwealth Government in 1924. After duty supplying optical components to the military in World War II, between 1953 and 1974, the 74-inch reflecting telescope at Mount Stromlo was the largest optical telescope in Australia. Already in the 1950s, the lights of Canberra, ACT, had brightened the sky at Mount Stromlo to such an extent that many faint astronomical objects had been overwhelmed by light pollution. The search for a new site was initiated by Bart Bok, after a site survey was undertaken the number of possible locations was narrowed down to two — Siding Spring and Mount Bingar near Griffith, also in New South Wales. Siding Spring was first suggested for astronomy by Harley Wood, the New South Wales Government Astronomer at the time, arthur Hogg did much of the preliminary site testing. The Siding Spring site was selected by the ANU in 1962 from many possible locations because of the dark. By the mid-1960s the ANU had set up three telescopes, together with supporting facilities, such as sealed roads, staff accommodation, electricity and water. In 1984, the Prime Minister, Bob Hawke, opened the ANUs largest telescope, since the 1950s, and quite independently of developments at Siding Spring, the Australian and British governments had been negotiating about the construction of a very large telescope. During the construction of the AAT in the early 1970s, the British Science Research Council also built the UK Schmidt Telescope,1 kilometre to the northeast of the AAT dome. The considerably wider field of view of the Schmidt optical design complements the narrower field of the AAT, interesting objects so discovered are then studied in greater detail on the larger instrument. In 1987, the Schmidt Telescope was amalgamated with the AAT, Siding Spring Observatory also houses many telescopes from institutions across the world including, Korea, America, the U. K. Poland, Hungary, Germany and Russia. In 1990, the earth-satellite tracking facility of the Royal Greenwich Observatory was closed down after 10 years of operation, las Cumbres Observatory Global Telescope Network operate a 2-metre Ritchey Chretien telescope used for research, citizen science, and education purposes by users across the globe. Currently there are one thousand registered users of the Faulkes Telescopes. The wide field of view and the fast response permit measurements inaccessible to conventional instruments. HAT-South is a project to search for transiting planets in the Southern Hemisphere. It uses a network of telescopes to monitor hundreds of thousands of bright stars

2.
Apsis
–
An apsis is an extreme point in an objects orbit. The word comes via Latin from Greek and is cognate with apse, for elliptic orbits about a larger body, there are two apsides, named with the prefixes peri- and ap-, or apo- added to a reference to the thing being orbited. For a body orbiting the Sun, the point of least distance is the perihelion, the terms become periastron and apastron when discussing orbits around other stars. For any satellite of Earth including the Moon the point of least distance is the perigee, for objects in Lunar orbit, the point of least distance is the pericynthion and the greatest distance the apocynthion. For any orbits around a center of mass, there are the terms pericenter and apocenter, periapsis and apoapsis are equivalent alternatives. A straight line connecting the pericenter and apocenter is the line of apsides and this is the major axis of the ellipse, its greatest diameter. For a two-body system the center of mass of the lies on this line at one of the two foci of the ellipse. When one body is larger than the other it may be taken to be at this focus. Historically, in systems, apsides were measured from the center of the Earth. In orbital mechanics, the apsis technically refers to the distance measured between the centers of mass of the central and orbiting body. However, in the case of spacecraft, the family of terms are used to refer to the orbital altitude of the spacecraft from the surface of the central body. The arithmetic mean of the two limiting distances is the length of the axis a. The geometric mean of the two distances is the length of the semi-minor axis b, the geometric mean of the two limiting speeds is −2 ε = μ a which is the speed of a body in a circular orbit whose radius is a. The words pericenter and apocenter are often seen, although periapsis/apoapsis are preferred in technical usage, various related terms are used for other celestial objects. The -gee, -helion and -astron and -galacticon forms are used in the astronomical literature when referring to the Earth, Sun, stars. The suffix -jove is occasionally used for Jupiter, while -saturnium has very rarely used in the last 50 years for Saturn. The -gee form is used as a generic closest approach to planet term instead of specifically applying to the Earth. During the Apollo program, the terms pericynthion and apocynthion were used when referring to the Moon, regarding black holes, the term peri/apomelasma was used by physicist Geoffrey A. Landis in 1998 before peri/aponigricon appeared in the scientific literature in 2002

3.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction

4.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit

5.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky

6.
Solar System
–
The Solar System is the gravitationally bound system comprising the Sun and the objects that orbit it, either directly or indirectly. Of those objects that orbit the Sun directly, the largest eight are the planets, with the remainder being significantly smaller objects, such as dwarf planets, of the objects that orbit the Sun indirectly, the moons, two are larger than the smallest planet, Mercury. The Solar System formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. The vast majority of the mass is in the Sun. The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being composed of rock. The four outer planets are giant planets, being more massive than the terrestrials. All planets have almost circular orbits that lie within a flat disc called the ecliptic. The Solar System also contains smaller objects, the asteroid belt, which lies between the orbits of Mars and Jupiter, mostly contains objects composed, like the terrestrial planets, of rock and metal. Beyond Neptunes orbit lie the Kuiper belt and scattered disc, which are populations of trans-Neptunian objects composed mostly of ices, within these populations are several dozen to possibly tens of thousands of objects large enough that they have been rounded by their own gravity. Such objects are categorized as dwarf planets, identified dwarf planets include the asteroid Ceres and the trans-Neptunian objects Pluto and Eris. In addition to two regions, various other small-body populations, including comets, centaurs and interplanetary dust clouds. Six of the planets, at least four of the dwarf planets, each of the outer planets is encircled by planetary rings of dust and other small objects. The solar wind, a stream of charged particles flowing outwards from the Sun, the heliopause is the point at which pressure from the solar wind is equal to the opposing pressure of the interstellar medium, it extends out to the edge of the scattered disc. The Oort cloud, which is thought to be the source for long-period comets, the Solar System is located in the Orion Arm,26,000 light-years from the center of the Milky Way. For most of history, humanity did not recognize or understand the concept of the Solar System, the invention of the telescope led to the discovery of further planets and moons. The principal component of the Solar System is the Sun, a G2 main-sequence star that contains 99. 86% of the known mass. The Suns four largest orbiting bodies, the giant planets, account for 99% of the mass, with Jupiter. The remaining objects of the Solar System together comprise less than 0. 002% of the Solar Systems total mass, most large objects in orbit around the Sun lie near the plane of Earths orbit, known as the ecliptic