Variable star
A variable star is a star whose brightness as seen from Earth fluctuates. This variation may be caused by a change in emitted light or by something blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity changes. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth. Many most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle. An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol. Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti pulsated in a cycle taking 11 months; this discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught.
In this way, the discovery of variable stars contributed to the astronomical revolution of the sixteenth and early seventeenth centuries. The second variable star to be described was the eclipsing variable Algol, by Geminiano Montanari in 1669. Chi Cygni was identified in 1686 by G. Kirch R Hydrae in 1704 by G. D. Maraldi. By 1786 ten variable stars were known. John Goodricke himself discovered Beta Lyrae. Since 1850 the number of known variable stars has increased especially after 1890 when it became possible to identify variable stars by means of photography; the latest edition of the General Catalogue of Variable Stars lists more than 46,000 variable stars in the Milky Way, as well as 10,000 in other galaxies, over 10,000'suspected' variables. The most common kinds of variability involve changes in brightness, but other types of variability occur, in particular changes in the spectrum. By combining light curve data with observed spectral changes, astronomers are able to explain why a particular star is variable.
Variable stars are analysed using photometry, spectrophotometry and spectroscopy. Measurements of their changes in brightness can be plotted to produce light curves. For regular variables, the period of variation and its amplitude can be well established. Peak brightnesses in the light curve are known as maxima. Amateur astronomers can do useful scientific study of variable stars by visually comparing the star with other stars within the same telescopic field of view of which the magnitudes are known and constant. By estimating the variable's magnitude and noting the time of observation a visual lightcurve can be constructed; the American Association of Variable Star Observers collects such observations from participants around the world and shares the data with the scientific community. From the light curve the following data are derived: are the brightness variations periodical, irregular, or unique? What is the period of the brightness fluctuations? What is the shape of the light curve? From the spectrum the following data are derived: what kind of star is it: what is its temperature, its luminosity class? is it a single star, or a binary? does the spectrum change with time?
Changes in brightness may depend on the part of the spectrum, observed if the wavelengths of spectral lines are shifted this points to movements strong magnetic fields on the star betray themselves in the spectrum abnormal emission or absorption lines may be indication of a hot stellar atmosphere, or gas clouds surrounding the star. In few cases it is possible to make pictures of a stellar disk; these may show darker spots on its surface. Combining light curves with spectral data gives a clue as to the changes that occur in a variable star. For example, evidence for a pulsating star is found in its shifting spectrum because its surface periodically moves toward and away from us, with the same frequency as its changing brightness. About two-thirds of all variable stars appear to be pulsating. In the 1930s astronomer Arthur Stanley Eddington showed that the mathematical equations that describe the interior of a star may lead to instabilities that cause a star to pulsate; the most common type of instability is related to oscillations in the degree of ionization in outer, convective layers of the star.
Suppose the star is in the swelling phase. Its outer layers expand; because of the decreasing temperature the degree of ionization decreases. This makes the gas more transparent, thus makes it easier for the star to radiate its energy; this in turn will make the star start to contract. As the gas is thereby compressed, it is heated and the degree of ionization again increases. Thi
Minute and second of arc
A minute of arc, arc minute, or minute arc is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn, one minute of arc is 1/21600 of a turn – it is for this reason that the Earth's circumference is exactly 21,600 nautical miles. A minute of arc is π/10800 of a radian. A second of arc, arcsecond, or arc second is 1/60 of an arcminute, 1/3600 of a degree, 1/1296000 of a turn, π/648000 of a radian; these units originated in Babylonian astronomy as sexagesimal subdivisions of the degree. To express smaller angles, standard SI prefixes can be employed; the number of square arcminutes in a complete sphere is 4 π 2 = 466 560 000 π ≈ 148510660 square arcminutes. The names "minute" and "second" have nothing to do with the identically named units of time "minute" or "second"; the identical names reflect the ancient Babylonian number system, based on the number 60. The standard symbol for marking the arcminute is the prime, though a single quote is used where only ASCII characters are permitted.
One arcminute is thus written 1′. It is abbreviated as arcmin or amin or, less the prime with a circumflex over it; the standard symbol for the arcsecond is the double prime, though a double quote is used where only ASCII characters are permitted. One arcsecond is thus written 1″, it is abbreviated as arcsec or asec. In celestial navigation, seconds of arc are used in calculations, the preference being for degrees and decimals of a minute, for example, written as 42° 25.32′ or 42° 25.322′. This notation has been carried over into marine GPS receivers, which display latitude and longitude in the latter format by default; the full moon's average apparent size is about 31 arcminutes. An arcminute is the resolution of the human eye. An arcsecond is the angle subtended by a U. S. dime coin at a distance of 4 kilometres. An arcsecond is the angle subtended by an object of diameter 725.27 km at a distance of one astronomical unit, an object of diameter 45866916 km at one light-year, an object of diameter one astronomical unit at a distance of one parsec, by definition.
A milliarcsecond is about the size of a dime atop the Eiffel Tower. A microarcsecond is about the size of a period at the end of a sentence in the Apollo mission manuals left on the Moon as seen from Earth. A nanoarcsecond is about the size of a penny on Neptune's moon Triton as observed from Earth. Notable examples of size in arcseconds are: Hubble Space Telescope has calculational resolution of 0.05 arcseconds and actual resolution of 0.1 arcseconds, close to the diffraction limit. Crescent Venus measures between 66 seconds of arc. Since antiquity the arcminute and arcsecond have been used in astronomy. In the ecliptic coordinate system and longitude; the principal exception is right ascension in equatorial coordinates, measured in time units of hours and seconds. The arcsecond is often used to describe small astronomical angles such as the angular diameters of planets, the proper motion of stars, the separation of components of binary star systems, parallax, the small change of position of a star in the course of a year or of a solar system body as the Earth rotates.
These small angles may be written in milliarcseconds, or thousandths of an arcsecond. The unit of distance, the parsec, named from the parallax of one arc second, was developed for such parallax measurements, it is the distance at which the mean radius of the Earth's orbit would subtend an angle of one arcsecond. The ESA astrometric space probe Gaia, launched in 2013, can approximate star positions to 7 microarcseconds. Apart from the Sun, the star with the largest angular diameter from Earth is R Doradus, a red giant with a diameter of 0.05 arcsecond. Because of the effects of atmospheric seeing, ground-based telescopes will smear the image of a star to an angular diameter of about 0.5 arcsecond. The dwarf planet Pluto has proven difficult to resolve because its angular diameter is about 0.1 arcsecond. Space telescopes are diffraction limited. For example, the Hubble Space Telescope can reach an angular size of stars down to about 0.1″. Techniques exist for improving seeing on the ground. Adaptive optics, for example, can produce images around 0.05 arcsecond on a 10 m class telescope.
Minutes and seconds of arc are used in cartography and navigation. At sea level one minute of arc
Stellar parallax
Stellar parallax is the apparent shift of position of any nearby star against the background of distant objects. Created by the different orbital positions of Earth, the small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline distance of about two astronomical units between observations; the parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit. Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years, it was first observed in 1806 by Giuseppe Calandrelli who reported parallax in α-Lyrae in his work "Osservazione e riflessione sulla parallasse annua dall’alfa della Lira". In 1838 Friedrich Bessel made the first successful parallax measurement, for the star 61 Cygni, using a Fraunhofer heliometer at Königsberg Observatory.
Once a star's parallax is known, its distance from Earth can be computed trigonometrically. But the more distant an object is, the smaller its parallax. With 21st-century techniques in astrometry, the limits of accurate measurement make distances farther away than about 100 parsecs too approximate to be useful when obtained by this technique; this limits the applicability of parallax as a measurement of distance to objects that are close on a galactic scale. Other techniques, such as spectral red-shift, are required to measure the distance of more remote objects. Stellar parallax measures are given in the tiny units of arcseconds, or in thousandths of arcseconds; the distance unit parsec is defined as the length of the leg of a right triangle adjacent to the angle of one arcsecond at one vertex, where the other leg is 1 AU long. Because stellar parallaxes and distances all involve such skinny right triangles, a convenient trigonometric approximation can be used to convert parallaxes to distance.
The approximate distance is the reciprocal of the parallax: d ≃ 1 / p. For example, Proxima Centauri, whose parallax is 0.7687, is 1 / 0.7687 parsecs = 1.3009 parsecs distant. Stellar parallax is so small that its apparent absence was used as a scientific argument against heliocentrism during the early modern age, it is clear from Euclid's geometry that the effect would be undetectable if the stars were far enough away, but for various reasons such gigantic distances involved seemed implausible: it was one of Tycho Brahe's principal objections to Copernican heliocentrism that in order for it to be compatible with the lack of observable stellar parallax, there would have to be an enormous and unlikely void between the orbit of Saturn and the eighth sphere. James Bradley first tried to measure stellar parallaxes in 1729; the stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of Earth's axis, catalogued 3222 stars. Stellar parallax is most measured using annual parallax, defined as the difference in position of a star as seen from Earth and Sun, i.e. the angle subtended at a star by the mean radius of Earth's orbit around the Sun.
The parsec is defined as the distance. Annual parallax is measured by observing the position of a star at different times of the year as Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars; the first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Being difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century by use of the filar micrometer. Astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated computer technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond. Stellar parallax remains the standard for calibrating other measurement methods. Accurate calculations of distance based on stellar parallax require a measurement of the distance from Earth to the Sun, now known to exquisite accuracy based on radar reflection off the surfaces of planets.
The angles involved in these calculations are small and thus difficult to measure. The nearest star to the Sun, Proxima Centauri, has a parallax of 0.7687 ± 0.0003 arcsec. This angle is that subtended by an object 2 centimeters in diameter located 5.3 kilometers away. In 1989 the satellite Hipparcos was launched for obtaining parallaxes and proper motions of nearby stars, increasing the number of stellar parallaxes measured to milliarcsecond accuracy a thousandfold. So, Hipparcos is only able to measure parallax angles for stars up to about 1,600 light-years away, a little more than one percent of the diameter of the Milky Way Galaxy; the Hubble telescope WFC3 now has a precision of 20 to 40 microarcseconds, enabling reliable distance measurements u
Astronomical unit
The astronomical unit is a unit of length the distance from Earth to the Sun. However, that distance varies as Earth orbits the Sun, from a maximum to a minimum and back again once a year. Conceived as the average of Earth's aphelion and perihelion, since 2012 it has been defined as 149597870700 metres or about 150 million kilometres; the astronomical unit is used for measuring distances within the Solar System or around other stars. It is a fundamental component in the definition of another unit of astronomical length, the parsec. A variety of unit symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union used the symbol A to denote a length equal to the astronomical unit. In the astronomical literature, the symbol AU was common. In 2006, the International Bureau of Weights and Measures recommended ua as the symbol for the unit. In the non-normative Annex C to ISO 80000-3, the symbol of the astronomical unit is "ua". In 2012, the IAU, noting "that various symbols are presently in use for the astronomical unit", recommended the use of the symbol "au".
In the 2014 revision of the SI Brochure, the BIPM used the unit symbol "au". Earth's orbit around the Sun is an ellipse; the semi-major axis of this elliptic orbit is defined to be half of the straight line segment that joins the perihelion and aphelion. The centre of the Sun lies on this straight line segment, but not at its midpoint; because ellipses are well-understood shapes, measuring the points of its extremes defined the exact shape mathematically, made possible calculations for the entire orbit as well as predictions based on observation. In addition, it mapped out the largest straight-line distance that Earth traverses over the course of a year, defining times and places for observing the largest parallax in nearby stars. Knowing Earth's shift and a star's shift enabled the star's distance to be calculated, but all measurements are subject to some degree of error or uncertainty, the uncertainties in the length of the astronomical unit only increased uncertainties in the stellar distances.
Improvements in precision have always been a key to improving astronomical understanding. Throughout the twentieth century, measurements became precise and sophisticated, more dependent on accurate observation of the effects described by Einstein's theory of relativity and upon the mathematical tools it used. Improving measurements were continually checked and cross-checked by means of improved understanding of the laws of celestial mechanics, which govern the motions of objects in space; the expected positions and distances of objects at an established time are calculated from these laws, assembled into a collection of data called an ephemeris. NASA's Jet Propulsion Laboratory HORIZONS System provides one of several ephemeris computation services. In 1976, in order to establish a yet more precise measure for the astronomical unit, the IAU formally adopted a new definition. Although directly based on the then-best available observational measurements, the definition was recast in terms of the then-best mathematical derivations from celestial mechanics and planetary ephemerides.
It stated that "the astronomical unit of length is that length for which the Gaussian gravitational constant takes the value 0.01720209895 when the units of measurement are the astronomical units of length and time". Equivalently, by this definition, one AU is "the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass, moving with an angular frequency of 0.01720209895 radians per day". Subsequent explorations of the Solar System by space probes made it possible to obtain precise measurements of the relative positions of the inner planets and other objects by means of radar and telemetry; as with all radar measurements, these rely on measuring the time taken for photons to be reflected from an object. Because all photons move at the speed of light in vacuum, a fundamental constant of the universe, the distance of an object from the probe is calculated as the product of the speed of light and the measured time. However, for precision the calculations require adjustment for things such as the motions of the probe and object while the photons are transiting.
In addition, the measurement of the time itself must be translated to a standard scale that accounts for relativistic time dilation. Comparison of the ephemeris positions with time measurements expressed in the TDB scale leads to a value for the speed of light in astronomical units per day. By 2009, the IAU had updated its standard measures to reflect improvements, calculated the speed of light at 173.1446326847 AU/d. In 1983, the International Committee for Weights and Measures modified the International System of Units to make the metre defined as the distance travelled in a vacuum by light in 1/299792458 second; this replaced the previous definition, valid between 1960 and 1983, that the metre equalled a certain number of wavelengths of a certain emission line of krypton-86. The speed of light could be expressed as c0 = 299792458 m/s, a standard adopted by the IERS numerical standards. From this definition and the 2009 IAU standard, the time for light to traverse an AU is found to be
Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Substellar object
A substellar object, sometimes called a substar, is an astronomical object whose mass is smaller than the smallest mass at which hydrogen fusion can be sustained. This definition includes brown dwarfs and former stars similar to EF Eridani B, can include objects of planetary mass, regardless of their formation mechanism and whether or not they are associated with a primary star. Assuming that a substellar object has a composition similar to the Sun's and at least the mass of Jupiter, its radius will be comparable to that of Jupiter regardless of the mass of the substellar object; this is because the center of such a substellar object at the top range of the mass is quite degenerate, with a density of ≈103 g/cm3, but this degeneracy lessens with decreasing mass until, at the mass of Jupiter, a substellar object has a central density less than 10 g/cm3. The density decrease balances the mass decrease, keeping the radius constant. Substellar objects like brown dwarfs can live forever though they do not have enough mass to fuse hydrogen and helium.
A substellar object with a mass just below the hydrogen-fusing limit may ignite hydrogen fusion temporarily at its center. Although this will provide some energy, it will not be enough to overcome the object's ongoing gravitational contraction. Although an object with mass above 0.013 solar masses will be able to fuse deuterium for a time, this source of energy will be exhausted in 106 to 108 years. Apart from these sources, the radiation of an isolated substellar object comes only from the release of its gravitational potential energy, which causes it to cool and shrink. A substellar object in orbit about a star will shrink more as it is kept warm by the star, evolving towards an equilibrium state where it emits as much energy as it receives from the star. Substellar objects are cool enough to have water vapor in their atmosphere. Infrared spectroscopy can detect the distinctive color of water in gas giant size substellar objects if they are not in orbit about a star. William Duncan MacMillan proposed in 1918 the classification of substellar objects into three categories based on their density and phase state: solid and dark gaseous.
Solid objects include smaller terrestrial planets and moons. Saturn and large gas giant planets are in a "gaseous" state. Brown dwarf Planet Sub-brown dwarf Substellar companion Quoted as Chabrier and Baraffe: Chabrier, Gilles. "Theory of Low-Mass Stars and Substellar Objects". Annual Review of Astronomy and Astrophysics. 38: 337–377. ArXiv:astro-ph/0006383. Bibcode:2000ARA&A..38..337C. doi:10.1146/annurev.astro.38.1.337
Hipparcos
Hipparcos was a scientific satellite of the European Space Agency, launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky; this permitted the accurate determination of proper motions and parallaxes of stars, allowing a determination of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, this pinpointed all six quantities needed to determine the motion of stars; the resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos' follow-up mission, was launched in 2013; the word "Hipparcos" is an acronym for HIgh Precision PARallax COllecting Satellite and a reference to the ancient Greek astronomer Hipparchus of Nicaea, noted for applications of trigonometry to astronomy and his discovery of the precession of the equinoxes.
By the second half of the 20th century, the accurate measurement of star positions from the ground was running into insurmountable barriers to improvements in accuracy for large-angle measurements and systematic terms. Problems were dominated by the effects of the Earth's atmosphere, but were compounded by complex optical terms and gravitational instrument flexures, the absence of all-sky visibility. A formal proposal to make these exacting observations from space was first put forward in 1967. Although proposed to the French space agency CNES, it was considered too complex and expensive for a single national programme, its acceptance within the European Space Agency's scientific programme, in 1980, was the result of a lengthy process of study and lobbying. The underlying scientific motivation was to determine the physical properties of the stars through the measurement of their distances and space motions, thus to place theoretical studies of stellar structure and evolution, studies of galactic structure and kinematics, on a more secure empirical basis.
Observationally, the objective was to provide the positions and annual proper motions for some 100,000 stars with an unprecedented accuracy of 0.002 arcseconds, a target in practice surpassed by a factor of two. The name of the space telescope, "Hipparcos" was an acronym for High Precision Parallax Collecting Satellite, it reflected the name of the ancient Greek astronomer Hipparchus, considered the founder of trigonometry and the discoverer of the precession of the equinoxes; the spacecraft carried a single all-reflective, eccentric Schmidt telescope, with an aperture of 29 cm. A special beam-combining mirror superimposed two fields of view, 58 degrees apart, into the common focal plane; this complex mirror consisted of two mirrors tilted in opposite directions, each occupying half of the rectangular entrance pupil, providing an unvignetted field of view of about 1°×1°. The telescope used a system of grids, at the focal surface, composed of 2688 alternate opaque and transparent bands, with a period of 1.208 arc-sec.
Behind this grid system, an image dissector tube with a sensitive field of view of about 38-arc-sec diameter converted the modulated light into a sequence of photon counts from which the phase of the entire pulse train from a star could be derived. The apparent angle between two stars in the combined fields of view, modulo the grid period, was obtained from the phase difference of the two star pulse trains. Targeting the observation of some 100,000 stars, with an astrometric accuracy of about 0.002 arc-sec, the final Hipparcos Catalogue comprised nearly 120,000 stars with a median accuracy of better than 0.001 arc-sec. An additional photomultiplier system viewed a beam splitter in the optical path and was used as a star mapper, its purpose was to monitor and determine the satellite attitude, in the process, to gather photometric and astrometric data of all stars down to about 11th magnitude. These measurements were made in two broad bands corresponding to B and V in the UBV photometric system.
The positions of these latter stars were to be determined to a precision of 0.03 arc-sec, a factor of 25 less than the main mission stars. Targeting the observation of around 400,000 stars, the resulting Tycho Catalogue comprised just over 1 million stars, with a subsequent analysis extending this to the Tycho-2 Catalogue of about 2.5 million stars. The attitude of the spacecraft about its center of gravity was controlled to scan the celestial sphere in a regular precessional motion maintaining a constant inclination between the spin axis and the direction to the Sun; the spacecraft spun around its Z-axis at the rate of 11.25 revolutions/day at an angle of 43° to the Sun. The Z-axis rotated about the sun-satellite line at 6.4 revolutions/year. The spacecraft consisted of two platforms and six vertical panels, all made of aluminum honeycomb; the solar array consisted of three deployable sections. Two S-band antennas were located on the top and bottom of the spacecraft, providing an omni-directional downlink data rate of 24 kbit/s.
An attitude and orbit-control subsystem ensured correct dynamic attitude control and determination during the operational lifetim