1.
89 (number)
–
89 is the natural number following 88 and preceding 90. 89 is, the 24th prime number, following 83 and preceding 97, the smallest Sophie Germain prime to start a Cunningham chain of the first kind of six terms. An Eisenstein prime with no part and real part of the form 3n −1. A Fibonacci number and thus a Fibonacci prime as well, the first few digits of its reciprocal coincide with the Fibonacci sequence due to the identity 189 = ∑ n =1 ∞ F ×10 − =0.011235955 …. A Markov number, appearing in solutions to the Markov Diophantine equation with other odd-indexed Fibonacci numbers, M89 is the 10th Mersenne prime. Although 89 is not a Lychrel number in base 10, it is unusual that it takes 24 iterations of the reverse, among the known non-Lychrel numbers in the first 10000 integers, no other number requires that many or more iterations. The palindrome reached is also unusually large, eighty-nine is, The atomic number of actinium. Messier object M89, a magnitude 11.5 elliptical galaxy in the constellation Virgo, the New General Catalogue object NGC89, a magnitude 13.5 peculiar spiral galaxy in the constellation Phoenix and a member of Roberts Quartet. The Oklahoma Redhawks, an American minor league team, were formerly known as the Oklahoma 89ers. The number alludes to the Land Run of 1889, when the Unassigned Lands of Oklahoma were opened to white settlement, the teams home of Oklahoma City was founded during this event. In Rugby, an 89 or eight-nine move is a following a scrum, in which the number 8 catches the ball. The Elite 89 Award is presented by the U. S. NCAA to the participant in each of the NCAAs 89 championship finals with the highest grade point average. The jersey number 89 has been retired by three National Football League teams in honor of past playing greats, The Baltimore Colts, for Hall of Famer Gino Marchetti, the franchise continues to honor the number in its current identity as the Indianapolis Colts. The Boston Patriots, for Bob Dee, the franchise, now the New England Patriots, continues to honor the number. The Chicago Bears, for Mike Ditka, eighty-nine is also, The designation of Interstate 89, a freeway that runs from New Hampshire to Vermont The designation of U. S. The number of units of each colour in the board game Blokus The number of the French department Yonne Information Is Beautiful cites eighty-nine as one of the words censored on the Chinese internet
2.
90 (number)
–
90 is the natural number preceded by 89 and followed by 91. In English speech, the numbers 90 and 19 are often confused, when carefully enunciated, they differ in which syllable is stressed,19 /naɪnˈtiːn/ vs 90 /ˈnaɪnti/. However, in such as 1999, and when contrasting numbers in the teens and when counting, such as 17,18,19. 90 is, a perfect number because it is the sum of its unitary divisors. A semiperfect number because it is equal to the sum of a subset of its divisors, a Perrin number, preceded in the sequence by 39,51,68. Palindromic and a repdigit in bases 14,17,29, a Harshad number since 90 is divisible by the sum of its base 10 digits. In normal space, the angles of a rectangle measure 90 degrees each. Also, in a triangle, the angle opposing the hypotenuse measures 90 degrees. Thus, an angle measuring 90 degrees is called a right angle, ninety is, the atomic number of thorium, an actinide. As an atomic weight,90 identifies an isotope of strontium, the latitude in degrees of the North and the South geographical poles. NFL, New York Jets Dennis Byrds #90 is retired +90 is the code for international direct dial phone calls to Turkey,90 is the code for the French département Belfort
3.
95 (number)
–
95 is the natural number following 94 and preceding 96. 95 is, the thirtieth distinct semiprime and the fifth of the form, the third composite number in the 6-aliquot tree. The aliquot sum of 95 is 25 within the aliquot sequence, the last member in the third triplet of distinct semiprimes 93,94 and 95. At ninety-five, the Mertens function sets a new high of 2, further, the Saros number of the lunar eclipse series which began on 331 April and ended on 1611 May, with a duration of 1280.1 years and 72 lunar eclipses. Ninety-five is also, The atomic number of americium, an actinide, the number of theses in Martin Luthers 95 Theses. 95 Poems by E. E. Cummings The book The Prince, Utopia, Ninety-Five Thesis by Sir Thomas More The designation of American Interstate 95, U. S. Highway 95, a freeway that runs through the western part of the United States. In Toy Story 3, Woody is seen driving a locomotive at the beginning of the film. The steam locomotives number is 95 in reference to Lightning McQueens racing number, OC Transpo Route 95, A Transitway bus route in Ottawa, Ontario Part of the designation of, Z-95 Headhunter, a fictitious starfighter from the Star Wars Expanded Universe. STS-95 Space Shuttle Discovery mission launched October 28,1998 and it was the historic second space flight for Senator John Glenn. ANSI/ISA-95, or ISA-95, is a standard for developing an automated interface between enterprise and control systems Presidents signal in Phillips Code. A telegraph wire signal used to indicate top priority, +95 is the ITU country code for the Union of Myanmar
4.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number
5.
Integer
–
An integer is a number that can be written without a fractional component. For example,21,4,0, and −2048 are integers, while 9.75, 5 1⁄2, the set of integers consists of zero, the positive natural numbers, also called whole numbers or counting numbers, and their additive inverses. This is often denoted by a boldface Z or blackboard bold Z standing for the German word Zahlen, ℤ is a subset of the sets of rational and real numbers and, like the natural numbers, is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers, in algebraic number theory, the integers are sometimes called rational integers to distinguish them from the more general algebraic integers. In fact, the integers are the integers that are also rational numbers. Like the natural numbers, Z is closed under the operations of addition and multiplication, that is, however, with the inclusion of the negative natural numbers, and, importantly,0, Z is also closed under subtraction. The integers form a ring which is the most basic one, in the following sense, for any unital ring. This universal property, namely to be an object in the category of rings. Z is not closed under division, since the quotient of two integers, need not be an integer, although the natural numbers are closed under exponentiation, the integers are not. The following lists some of the properties of addition and multiplication for any integers a, b and c. In the language of algebra, the first five properties listed above for addition say that Z under addition is an abelian group. As a group under addition, Z is a cyclic group, in fact, Z under addition is the only infinite cyclic group, in the sense that any infinite cyclic group is isomorphic to Z. The first four properties listed above for multiplication say that Z under multiplication is a commutative monoid. However, not every integer has an inverse, e. g. there is no integer x such that 2x =1, because the left hand side is even. This means that Z under multiplication is not a group, all the rules from the above property table, except for the last, taken together say that Z together with addition and multiplication is a commutative ring with unity. It is the prototype of all objects of algebraic structure. Only those equalities of expressions are true in Z for all values of variables, note that certain non-zero integers map to zero in certain rings. The lack of zero-divisors in the means that the commutative ring Z is an integral domain
6.
Negative number
–
In mathematics, a negative number is a real number that is less than zero. If positive represents movement to the right, negative represents movement to the left, if positive represents above sea level, then negative represents below level. If positive represents a deposit, negative represents a withdrawal and they are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset, if a quantity may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. In the medical context of fighting a tumor, an expansion could be thought of as a negative shrinkage, negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common idea of an opposite is reflected in arithmetic. For example, − −3 =3 because the opposite of an opposite is the original thing, negative numbers are usually written with a minus sign in front. For example, −3 represents a quantity with a magnitude of three, and is pronounced minus three or negative three. To help tell the difference between a subtraction operation and a number, occasionally the negative sign is placed slightly higher than the minus sign. Conversely, a number that is greater than zero is called positive, the positivity of a number may be emphasized by placing a plus sign before it, e. g. +3. In general, the negativity or positivity of a number is referred to as its sign, every real number other than zero is either positive or negative. The positive whole numbers are referred to as natural numbers, while the positive and negative numbers are referred to as integers. In bookkeeping, amounts owed are often represented by red numbers, or a number in parentheses, Liu Hui established rules for adding and subtracting negative numbers. By the 7th century, Indian mathematicians such as Brahmagupta were describing the use of negative numbers, islamic mathematicians further developed the rules of subtracting and multiplying negative numbers and solved problems with negative coefficients. Western mathematicians accepted the idea of numbers by the 17th century. Prior to the concept of numbers, mathematicians such as Diophantus considered negative solutions to problems false. Negative numbers can be thought of as resulting from the subtraction of a number from a smaller. For example, negative three is the result of subtracting three from zero,0 −3 = −3, in general, the subtraction of a larger number from a smaller yields a negative result, with the magnitude of the result being the difference between the two numbers
7.
20 (number)
–
20 is the natural number following 19 and preceding 21. A group of twenty units may also be referred to as a score,20 is a tetrahedral number as 1,4,10,20. 20 is the basis for vigesimal number systems,20 is the third composite number comprising the product of a squared prime and a prime, and also the second member of the q family in this form. 20 has a sum of 22. Accordingly,20 is the abundant number and demonstrates an 8-member aliquot sequence. 20 is the smallest primitive abundant number,20 is the 4th composite number in the 7-aliquot tree. Two numbers have 20 as their sum, the discrete semiprime 34. Only 2 other square primes are abundant 12 and 18,20 can be written as the sum of three Fibonacci numbers uniquely, i. e.20 =13 +5 +2. The product of the number of divisors and the number of divisors of 20 is exactly 20. 20 is the number of required to optimally solve a Rubiks Cube in the worst case. 20 is the number with more than one digit that can be written from base 2 to base 20 using only the digits 0 to 9. The third magic number in physics, the IAU shower number for Coma Berenicids. The number of amino acids that are encoded by the standard genetic code. In some countries, the number 20 is used as an index in measuring visual acuity, 20/20 indicates normal vision at 20 feet, although it is commonly used to mean perfect vision. When someone is able to see only after an event how things turned out, the Baltimore Orioles and Cincinnati Reds, both for Hall of Famer Frank Robinson. The Kansas City Royals, for Frank White, the Los Angeles Dodgers, for Hall of Famer Don Sutton. The Philadelphia Phillies, for Hall of Famer Mike Schmidt, the Pittsburgh Pirates, for Hall of Famer Pie Traynor. The St. Louis Cardinals, for Hall of Famer Lou Brock, the San Francisco Giants, for Hall of Famer Monte Irvin, who played for the team when it was the New York Giants
8.
30 (number)
–
30 is the natural number following 29 and preceding 31. Thirty is the sum of the first four squares, which makes it a square pyramidal number and it is a primorial and is the smallest Giuga number. 30 is the smallest sphenic number, and the smallest of the form 2 ×3 × r,30 has an aliquot sum of 42, the second sphenic number and all sphenic numbers of this form have an aliquot sum 12 greater than themselves. The aliquot sequence of 30 is 16 members long, it comprises Thirty has but one number for which it is the aliquot sum, adding up some subsets of its divisors gives 30, hence 30 is a semiperfect number. 30 is the largest number such that all smaller than itself. A polygon with thirty sides is called a triacontagon, the icosahedron and the dodecahedron are Platonic solids with 30 edges. The icosidodecahedron is an Archimedean solid with 30 vertices, and the Tutte–Coxeter graph is a graph with 30 vertices. The atomic number of zinc is 30 Messier object M30, a magnitude 8, the duration of Saros series 30 was 1496.5 years, and it contained 84 solar eclipses. Further, the Saros number of the lunar eclipse series began on June 19,1803 BC. The duration of Saros series 30 was 1316.2 years, Thirty is, Used to indicate the end of a newspaper story, a copy editors typographical notation. S. Judas Iscariot betrayed Jesus for 30 pieces of silver, one of the rallying-cries of the 1960s student/youth protest movement was the slogan, Dont trust anyone over thirty. In Franz Kafkas novel The Trial Joseph wakes up on the morning of his birthday to find himself under arrest for an unspecified crime. After making many attempts to find the nature of the crime or the name of his accuser. The number of uprights that formed the Sarsen Circle at Stonehenge, western Christianitys most prolific 20th century essayist, F. W. Also in that essay Boreham writes It was said of Keats, in tennis, the number 30 represents the second point gained in a game. Under NCAA rules for basketball, the offensive team has 30 seconds to attempt a shot. As of 2012, three of the four major leagues in the United States and Canada have 30 teams each. The California Angels baseball team retired the number in honor of its most notable wearer, Nolan Ryan, the San Francisco Giants extended the same honor to Orlando Cepeda
9.
40 (number)
–
Despite being related to the word four, the modern spelling of 40 is forty. The archaic form fourty is now considered a misspelling, the modern spelling possibly reflects a pronunciation change due to the horse–hoarse merger. Forty is a number, an octagonal number, and as the sum of the first four pentagonal numbers. Adding up some subsets of its divisors gives 40, hence 40 is a semiperfect number, given 40, the Mertens function returns 0. 40 is the smallest number n with exactly 9 solutions to the equation φ = n, Forty is the number of n-queens problem solutions for n =7. Since 402 +1 =1601 is prime,40 is a Størmer number,40 is a repdigit in base 3 and a Harshad number in base 10. Negative forty is the temperature at which the Fahrenheit and Celsius scales correspond. It is referred to as either minus forty or forty below, the planet Venus forms a pentagram in the night sky every eight years with it returning to its original point every 40 years with a 40-day regression. The duration of Saros series 40 was 1280.1 years, lunar eclipse series which began on -1387 February 12 and ended on -71 April 12. The duration of Saros series 40 was 1316.2 years, the number 40 is used in Jewish, Christian, Islamic, and other Middle Eastern traditions to represent a large, approximate number, similar to umpteen. In the Hebrew Bible, forty is often used for periods, forty days or forty years. Rain fell for forty days and forty nights during the Flood, spies explored the land of Israel for forty days. The Hebrew people lived in the Sinai desert for forty years and this period of years represents the time it takes for a new generation to arise. Moses life is divided into three 40-year segments, separated by his growing to adulthood, fleeing from Egypt, and his return to lead his people out, several Jewish leaders and kings are said to have ruled for forty years, that is, a generation. Examples include Eli, Saul, David, and Solomon, goliath challenged the Israelites twice a day for forty days before David defeated him. He went up on the day of Tammuz to beg forgiveness for the peoples sin. He went up on the first day of Elul and came down on the day of Tishrei. A mikvah consists of 40 seah of water 40 lashes is one of the punishments meted out by the Sanhedrin, One of the prerequisites for a man to study Kabbalah is that he is forty years old
10.
60 (number)
–
60 is the natural number following 59 and preceding 61. Being three times 20, it is called three score in older literature. It is a number, with divisors 1,2,3,4,5,6,10,12,15,20,30. Because it is the sum of its divisors, it is a unitary perfect number. Being ten times a number, it is a semiperfect number. It is the smallest number divisible by the numbers 1 to 6 and it is the smallest number with exactly 12 divisors. It is the sum of a pair of twin primes and the sum of four consecutive primes and it is adjacent to two primes. It is the smallest number that is the sum of two odd primes in six ways, the smallest non-solvable group has order 60. There are four Archimedean solids with 60 vertices, the icosahedron, the rhombicosidodecahedron, the snub dodecahedron. The skeletons of these polyhedra form 60-node vertex-transitive graphs, there are also two Archimedean solids with 60 edges, the snub cube and the icosidodecahedron. The skeleton of the forms a 60-edge symmetric graph. There are 60 one-sided hexominoes, the polyominoes made from six squares, in geometry, it is the number of seconds in a minute, and the number of minutes in a degree. In normal space, the three angles of an equilateral triangle each measure 60 degrees, adding up to 180 degrees. Because it is divisible by the sum of its digits in base 10, a number system with base 60 is called sexagesimal. It is the smallest positive integer that is written only the smallest. The first fullerene to be discovered was buckminsterfullerene C60, an allotrope of carbon with 60 atoms in each molecule and this ball is known as a buckyball, and looks like a soccer ball. The atomic number of neodymium is 60, and cobalt-60 is an isotope of cobalt. The electrical utility frequency in western Japan, South Korea, Taiwan, the Philippines, Saudi Arabia, the United States, and several other countries in the Americas is 60 Hz
11.
80 (number)
–
80 is the natural number following 79 and preceding 81. 80 is, the sum of Eulers totient function φ over the first sixteen integers, a semiperfect number, since adding up some subsets of its divisors gives 80. Palindromic in bases 3,6,9,15,19 and 39, a repdigit in bases 3,9,15,19 and 39. A Harshad number in bases 2,3,4,5,6,7,9,10,11,13,15 and 16 The Pareto principle states that, for many events, roughly 80% of the effects come from 20% of the causes. Every solvable configuration of the Fifteen puzzle can be solved in no more than 80 single-tile moves, the atomic number of mercury According to Exodus 7,7, Moses was 80 years old when he initially spoke to Pharaoh on behalf of his people. Today,80 years of age is the age limit for cardinals to vote in papal elections. Jerry Rice wore the number 80 for the majority of his NFL career
12.
Factorization
–
In mathematics, factorization or factoring is the decomposition of an object into a product of other objects, or factors, which when multiplied together give the original. For example, the number 15 factors into primes as 3 ×5, in all cases, a product of simpler objects is obtained. The aim of factoring is usually to reduce something to “basic building blocks”, such as numbers to prime numbers, factoring integers is covered by the fundamental theorem of arithmetic and factoring polynomials by the fundamental theorem of algebra. Viètes formulas relate the coefficients of a polynomial to its roots, the opposite of polynomial factorization is expansion, the multiplying together of polynomial factors to an “expanded” polynomial, written as just a sum of terms. Integer factorization for large integers appears to be a difficult problem, there is no known method to carry it out quickly. Its complexity is the basis of the security of some public key cryptography algorithms. A matrix can also be factorized into a product of matrices of special types, One major example of this uses an orthogonal or unitary matrix, and a triangular matrix. There are different types, QR decomposition, LQ, QL, RQ and this situation is generalized by factorization systems. By the fundamental theorem of arithmetic, every integer greater than 1 has a unique prime factorization. Given an algorithm for integer factorization, one can factor any integer down to its constituent primes by repeated application of this algorithm, for very large numbers, no efficient classical algorithm is known. Modern techniques for factoring polynomials are fast and efficient, but use sophisticated mathematical ideas and these techniques are used in the construction of computer routines for carrying out polynomial factorization in Computer algebra systems. This article is concerned with classical techniques. While the general notion of factoring just means writing an expression as a product of simpler expressions, when factoring polynomials this means that the factors are to be polynomials of smaller degree. Thus, while x 2 − y = is a factorization of the expression, another issue concerns the coefficients of the factors. It is not always possible to do this, and a polynomial that can not be factored in this way is said to be irreducible over this type of coefficient, thus, x2 -2 is irreducible over the integers and x2 +4 is irreducible over the reals. In the first example, the integers 1 and -2 can also be thought of as real numbers, and if they are, then x 2 −2 = shows that this polynomial factors over the reals. Similarly, since the integers 1 and 4 can be thought of as real and hence complex numbers, x2 +4 splits over the complex numbers, i. e. x 2 +4 =. The fundamental theorem of algebra can be stated as, Every polynomial of n with complex number coefficients splits completely into n linear factors
13.
Divisor
–
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some other integer to produce n. In this case one says also that n is a multiple of m, an integer n is divisible by another integer m if m is a divisor of n, this implies dividing n by m leaves no remainder. Under this definition, the statement m ∣0 holds for every m, as before, but with the additional constraint k ≠0. Under this definition, the statement m ∣0 does not hold for m ≠0, in the remainder of this article, which definition is applied is indicated where this is significant. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4, they are 1,2,4, −1, −2, and −4,1 and −1 divide every integer. Every integer is a divisor of itself, every integer is a divisor of 0. Integers divisible by 2 are called even, and numbers not divisible by 2 are called odd,1, −1, n and −n are known as the trivial divisors of n. A divisor of n that is not a divisor is known as a non-trivial divisor. A non-zero integer with at least one divisor is known as a composite number, while the units −1 and 1. There are divisibility rules which allow one to recognize certain divisors of a number from the numbers digits, the generalization can be said to be the concept of divisibility in any integral domain. 7 is a divisor of 42 because 7 ×6 =42 and it can also be said that 42 is divisible by 7,42 is a multiple of 7,7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2,3, the positive divisors of 42 are 1,2,3,6,7,14,21,42. 5 ∣0, because 5 ×0 =0, if a ∣ b and b ∣ a, then a = b or a = − b. If a ∣ b and a ∣ c, then a ∣ holds, however, if a ∣ b and c ∣ b, then ∣ b does not always hold. If a ∣ b c, and gcd =1, then a ∣ c, if p is a prime number and p ∣ a b then p ∣ a or p ∣ b. A positive divisor of n which is different from n is called a proper divisor or a part of n. A number that does not evenly divide n but leaves a remainder is called an aliquant part of n, an integer n >1 whose only proper divisor is 1 is called a prime number
14.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made
15.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
16.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
17.
Ternary numeral system
–
The ternary numeral system has three as its base. Analogous to a bit, a digit is a trit. One trit is equivalent to bits of information. Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary, for example, decimal 365 corresponds to binary 101101101 and to ternary 111112. However, they are far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary. The value of a number with n bits that are all 1 is 2n −1. Then N = M, N = /, and N = bd −1, for a three-digit ternary number, N =33 −1 =26 =2 ×32 +2 ×31 +2 ×30 =18 +6 +2. Nonary or septemvigesimal can be used for representation of ternary. A base-three system is used in Islam to keep track of counting Tasbih to 99 or to 100 on a hand for counting prayers. In certain analog logic, the state of the circuit is often expressed ternary and this is most commonly seen in Transistor–transistor logic using 7406 open collector logic. The output is said to either be low, high, or open, in this configuration the output of the circuit is actually not connected to any voltage reference at all. Where the signal is usually grounded to a reference, or at a certain voltage level. Thus, the voltage level is sometimes unpredictable. A rare ternary point is used to denote fractional parts of an inning in baseball, since each inning consists of three outs, each out is considered one third of an inning and is denoted as.1. For example, if a player pitched all of the 4th, 5th and 6th innings, plus 2 outs of the 7th inning, his Innings pitched column for that game would be listed as 3.2, meaning 3⅔. In this usage, only the part of the number is written in ternary form. Ternary numbers can be used to convey self-similar structures like the Sierpinski triangle or the Cantor set conveniently, additionally, it turns out that the ternary representation is useful for defining the Cantor set and related point sets, because of the way the Cantor set is constructed. The Cantor set consists of the points from 0 to 1 that have an expression that does not contain any instance of the digit 1
18.
Quaternary numeral system
–
Quaternary is the base-4 numeral system. It uses the digits 0,1,2 and 3 to represent any real number. Four is the largest number within the range and one of two numbers that is both a square and a highly composite number, making quaternary a convenient choice for a base at this scale. Despite being twice as large, its economy is equal to that of binary. However, it no better in the localization of prime numbers. See decimal and binary for a discussion of these properties, as with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix 4,8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit with 2,3 or 4 binary digits, for example, in base 4,302104 =11001001002. Although octal and hexadecimal are widely used in computing and computer programming in the discussion and analysis of binary arithmetic and logic, by analogy with byte and nybble, a quaternary digit is sometimes called a crumb. There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca, the Kharosthi numerals have a partial base 4 counting system from 1 to decimal 10. Quaternary numbers are used in the representation of 2D Hilbert curves, here a real number between 0 and 1 is converted into the quaternary system. Every single digit now indicates in which of the respective 4 sub-quadrants the number will be projected, parallels can be drawn between quaternary numerals and the way genetic code is represented by DNA. The four DNA nucleotides in order, abbreviated A, C, G and T, can be taken to represent the quaternary digits in numerical order 0,1,2. With this encoding, the complementary digit pairs 0↔3, and 1↔2 match the complementation of the pairs, A↔T and C↔G. For example, the nucleotide sequence GATTACA can be represented by the quaternary number 2033010, quaternary line codes have been used for transmission, from the invention of the telegraph to the 2B1Q code used in modern ISDN circuits
19.
Quinary
–
Quinary is a numeral system with five as the base. A possible origination of a system is that there are five fingers on either hand. The base five is stated from 0–4, in the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, today, the main usage of base 5 is as a biquinary system, which is decimal using five as a sub-base. Another example of a system, is sexagesimal, base 60. Each quinary digit has log25 bits of information, many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño and Saraveca. Gumatj is a true 5–25 language, in which 25 is the group of 5. The Gumatj numerals are shown below, In the video game Riven and subsequent games of the Myst franchise, a decimal system with 2 and 5 as a sub-bases is called biquinary, and is found in Wolof and Khmer. Roman numerals are a biquinary system, the numbers 1,5,10, and 50 are written as I, V, X, and L respectively. Eight is VIII and seventy is LXX, most versions of the abacus use a biquinary system to simulate a decimal system for ease of calculation. Urnfield culture numerals and some tally mark systems are also biquinary, units of currencies are commonly partially or wholly biquinary. A vigesimal system with 4 and 5 as a sub-bases is found in Nahuatl, pentimal system Quibinary Yan Tan Tethera References, Quinary Base Conversion, includes fractional part, from Math Is Fun Media related to Quinary numeral system at Wikimedia Commons
20.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
21.
Octal
–
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping binary digits into groups of three. For example, the representation for decimal 74 is 1001010. Two zeroes can be added at the left,1001010, corresponding the octal digits 112, in the decimal system each decimal place is a power of ten. For example,7410 =7 ×101 +4 ×100 In the octal system each place is a power of eight. The Yuki language in California and the Pamean languages in Mexico have octal systems because the speakers count using the spaces between their fingers rather than the fingers themselves and it has been suggested that the reconstructed Proto-Indo-European word for nine might be related to the PIE word for new. Based on this, some have speculated that proto-Indo-Europeans used a number system. In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number based on 64 instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base would be too difficult, in 1718 Swedenborg wrote a manuscript, En ny rekenkonst som om vexlas wid Thalet 8 i stelle then wanliga wid Thalet 10. The numbers 1-7 are there denoted by the l, s, n, m, t, f, u. Thus 8 = lo,16 = so,24 = no,64 = loo,512 = looo etc, numbers with consecutive consonants are pronounced with vowel sounds between in accordance with a special rule. Writing under the pseudonym Hirossa Ap-Iccim in The Gentlemans Magazine, July 1745, Hugh Jones proposed a system for British coins, weights. In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic and he suggested base 8 for which he coined the term octal. In the mid 19th century, Alfred B. Taylor concluded that Our octonary radix is, therefore, so, for example, the number 65 would be spoken in octonary as under-un. Taylor also republished some of Swedenborgs work on octonary as an appendix to the above-cited publications, in the 2009 film Avatar, the language of the extraterrestrial Navi race employs an octal numeral system, probably due to the fact that they have four fingers on each hand. In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, in the tabletop game series Warhammer 40,000, the Tau race use an octal number system. Octal became widely used in computing systems such as the PDP-8, ICL1900. Octal was an abbreviation of binary for these machines because their word size is divisible by three
22.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer
23.
Hexadecimal
–
In mathematics and computing, hexadecimal is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits, it allows a more human-friendly representation of binary-coded values, one hexadecimal digit represents a nibble, which is half of an octet or byte. For example, a byte can have values ranging from 00000000 to 11111111 in binary form. In a non-programming context, a subscript is typically used to give the radix, several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix 0x is used in C and related languages, where this value might be denoted as 0x2AF3, in contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously, a numerical subscript can give the base explicitly,15910 is decimal 159,15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h. example. com/name%20with%20spaces where %20 is the space character, thus ’, represents the right single quotation mark, Unicode code point number 2019 in hex,8217. In the Unicode standard, a value is represented with U+ followed by the hex value. Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits prefixed with #, white, CSS allows 3-hexdigit abbreviations with one hexdigit per component, #FA3 abbreviates #FFAA33. *nix shells, AT&T assembly language and likewise the C programming language, to output an integer as hexadecimal with the printf function family, the format conversion code %X or %x is used. In Intel-derived assembly languages and Modula-2, hexadecimal is denoted with a suffixed H or h, some assembly languages use the notation HABCD. Ada and VHDL enclose hexadecimal numerals in based numeric quotes, 16#5A3#, for bit vector constants VHDL uses the notation x5A3. Verilog represents hexadecimal constants in the form 8hFF, where 8 is the number of bits in the value, the Smalltalk language uses the prefix 16r, 16r5A3 PostScript and the Bourne shell and its derivatives denote hex with prefix 16#, 16#5A3. For PostScript, binary data can be expressed as unprefixed consecutive hexadecimal pairs, in early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the Sad Mac to tell the user what went wrong. Common Lisp uses the prefixes #x and #16r, setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, MSX BASIC, QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H, &H5A3 BBC BASIC and Locomotive BASIC use & for hex. TI-89 and 92 series uses a 0h prefix, 0h5A3 ALGOL68 uses the prefix 16r to denote hexadecimal numbers, binary, quaternary and octal numbers can be specified similarly
24.
Vigesimal
–
The vigesimal or base 20 numeral system is based on twenty. In a vigesimal system, twenty individual numerals are used. One modern method of finding the extra needed symbols is to write ten as the letter A20, to write nineteen as J20, and this is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters A–F. Another method skips over the letter I, in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, the number twenty is written as 1020. According to this notation,2020 means forty in decimal = + D020 means two hundred and sixty in decimal = +10020 means four hundred in decimal = + +, in the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example,10 means ten,20 means twenty, in decimal, dividing by three twice only gives one digit periods because 9 is the number below ten. 21, however, the adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods, the prime factorization of twenty is 22 ×5, so it is not a perfect power. However, its part,5, is congruent to 1. Thus, according to Artins conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37. 395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a set of bases found that, of the first 15,456 primes. In many European languages,20 is used as a base, vigesimal systems are common in Africa, for example in Yoruba. Ogún,20, is the basic numeric block, ogójì,40, =20 multiplied by 2. Ogota,60, =20 multiplied by 3, ogorin,80, =20 multiplied by 4. Ogorun,100, =20 multiplied by 5, twenty was a base in the Maya and Aztec number systems. The Maya used the names for the powers of twenty, kal, bak, pic, calab, kinchil. See also Maya numerals and Maya calendar, Mayan languages, Yucatec, the Aztec called them, cempoalli, centzontli, cenxiquipilli, cempoalxiquipilli, centzonxiquipilli and cempoaltzonxiquipilli. Note that the ce prefix at the beginning means one and is replaced with the number to get the names of other multiples of the power
25.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
26.
Messier 98
–
Messier 98 has a blue shift and is approaching us at about 140 km/s. The morphological classification of this galaxy is SABab, which indicates it is a galaxy that displays mixed barred and non-barred features with intermediate to tightly-wound arms. It is highly inclined to the line of sight at an angle of 74° and has a maximum velocity of 236 km/s. The combined mass of the stars in this galaxy is an estimated 76 billion times the mass of the Sun and it contains about 4.3 billion solar masses of neutral hydrogen and 85 million solar masses in dust. The nucleus is active, displaying characteristics of a transition type object and that is, it shows properties of a LINER-type galaxy intermixed with an H II region around the nucleus. NGC4192 is a member of the Virgo Cluster, which is a large, about 750 million years ago, NGC4192 may have interacted with the large spiral galaxy NGC4254. The two are now separated by a distance of 1,300,000 ly
27.
Apparent magnitude
–
The apparent magnitude of a celestial object is a number that is a measure of its brightness as seen by an observer on Earth. The brighter an object appears, the lower its magnitude value, the Sun, at apparent magnitude of −27, is the brightest object in the sky. It is adjusted to the value it would have in the absence of the atmosphere, furthermore, the magnitude scale is logarithmic, a difference of one in magnitude corresponds to a change in brightness by a factor of 5√100, or about 2.512. The measurement of apparent magnitudes or brightnesses of celestial objects is known as photometry, apparent magnitudes are used to quantify the brightness of sources at ultraviolet, visible, and infrared wavelengths. An apparent magnitude is measured in a specific passband corresponding to some photometric system such as the UBV system. In standard astronomical notation, an apparent magnitude in the V filter band would be denoted either as mV or often simply as V, the scale used to indicate magnitude originates in the Hellenistic practice of dividing stars visible to the naked eye into six magnitudes. The brightest stars in the sky were said to be of first magnitude, whereas the faintest were of sixth magnitude. Each grade of magnitude was considered twice the brightness of the following grade and this rather crude scale for the brightness of stars was popularized by Ptolemy in his Almagest, and is generally believed to have originated with Hipparchus. This implies that a star of magnitude m is 2.512 times as bright as a star of magnitude m +1 and this figure, the fifth root of 100, became known as Pogsons Ratio. The zero point of Pogsons scale was defined by assigning Polaris a magnitude of exactly 2. However, with the advent of infrared astronomy it was revealed that Vegas radiation includes an Infrared excess presumably due to a disk consisting of dust at warm temperatures. At shorter wavelengths, there is negligible emission from dust at these temperatures, however, in order to properly extend the magnitude scale further into the infrared, this peculiarity of Vega should not affect the definition of the magnitude scale. Therefore, the scale was extrapolated to all wavelengths on the basis of the black body radiation curve for an ideal stellar surface at 11000 K uncontaminated by circumstellar radiation. On this basis the spectral irradiance for the zero magnitude point, with the modern magnitude systems, brightness over a very wide range is specified according to the logarithmic definition detailed below, using this zero reference. In practice such apparent magnitudes do not exceed 30, astronomers have developed other photometric zeropoint systems as alternatives to the Vega system. The AB magnitude zeropoint is defined such that an objects AB, the dimmer an object appears, the higher the numerical value given to its apparent magnitude, with a difference of 5 magnitudes corresponding to a brightness factor of exactly 100. Since an increase of 5 magnitudes corresponds to a decrease in brightness by a factor of exactly 100, each magnitude increase implies a decrease in brightness by the factor 5√100 ≈2.512. Inverting the above formula, a magnitude difference m1 − m2 = Δm implies a brightness factor of F2 F1 =100 Δ m 5 =100.4 Δ m ≈2.512 Δ m
28.
Spiral galaxy
–
A spiral galaxy is a type of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae and, as such, forms part of the Hubble sequence. Spiral galaxies consist of a flat, rotating disk containing stars, gas and dust, and these are surrounded by a much fainter halo of stars, many of which reside in globular clusters. Spiral galaxies are named for the structures that extend from the center into the galactic disc. The spiral arms are sites of ongoing star formation and are brighter than the surrounding disc because of the young, hot OB stars that inhabit them. Roughly two-thirds of all spirals are observed to have a component in the form of a bar-like structure, extending from the central bulge. Our own Milky Way has recently confirmed to be a barred spiral. The most convincing evidence for its existence comes from a recent survey, performed by the Spitzer Space Telescope, together with irregular galaxies, spiral galaxies make up approximately 60% of galaxies in the local Universe. They are mostly found in low-density regions and are rare in the centers of galaxy clusters, Spiral arms are regions of stars that extend from the center of spiral and barred spiral galaxies. These long, thin regions resemble a spiral and thus give spiral galaxies their name, naturally, different classifications of spiral galaxies have distinct arm-structures. Sc and SBc galaxies, for instance, have very loose arms, whereas Sa, either way, spiral arms contain many young, blue stars, which make the arms so bright. A bulge is a huge, tightly packed group of stars, the term commonly refers to the central group of stars found in most spiral galaxies. Using the Hubble classification, the bulge of Sa galaxies is usually composed of Population II stars, further, the bulge of Sa and SBa galaxies tends to be large. In contrast, the bulges of Sc and SBc galaxies are much smaller and are composed of young, some bulges have similar properties to those of elliptical galaxies, others simply appear as higher density centers of disks, with properties similar to disk galaxies. Many bulges are thought to host a supermassive black hole at their centers, such black holes have never been directly observed, but many indirect proofs exist. In our own galaxy, for instance, the object called Sagittarius A* is believed to be a black hole. There is a correlation between the mass of the black hole and the velocity dispersion of the stars in the bulge. However, some stars inhabit a spheroidal halo or galactic spheroid, the orbital behaviour of these stars is disputed, but they may describe retrograde and/or highly inclined orbits, or not move in regular orbits at all. The galactic halo also contains many globular clusters, due to their irregular movement around the center of the galaxy—if they do so at all—these stars often display unusually high proper motion
29.
Constellation
–
A constellation is formally defined as a region of the celestial sphere, with boundaries laid down by the International Astronomical Union. The constellation areas mostly had their origins in Western-traditional patterns of stars from which the constellations take their names, in 1922, the International Astronomical Union officially recognized the 88 modern constellations, which cover the entire sky. They began as the 48 classical Greek constellations laid down by Ptolemy in the Almagest, Constellations in the far southern sky are late 16th- and mid 18th-century constructions. 12 of the 88 constellations compose the zodiac signs, though the positions of the constellations only loosely match the dates assigned to them in astrology. The term constellation can refer to the stars within the boundaries of that constellation. Notable groupings of stars that do not form a constellation are called asterisms, when astronomers say something is “in” a given constellation they mean it is within those official boundaries. Any given point in a coordinate system can unambiguously be assigned to a single constellation. Many astronomical naming systems give the constellation in which an object is found along with a designation in order to convey a rough idea in which part of the sky it is located. For example, the Flamsteed designation for bright stars consists of a number, the word constellation seems to come from the Late Latin term cōnstellātiō, which can be translated as set of stars, and came into use in English during the 14th century. It also denotes 88 named groups of stars in the shape of stellar-patterns, the Ancient Greek word for constellation was ἄστρον. Colloquial usage does not draw a distinction between constellation in the sense of an asterism and constellation in the sense of an area surrounding an asterism. The modern system of constellations used in astronomy employs the latter concept, the term circumpolar constellation is used for any constellation that, from a particular latitude on Earth, never sets below the horizon. From the North Pole or South Pole, all constellations south or north of the equator are circumpolar constellations. In the equatorial or temperate latitudes, the term equatorial constellation has sometimes been used for constellations that lie to the opposite the circumpolar constellations. They generally include all constellations that intersect the celestial equator or part of the zodiac, usually the only thing the stars in a constellation have in common is that they appear near each other in the sky when viewed from the Earth. In galactic space, the stars of a constellation usually lie at a variety of distances, since stars also travel on their own orbits through the Milky Way, the star patterns of the constellations change slowly over time. After tens to hundreds of thousands of years, their familiar outlines will become unrecognisable, the terms chosen for the constellation themselves, together with the appearance of a constellation, may reveal where and when its constellation makers lived. The earliest direct evidence for the constellations comes from inscribed stones and it seems that the bulk of the Mesopotamian constellations were created within a relatively short interval from around 1300 to 1000 BC
30.
Coma Berenices
–
Coma Berenices is an ancient asterism in the northern sky which has been defined as one of the 88 modern constellations. It is located in the fourth quadrant, between Leo and Bootes, and is visible in both hemispheres. It was introduced to Western astronomy during the third century BC by Conon of Samos and its name means Berenices Hair in Latin and refers to Queen Berenice II of Egypt, who sacrificed her long hair as a votive offering. Coma Berenices is the modern constellation named for an historic figure. It was further corroborated as a constellation by Gerardus Mercator and Tycho Brahe, three of the constellations stars are visible to the naked eye, Alpha Comae Berenices, Beta Comae Berenices and Gamma Comae Berenices. They form a 45-degree triangle, from which Berenices imaginary tresses hang, the constellations brightest star is Beta Comae Berenices, a 4. 2-magnitude main sequence star similar to the Sun. Coma Berenices contains the North Galactic Pole and one of the richest known galaxy clusters, Galaxy Malin 1, in the constellation, is the first known giant low-surface-brightness galaxy. Supernova SN 2005ap discovered in Coma Berenices is the brightest known, the star FK Comae Berenices is the prototype of an eponymous class of variable stars. The constellation is the radiant of one meteor shower, Coma Berenicids, Coma Berenices has been recognized as an asterism since the Hellenistic period, and is the only modern constellation named for an historic figure. It was introduced to Western astronomy during the third century BC by Conon of Samos, Berenice vowed to sacrifice her long hair as a votive offering if Ptolemy returned safely from battle during the Third Syrian War. In Callimachus poem, Aetia, Berenice dedicated her tresses to all the gods, in the Latin translation of the poem by the Roman poet Catullus and in Hyginus De astronomica, she dedicated her tresses to Aphrodite and placed them in the temple of Arsinoe II at Zephyrium. According to De astronomica, by the morning the tresses had disappeared. Conon proposed that Aphrodite had placed the tresses in the sky as an acknowledgement of Berenices sacrifice, Callimachus called the asterism plokamos Berenikēs or bostrukhon Berenikēs in Greek, translated into Latin as Coma Berenices by Catullus. Eratosthenes called it Berenices Hair and Ariadnes Hair, considering it part of the constellation Leo, the astronomer Geminus recognized it as a distinct constellation. Astronomer Ptolemy considered it part of Leo, and called it Plokamos, Coma Berenices became popular during the 16th century. In 1515, a set of gores by Johannes Schöner labelled the asterism Trica, in 1536 it appeared on a celestial globe by Caspar Vopel, who is credited with the asterisms designation as a constellation. That year, it appeared on a celestial map by Petrus Apianus as Crines Berenices. In 1551, Coma Berenices appeared on a celestial globe by Gerardus Mercator with five Latin and Greek names, Cincinnus, caesaries, πλόκαμος, Berenicis crinis, mercators reputation as a cartographer ensured the constellations inclusion on Dutch sky globes beginning in 1589
31.
New General Catalogue
–
The NGC contains 7,840 objects, known as the NGC objects. It is one of the largest comprehensive catalogues, as it includes all types of space objects and is not confined to, for example. Dreyer also published two supplements to the NGC in 1895 and 1908, known as the Index Catalogues, describing a further 5,386 astronomical objects. Objects in the sky of the southern hemisphere are catalogued somewhat less thoroughly, the Revised New General Catalogue and Index Catalogue was compiled in 2009 by Wolfgang Steinicke. The original New General Catalogue was compiled during the 1880s by John Louis Emil Dreyer using observations from William Herschel and his son John, Dreyer had already published a supplement to Herschels General Catalogue of Nebulae and Clusters, containing about 1,000 new objects. In 1886, he suggested building a second supplement to the General Catalogue and this led to the publication of the New General Catalogue in the Memoirs of the Royal Astronomical Society in 1888. Assembling the NGC was a challenge, as Dreyer had to deal with many contradicting and unclear reports, while he did check some himself, the sheer number of objects meant Dreyer had to accept them as published by others for the purpose of his compilation. Dreyer was a careful transcriber and made few errors himself, and he was very thorough in his referencing, which allowed future astronomers to review the original references and publish corrections to the original NGC. The first major update to the NGC is the Index Catalogue of Nebulae and Clusters of Stars and it serves as a supplement to the NGC, and contains an additional 5,386 objects, collectively known as the IC objects. It summarizes the discoveries of galaxies, clusters and nebulae between 1888 and 1907, most of them made possible by photography, a list of corrections to the IC was published in 1912. The Revised New Catalogue of Nonstellar Astronomical Objects was compiled by Jack W. Sulentic and William G. Tifft in the early 1970s, and was published in 1973, as an update to the NGC. However, because the update had to be completed in just three summers, it failed to incorporate several previously-published corrections to the NGC data, and even introduced new errors. NGC2000.0 is a 1988 compilation of the NGC and IC made by Roger W. Sinnott and it incorporates several corrections and errata made by astronomers over the years. However, it too ignored the original publications and favoured modern corrections, the NGC/IC Project is a collaboration formed in 1993. It aims to identify all NGC and IC objects, and collect images, the Revised New General Catalogue and Index Catalogue is a compilation made by Wolfgang Steinicke in 2009. It is considered one of the most comprehensive and authoritative treatments of the NGC, messier object Catalogue of Nebulae and Clusters of Stars The Interactive NGC Catalog Online Adventures in Deep Space, Challenging Observing Projects for Amateur Astronomers
32.
Phoenix (constellation)
–
Phoenix is a minor constellation in the southern sky. Named after the phoenix, it was first depicted on a celestial atlas by Johann Bayer in his 1603 Uranometria. The French explorer and astronomer Nicolas Louis de Lacaille charted the brighter stars, the constellation stretches from roughly −39° to −57° declination, and from 23. 5h to 2. 5h of right ascension. The constellations Phoenix, Grus, Pavo and Tucana, are known as the Southern Birds, the brightest star, Alpha Phoenicis, is named Ankaa, an Arabic word meaning the Phoenix. It is a giant of apparent magnitude 2.4. Next is Beta Phoenicis, actually a system composed of two yellow giants with a combined apparent magnitude of 3.3. Phoenix is the radiant of two meteor showers, the Phoenicids in December, and the July Phoenicids. Phoenix was the largest of the twelve constellations established by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and it first appeared on a 35-cm diameter celestial globe published in 1597 in Amsterdam by Plancius with Jodocus Hondius. The first depiction of this constellation in an atlas was in Johann Bayers Uranometria of 1603. De Houtman included it in his star catalog the same year under the Dutch name Den voghel Fenicx, The Bird Phoenix. One name of the brightest star Alpha Phoenicis—Ankaa—is derived from the Arabic العنقاء al-‘anqā’ the phoenix, in addition, the same group of stars was sometimes imagined by the Arabs as a boat, Al Zaurak, on the nearby river Eridanus. He observed, the introduction of a Phoenix into modern astronomy was, in a measure, the Chinese incorporated Phoenixs brightest star, Ankaa, and stars from the adjacent constellation Sculptor to depict Bakui, a net for catching birds. Phoenix and the constellation of Grus together were seen by Julius Schiller as portraying Aaron the High Priest. These two constellations, along with nearby Pavo and Tucana, are called the Southern Birds, the bright star Achernar is nearby. The three-letter abbreviation for the constellation, as adopted by the International Astronomical Union in 1922, is Phe, the official constellation boundaries, as set by Eugène Delporte in 1930, are defined by a polygon of 10 segments. In the equatorial coordinate system, the right ascension coordinates of these borders lie between 23h 26. 5m and 02h 25. 0m, while the coordinates are between −39. 31° and −57. 84°. This means it remains below the horizon to anyone living north of the 40th parallel in the Northern Hemisphere and it is most visible from locations such as Australia and South Africa during late Southern Hemisphere spring. Most of the lies within, and can be located by, forming a triangle of the bright stars Achernar, Fomalhaut
33.
Windows 98
–
Windows 98 is a graphical operating system by Microsoft. It is the major release in the Windows 9x line of operating systems. It was released to manufacturing on May 15,1998 and to retail on June 25,1998, like its predecessor, Windows 98 is a hybrid 16-bit and 32-bit monolithic product with an MS-DOS based boot stage. Windows 98 was succeeded by Windows 98 Second Edition on May 5,1999, Microsoft ended mainstream support for Windows 98 and 98 SE on June 30,2002, and extended support on July 11,2006. The famous startup sound for Windows 98 was composed by Microsoft sound engineer Ken Kato, development of Windows 98 began in the 1990s, initially under the development codename Memphis. Many builds were released or leaked, starting with build 1351 on December 15,1996, Windows 98 includes Internet Explorer 4.01 in First Edition and 5.0 in Second Edition. Another feature of this new shell is that dialog boxes now show up in the Alt-Tab sequence, 3D Pinball is included on the CD-ROM but not installed by default. Windows 98 had its own separately purchasable Plus, title bars of windows and dialog boxes now support two-color gradients. Windows menus and tooltips now support slide animation, Windows Explorer includes support for compressed CAB files. The Quick Res and Telephony Location Manager Windows 95 PowerToys are integrated into the operating system. Windows 98 was the first operating system to use the Windows Driver Model, the WDM standard only achieved widespread adoption years later, mostly through Windows 2000 and Windows XP, as they were not compatible with the older VxD standard. Windows Driver Model was introduced largely so that developers would write drivers that were compatible with future versions of Windows. Device driver access in WDM is actually implemented through a VxD device driver, NTKERN creates IRPs and sends them to WDM drivers. Support for WDM audio enables digital mixing, routing and processing of audio streams. WDM Audio allows for software emulation of hardware to support MS-DOS games, DirectSound support. The Windows 95 11-device limitation for MIDI devices is eliminated, a Microsoft GS Wavetable Synthesizer licensed from Roland shipped with Windows 98 for WDM audio drivers. Windows Driver Model also includes Broadcast Driver Architecture, the backbone for TV technologies support in Windows, webTV for Windows utilized BDA to allow viewing television on the computer if a compatible TV tuner card is installed. Windows 98 had more robust USB support than Windows 95 which only had support in OEM versions, Windows 98 supports USB hubs, USB scanners and imaging class devices
34.
History of Microsoft Flight Simulator
–
Microsoft Flight Simulator began as a set of articles on computer graphics, written by Bruce Artwick throughout 1976, about flight simulation using 3-D graphics. When the editor of the magazine told Artwick that subscribers were interested in purchasing such a program, at first the new company sold flight simulators through mail order, but that changed in January 1979 with the release of Flight Simulator for the Apple II. They soon followed this up with versions for other systems and from there it evolved into a series of computer flight simulators. - January 1979 for Apple II - January 1980 for TRS-80 Computer-graphics specialist Bruce Artwick and pilot, despite this, it ended up being one of the most popular Apple II applications of the early 1980s. The simulator was ported to the TRS-80 Model I, which had only rudimentary graphics capability. To squeeze the simulator into the TRS-80 limited memory and display, subLOGIC saw it necessary to drop the instrument panel, Flight Simulator for the TRS-80 therefore has the most simplistic graphics of all versions of Flight Simulator. Flight Simulator sold 30,000 copies by June 1982, tied for third on Computer Gaming Worlds list of top sellers, later subLOGIC released updated versions for both the Apple II and TRS-80 on 5 1⁄4 inch diskettes. The updates included enhanced terrain, help menus, and a bomb sight and this version, like the Microsoft release, did away with wireframe graphics for solid colors, and featured real-world scenery. InfoWorld in 1984 praised Flight Simulator II for the Apple as a complicated, Bruce Artwick has really done it all, and stated that it was superior to Microsofts version. II Computing listed it ninth on the magazines list of top Apple II games as of late 1985, based on sales and market-share data, subLOGIC instead finished a Macintosh version, released by Microsoft, then resumed work on the Amiga and Atari ST versions. Although still called Flight Simulator II, the Amiga and Atari ST versions compare favorably with Microsoft Flight Simulator 3.0, notable features included a windowing system allowing multiple simultaneous 3d views - including exterior views of the aircraft itself - and modem play. - November 1982 Sometime during 1981-82, Microsoft obtained the license to port the simulator to IBM compatibles PCs and this version was released in November 1982 as Microsoft Flight Simulator, and featured an improved graphics engine, variable weather and time of day, and a new coordinate system. Advertisements claimed If flying your IBM PC got any more realistic, youd need a license, early versions of Microsoft Flight Simulator were used as a test for PC compatibility. If a computer could run MSFS1.0 and Lotus 1-2-3, it was 100% IBM PC-compatible, compatibility difficulty included the unusual use of the x86 assembly DIV command, where a DIVIDE BY ZERO command would be issued every time a screen refresh was needed. This technique often required hardware changes to assure compatibility with MSFS1.0 software, there was a dogfight mode with the Sopwith Camel and crop-dusting mode included. - Released in 1984 In 1984, Microsoft released their version 2 for IBM PCs and this version didnt differ too much from MSFS1, the graphics were somewhat improved, as well as a more precise simulation in general had been created. The new simulator expanded the coverage to include a model of the entire United States. However, compatibility with subLOGIC Scenery Disks was provided, which were released in the years, gradually covering the whole USA, Hawaii, Japan