1.
Projection (linear algebra)
–
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself such that P2 = P. That is, whenever P is applied twice to any value, though abstract, this definition of projection formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on an object by examining the effect of the projection on points in the object. For example, the function maps the point in three-dimensional space R3 to the point is an orthogonal projection onto the x–y plane. This function is represented by the matrix P =, the action of this matrix on an arbitrary vector is P =. To see that P is indeed a projection, i. e. P = P2, a simple example of a non-orthogonal projection is P =. Via matrix multiplication, one sees that P2 = = = P. proving that P is indeed a projection, the projection P is orthogonal if and only if α =0. Let W be a finite dimensional space and P be a projection on W. Suppose the subspaces U and V are the range and kernel of P respectively, then P has the following properties, By definition, P is idempotent. P is the identity operator I on U ∀ x ∈ U, P x = x and we have a direct sum W = U ⊕ V. Every vector x ∈ W may be decomposed uniquely as x = u + v with u = P x and v = x − P x = x, the range and kernel of a projection are complementary, as are P and Q = I − P. The operator Q is also a projection and the range and kernel of P become the kernel and range of Q and we say P is a projection along V onto U and Q is a projection along U onto V. In infinite dimensional spaces, the spectrum of a projection is contained in as −1 =1 λ I +1 λ P. Only 0 or 1 can be an eigenvalue of a projection, the corresponding eigenspaces are the kernel and range of the projection. Decomposition of a space into direct sums is not unique in general. Therefore, given a subspace V, there may be many projections whose range is V, if a projection is nontrivial it has minimal polynomial x 2 − x = x, which factors into distinct roots, and thus P is diagonalizable. The product of projections is not, in general, a projection, if projections commute, then their product is a projection. When the vector space W has a product and is complete the concept of orthogonality can be used
2.
Petrie polygon
–
In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon such that every consecutive sides belong to one of the facets. The Petrie polygon of a polygon is the regular polygon itself. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the interior to it. The plane in question is the Coxeter plane of the group of the polygon. These polygons and projected graphs are useful in visualizing symmetric structure of the regular polytopes. John Flinders Petrie was the son of Egyptologist Flinders Petrie. He was born in 1907 and as a schoolboy showed remarkable promise of mathematical ability, in periods of intense concentration he could answer questions about complicated four-dimensional objects by visualizing them. He first noted the importance of the skew polygons which appear on the surface of regular polyhedra. When my incredulity had begun to subside, he described them to me, one consisting of squares, six at each vertex, in 1938 Petrie collaborated with Coxeter, Patrick du Val, and H. T. Flather to produce The Fifty-Nine Icosahedra for publication, realizing the geometric facility of the skew polygons used by Petrie, Coxeter named them after his friend when he wrote Regular Polytopes. In 1972, a few months after his retirement, Petrie was killed by a car attempting to cross a motorway near his home in Surrey. The idea of Petrie polygons was later extended to semiregular polytopes, the Petrie polygon of the regular polyhedron has h sides, where h+2=24/. The regular duals, and, are contained within the same projected Petrie polygon, three of the Kepler–Poinsot polyhedra have hexagonal, and decagrammic, petrie polygons. The Petrie polygon projections are most useful for visualization of polytopes of dimension four and this table represents Petrie polygon projections of 3 regular families, and the exceptional Lie group En which generate semiregular and uniform polytopes for dimensions 4 to 8. Coxeter, H. S. M. Regular Polytopes, 3rd ed, Section 4.3 Flags and Orthoschemes, Section 11.3 Petrie polygons Ball, W. W. R. and H. S. M. Coxeter Mathematical Recreations and Essays, 13th ed. The Beauty of Geometry, Twelve Essays, Dover Publications LCCN 99-35678 Peter McMullen, Egon Schulte Abstract Regular Polytopes, ISBN 0-521-81496-0 Steinberg, Robert, ON THE NUMBER OF SIDES OF A PETRIE POLYGON Weisstein, Eric W. Petrie polygon. Weisstein, Eric W. Cross polytope graphs, Weisstein, Eric W. Gosset graph 3_21
3.
Uniform 9-polytope
–
In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets, a uniform 9-polytope is one which is vertex-transitive, and constructed from uniform 8-polytope facets. Regular 9-polytopes can be represented by the Schläfli symbol, with w 8-polytope facets around each peak, There are exactly three such convex regular 9-polytopes, - 9-simplex - 9-cube - 9-orthoplex There are no nonconvex regular 9-polytopes. The topology of any given 9-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, - 9-orthoplex,611 - The A9 family has symmetry of order 3628800. There are 256+16-1=271 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings, bowers-style acronym names are given in parentheses for cross-referencing. There are 511 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings, eleven cases are shown below, Nine rectified forms and 2 truncations. Bowers-style acronym names are given in parentheses for cross-referencing, bowers-style acronym names are given in parentheses for cross-referencing. The D9 family has symmetry of order 92,897,280 and this family has 3×128−1=383 Wythoffian uniform polytopes, generated by marking one or more nodes of the D9 Coxeter-Dynkin diagram. Of these,255 are repeated from the B9 family and 128 are unique to this family, bowers-style acronym names are given in parentheses for cross-referencing. However, there are 4 noncompact hyperbolic Coxeter groups of rank 9, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 A. S. M. Miller, Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, N. W, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. Dissertation, University of Toronto,1966 Klitzing, Richard, polytope names Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary Glossary for hyperspace, George Olshevsky
4.
Cross-polytope
–
In geometry, a cross-polytope, orthoplex, hyperoctahedron, or cocube is a regular, convex polytope that exists in n-dimensions. A 2-orthoplex is a square, a 3-orthoplex is an octahedron. Its facets are simplexes of the dimension, while the cross-polytopes vertex figure is another cross-polytope from the previous dimension. The vertices of a cross-polytope are all the permutations of, the cross-polytope is the convex hull of its vertices. The n-dimensional cross-polytope can also be defined as the unit ball in the ℓ1-norm on Rn. In 1 dimension the cross-polytope is simply the line segment, in 2 dimensions it is a square with vertices, in 3 dimensions it is an octahedron—one of the five convex regular polyhedra known as the Platonic solids. Higher-dimensional cross-polytopes are generalizations of these, the cross-polytope is the dual polytope of the hypercube. The 1-skeleton of a n-dimensional cross-polytope is a Turán graph T, the 4-dimensional cross-polytope also goes by the name hexadecachoron or 16-cell. It is one of six convex regular 4-polytopes and these 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. The cross polytope family is one of three regular polytope families, labeled by Coxeter as βn, the two being the hypercube family, labeled as γn, and the simplices, labeled as αn. A fourth family, the infinite tessellations of hypercubes, he labeled as δn, the n-dimensional cross-polytope has 2n vertices, and 2n facets all of which are n−1 simplices. The vertex figures are all n −1 cross-polytopes, the Schläfli symbol of the cross-polytope is. The dihedral angle of the n-dimensional cross-polytope is δ n = arccos and this gives, δ2 = arccos = 90°, δ3 = arccos =109. 47°, δ4 = arccos = 120°, δ5 = arccos =126. 87°. The volume of the n-dimensional cross-polytope is 2 n n. Petrie polygon projections map the points into a regular 2n-gon or lower order regular polygons. A second projection takes the 2-gon petrie polygon of the dimension, seen as a bipyramid, projected down the axis. The vertices of a cross polytope are all at equal distance from each other in the Manhattan distance. Kusners conjecture states that this set of 2d points is the largest possible equidistant set for this distance, Regular complex polytopes can be defined in complex Hilbert space called generalized orthoplexes, βpn =22. 2p, or. Real solutions exist with p=2, i. e. β2n = βn =22.22 =, for p>2, they exist in C n
5.
8-simplex
–
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices,36 edges,84 triangle faces,126 tetrahedral cells,126 5-cell 4-faces,84 5-simplex 5-faces,36 6-simplex 6-faces and its dihedral angle is cos−1, or approximately 82. 82°. It can also be called an enneazetton, or ennea-8-tope, as a 9-facetted polytope in eight-dimensions, the name enneazetton is derived from ennea for nine facets in Greek and -zetta for having seven-dimensional facets, and -on. This construction is based on facets of the 9-orthoplex and this polytope is a facet in the uniform tessellations,251, and 521 with respective Coxeter-Dynkin diagrams, This polytope is one of 135 uniform 8-polytopes with A8 symmetry. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 8D uniform polytopes x3o3o3o3o3o3o3o - ene, Polytopes of Various Dimensions Multi-dimensional Glossary
6.
7-simplex
–
In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices,28 edges,56 triangle faces,70 tetrahedral cells,56 5-cell 5-faces,28 5-simplex 6-faces and its dihedral angle is cos−1, or approximately 81. 79°. It can also be called an octaexon, or octa-7-tope, as an 8-facetted polytope in 7-dimensions, the name octaexon is derived from octa for eight facets in Greek and -ex for having six-dimensional facets, and -on. Jonathan Bowers gives an octaexon the acronym oca, the Cartesian coordinates of the vertices of an origin-centered regular octaexon having edge length 2 are, More simply, the vertices of the 7-simplex can be positioned in 8-space as permutations of. This construction is based on facets of the 8-orthoplex and this polytope is a facet in the uniform tessellation 331 with Coxeter-Dynkin diagram, This polytope is one of 71 uniform 7-polytopes with A7 symmetry. Polytopes of Various Dimensions Multi-dimensional Glossary
7.
6-simplex
–
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices,21 edges,35 triangle faces,35 tetrahedral cells,21 5-cell 4-faces and its dihedral angle is cos−1, or approximately 80. 41°. It can also be called a heptapeton, or hepta-6-tope, as a 7-facetted polytope in 6-dimensions, the name heptapeton is derived from hepta for seven facets in Greek and -peta for having five-dimensional facets, and -on. Jonathan Bowers gives a heptapeton the acronym hop, the regular 6-simplex is one of 35 uniform 6-polytopes based on the Coxeter group, all shown here in A6 Coxeter plane orthographic projections. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 6D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary
8.
5-simplex
–
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices,15 edges,20 triangle faces,15 tetrahedral cells and it has a dihedral angle of cos−1, or approximately 78. 46°. It can also be called a hexateron, or hexa-5-tope, as a 6-facetted polytope in 5-dimensions, the name hexateron is derived from hexa- for having six facets and teron for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix, the hexateron can be constructed from a 5-cell by adding a 6th vertex such that it is equidistant from all the other vertices of the 5-cell. These construction can be seen as facets of the 6-orthoplex or rectified 6-cube respectively and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral dihedron and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron, the 5-simplex, as 220 polytope is first in dimensional series 22k. The regular 5-simplex is one of 19 uniform polytera based on the Coxeter group, the 5-simplex can also be considered a 5-cell pyramid, constructed as a 5-cell base in a 4-space hyperplane, and an apex point above the hyperplane. The five sides of the pyramid are made of 5-cell cells, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 5D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary