1.
Set (mathematics)
–
In mathematics, a set is a well-defined collection of distinct objects, considered as an object in its own right. For example, the numbers 2,4, and 6 are distinct objects when considered separately, Sets are one of the most fundamental concepts in mathematics. Developed at the end of the 19th century, set theory is now a part of mathematics. In mathematics education, elementary topics such as Venn diagrams are taught at a young age, the German word Menge, rendered as set in English, was coined by Bernard Bolzano in his work The Paradoxes of the Infinite. A set is a collection of distinct objects. The objects that make up a set can be anything, numbers, people, letters of the alphabet, other sets, Sets are conventionally denoted with capital letters. Sets A and B are equal if and only if they have precisely the same elements. Cantors definition turned out to be inadequate, instead, the notion of a set is taken as a notion in axiomatic set theory. There are two ways of describing, or specifying the members of, a set, one way is by intensional definition, using a rule or semantic description, A is the set whose members are the first four positive integers. B is the set of colors of the French flag, the second way is by extension – that is, listing each member of the set. An extensional definition is denoted by enclosing the list of members in curly brackets, one often has the choice of specifying a set either intensionally or extensionally. In the examples above, for instance, A = C and B = D, there are two important points to note about sets. First, in a definition, a set member can be listed two or more times, for example. However, per extensionality, two definitions of sets which differ only in one of the definitions lists set members multiple times, define, in fact. Hence, the set is identical to the set. The second important point is that the order in which the elements of a set are listed is irrelevant and we can illustrate these two important points with an example, = =. For sets with many elements, the enumeration of members can be abbreviated, for instance, the set of the first thousand positive integers may be specified extensionally as, where the ellipsis indicates that the list continues in the obvious way. Ellipses may also be used where sets have infinitely many members, thus the set of positive even numbers can be written as

2.
Real number
–
In mathematics, a real number is a value that represents a quantity along a line. The adjective real in this context was introduced in the 17th century by René Descartes, the real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as √2. Included within the irrationals are the numbers, such as π. Real numbers can be thought of as points on a long line called the number line or real line. Any real number can be determined by a possibly infinite decimal representation, such as that of 8.632, the real line can be thought of as a part of the complex plane, and complex numbers include real numbers. These descriptions of the numbers are not sufficiently rigorous by the modern standards of pure mathematics. All these definitions satisfy the definition and are thus equivalent. The statement that there is no subset of the reals with cardinality greater than ℵ0. Simple fractions were used by the Egyptians around 1000 BC, the Vedic Sulba Sutras in, c.600 BC, around 500 BC, the Greek mathematicians led by Pythagoras realized the need for irrational numbers, in particular the irrationality of the square root of 2. Arabic mathematicians merged the concepts of number and magnitude into a general idea of real numbers. In the 16th century, Simon Stevin created the basis for modern decimal notation, in the 17th century, Descartes introduced the term real to describe roots of a polynomial, distinguishing them from imaginary ones. In the 18th and 19th centuries, there was work on irrational and transcendental numbers. Johann Heinrich Lambert gave the first flawed proof that π cannot be rational, Adrien-Marie Legendre completed the proof, Évariste Galois developed techniques for determining whether a given equation could be solved by radicals, which gave rise to the field of Galois theory. Charles Hermite first proved that e is transcendental, and Ferdinand von Lindemann, lindemanns proof was much simplified by Weierstrass, still further by David Hilbert, and has finally been made elementary by Adolf Hurwitz and Paul Gordan. The development of calculus in the 18th century used the set of real numbers without having defined them cleanly. The first rigorous definition was given by Georg Cantor in 1871, in 1874, he showed that the set of all real numbers is uncountably infinite but the set of all algebraic numbers is countably infinite. Contrary to widely held beliefs, his first method was not his famous diagonal argument, the real number system can be defined axiomatically up to an isomorphism, which is described hereafter. Another possibility is to start from some rigorous axiomatization of Euclidean geometry, from the structuralist point of view all these constructions are on equal footing

3.
Complex number
–
A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers and i is the imaginary unit, satisfying the equation i2 = −1. In this expression, a is the part and b is the imaginary part of the complex number. If z = a + b i, then ℜ z = a, ℑ z = b, Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a + bi can be identified with the point in the complex plane, a complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number. In this way, the numbers are a field extension of the ordinary real numbers. As well as their use within mathematics, complex numbers have applications in many fields, including physics, chemistry, biology, economics, electrical engineering. The Italian mathematician Gerolamo Cardano is the first known to have introduced complex numbers and he called them fictitious during his attempts to find solutions to cubic equations in the 16th century. Complex numbers allow solutions to equations that have no solutions in real numbers. For example, the equation 2 = −9 has no real solution, Complex numbers provide a solution to this problem. The idea is to extend the real numbers with the unit i where i2 = −1. According to the theorem of algebra, all polynomial equations with real or complex coefficients in a single variable have a solution in complex numbers. A complex number is a number of the form a + bi, for example, −3.5 + 2i is a complex number. The real number a is called the part of the complex number a + bi. By this convention the imaginary part does not include the unit, hence b. The real part of a number z is denoted by Re or ℜ. For example, Re = −3.5 Im =2, hence, in terms of its real and imaginary parts, a complex number z is equal to Re + Im ⋅ i. This expression is known as the Cartesian form of z. A real number a can be regarded as a number a + 0i whose imaginary part is 0

4.
Vector space
–
A vector space is a collection of objects called vectors, which may be added together and multiplied by numbers, called scalars in this context. Scalars are often taken to be numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers. The operations of addition and scalar multiplication must satisfy certain requirements, called axioms. Euclidean vectors are an example of a vector space and they represent physical quantities such as forces, any two forces can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces and these vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are commonly used. This is particularly the case of Banach spaces and Hilbert spaces, historically, the first ideas leading to vector spaces can be traced back as far as the 17th centurys analytic geometry, matrices, systems of linear equations, and Euclidean vectors. Today, vector spaces are applied throughout mathematics, science and engineering, furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques, Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra. The concept of space will first be explained by describing two particular examples, The first example of a vector space consists of arrows in a fixed plane. This is used in physics to describe forces or velocities, given any two such arrows, v and w, the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin, too. This new arrow is called the sum of the two arrows and is denoted v + w, when a is negative, av is defined as the arrow pointing in the opposite direction, instead. Such a pair is written as, the sum of two such pairs and multiplication of a pair with a number is defined as follows, + = and a =. The first example above reduces to one if the arrows are represented by the pair of Cartesian coordinates of their end points. A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below, elements of V are commonly called vectors. Elements of F are commonly called scalars, the second operation, called scalar multiplication takes any scalar a and any vector v and gives another vector av. In this article, vectors are represented in boldface to distinguish them from scalars

5.
Convex set
–
In convex geometry, a convex set is a subset of an affine space that is closed under convex combinations. For example, a cube is a convex set, but anything that is hollow or has an indent, for example. The boundary of a set is always a convex curve. The intersection of all convex sets containing a given subset A of Euclidean space is called the hull of A. It is the smallest convex set containing A, a convex function is a real-valued function defined on an interval with the property that its epigraph is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex sets, the branch of mathematics devoted to the study of properties of convex sets and convex functions is called convex analysis. The notion of a set can be generalized as described below. Let S be a space over the real numbers, or, more generally. A set C in S is said to be if, for all x and y in C and all t in the interval. In other words, every point on the segment connecting x and y is in C. This implies that a set in a real or complex topological vector space is path-connected. Furthermore, C is strictly convex if every point on the segment connecting x and y other than the endpoints is inside the interior of C. A set C is called convex if it is convex. The convex subsets of R are simply the intervals of R, some examples of convex subsets of the Euclidean plane are solid regular polygons, solid triangles, and intersections of solid triangles. Some examples of convex subsets of a Euclidean 3-dimensional space are the Archimedean solids, the Kepler-Poinsot polyhedra are examples of non-convex sets. A set that is not convex is called a non-convex set, the complement of a convex set, such as the epigraph of a concave function, is sometimes called a reverse convex set, especially in the context of mathematical optimization. If S is a set in n-dimensional space, then for any collection of r, r >1. Ur in S, and for any nonnegative numbers λ1, + λr =1, then one has, ∑ k =1 r λ k u k ∈ S

6.
Convex hull
–
In mathematics, the convex hull or convex envelope of a set X of points in the Euclidean plane or in a Euclidean space is the smallest convex set that contains X. With the latter definition, convex hulls may be extended from Euclidean spaces to arbitrary real vector spaces, they may also be generalized further, to oriented matroids. The algorithmic problem of finding the convex hull of a set of points in the plane or other low-dimensional Euclidean spaces is one of the fundamental problems of computational geometry. A set of points is defined to be if it contains the line segments connecting each pair of its points. The convex hull of a given set X may be defined as The minimal convex set containing X The intersection of all convex sets containing X The set of all combinations of points in X. The union of all simplices with vertices in X and it is not obvious that the first definition makes sense, why should there exist a unique minimal convex set containing X, for every X. Thus, it is exactly the unique minimal convex set containing X. Each convex set containing X must contain all convex combinations of points in X, in fact, according to Carathéodorys theorem, if X is a subset of an N-dimensional vector space, convex combinations of at most N +1 points are sufficient in the definition above. If the convex hull of X is a set, then it is the intersection of all closed half-spaces containing X. The hyperplane separation theorem proves that in case, each point not in the convex hull can be separated from the convex hull by a half-space. However, there exist convex sets, and convex hulls of sets, more abstractly, the convex-hull operator Conv has the characteristic properties of a closure operator, It is extensive, meaning that the convex hull of every set X is a superset of X. It is non-decreasing, meaning that, for two sets X and Y with X ⊆ Y, the convex hull of X is a subset of the convex hull of Y. It is idempotent, meaning that for every X, the hull of the convex hull of X is the same as the convex hull of X. The convex hull of a point set S is the set of all convex combinations of its points. For each choice of coefficients, the convex combination is a point in the convex hull. Expressing this as a formula, the convex hull is the set. The convex hull of a point set S ⊊ R n forms a convex polygon when n =2. Each point x i in S that is not in the hull of the other points is called a vertex of Conv . In fact, every convex polytope in R n is the hull of its vertices

7.
Open set
–
In topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. These conditions are very loose, and they allow enormous flexibility in the choice of open sets, in the two extremes, every set can be open, or no set can be open but the space itself and the empty set. In practice, however, open sets are usually chosen to be similar to the intervals of the real line. The notion of an open set provides a way to speak of nearness of points in a topological space. Once a choice of open sets is made, the properties of continuity, connectedness, and compactness, each choice of open sets for a space is called a topology. Although open sets and the topologies that they comprise are of importance in point-set topology. Intuitively, an open set provides a method to distinguish two points, for example, if about one point in a topological space there exists an open set not containing another point, the two points are referred to as topologically distinguishable. In this manner, one may speak of two subsets of a topological space are near without concretely defining a metric on the topological space. Therefore, topological spaces may be seen as a generalization of metric spaces, in the set of all real numbers, one has the natural Euclidean metric, that is, a function which measures the distance between two real numbers, d = |x - y|. Therefore, given a number, one can speak of the set of all points close to that real number. In essence, points within ε of x approximate x to an accuracy of degree ε, note that ε >0 always but as ε becomes smaller and smaller, one obtains points that approximate x to a higher and higher degree of accuracy. For example, if x =0 and ε =1, the points within ε of x are precisely the points of the interval, that is, however, with ε =0.5, the points within ε of x are precisely the points of. Clearly, these points approximate x to a degree of accuracy compared to when ε =1. The previous discussion shows, for the case x =0, in particular, sets of the form give us a lot of information about points close to x =0. Thus, rather than speaking of a concrete Euclidean metric, one may use sets to describe points close to x, thus, we find that in some sense, every real number is distance 0 away from 0. It may help in case to think of the measure as being a binary condition, all things in R are equally close to 0. In general, one refers to the family of sets containing 0, used to approximate 0, as a neighborhood basis, in fact, one may generalize these notions to an arbitrary set, rather than just the real numbers. In this case, given a point of that set, one may define a collection of sets around x, of course, this collection would have to satisfy certain properties for otherwise we may not have a well-defined method to measure distance

8.
Euclidean vector
–
In mathematics, physics, and engineering, a Euclidean vector is a geometric object that has magnitude and direction. Vectors can be added to other vectors according to vector algebra, a Euclidean vector is frequently represented by a line segment with a definite direction, or graphically as an arrow, connecting an initial point A with a terminal point B, and denoted by A B →. A vector is what is needed to carry the point A to the point B and it was first used by 18th century astronomers investigating planet rotation around the Sun. The magnitude of the vector is the distance between the two points and the direction refers to the direction of displacement from A to B. These operations and associated laws qualify Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space. Vectors play an important role in physics, the velocity and acceleration of a moving object, many other physical quantities can be usefully thought of as vectors. Although most of them do not represent distances, their magnitude and direction can still be represented by the length, the mathematical representation of a physical vector depends on the coordinate system used to describe it. Other vector-like objects that describe physical quantities and transform in a similar way under changes of the system include pseudovectors and tensors. The concept of vector, as we know it today, evolved gradually over a period of more than 200 years, about a dozen people made significant contributions. Giusto Bellavitis abstracted the basic idea in 1835 when he established the concept of equipollence, working in a Euclidean plane, he made equipollent any pair of line segments of the same length and orientation. Essentially he realized an equivalence relation on the pairs of points in the plane, the term vector was introduced by William Rowan Hamilton as part of a quaternion, which is a sum q = s + v of a Real number s and a 3-dimensional vector. Like Bellavitis, Hamilton viewed vectors as representative of classes of equipollent directed segments, grassmanns work was largely neglected until the 1870s. Peter Guthrie Tait carried the standard after Hamilton. His 1867 Elementary Treatise of Quaternions included extensive treatment of the nabla or del operator ∇, in 1878 Elements of Dynamic was published by William Kingdon Clifford. Clifford simplified the quaternion study by isolating the dot product and cross product of two vectors from the complete quaternion product and this approach made vector calculations available to engineers and others working in three dimensions and skeptical of the fourth. Josiah Willard Gibbs, who was exposed to quaternions through James Clerk Maxwells Treatise on Electricity and Magnetism, the first half of Gibbss Elements of Vector Analysis, published in 1881, presents what is essentially the modern system of vector analysis. In 1901 Edwin Bidwell Wilson published Vector Analysis, adapted from Gibbs lectures, in physics and engineering, a vector is typically regarded as a geometric entity characterized by a magnitude and a direction. It is formally defined as a line segment, or arrow

9.
Vector field
–
In vector calculus, a vector field is an assignment of a vector to each point in a subset of space. A vector field in the plane, can be visualised as, the elements of differential and integral calculus extend naturally to vector fields. Vector fields can usefully be thought of as representing the velocity of a flow in space. In coordinates, a field on a domain in n-dimensional Euclidean space can be represented as a vector-valued function that associates an n-tuple of real numbers to each point of the domain. This representation of a vector field depends on the coordinate system, vector fields are often discussed on open subsets of Euclidean space, but also make sense on other subsets such as surfaces, where they associate an arrow tangent to the surface at each point. More generally, vector fields are defined on manifolds, which are spaces that look like Euclidean space on small scales. In this setting, a field gives a tangent vector at each point of the manifold. Vector fields are one kind of tensor field, given a subset S in Rn, a vector field is represented by a vector-valued function V, S → Rn in standard Cartesian coordinates. If each component of V is continuous, then V is a vector field. A vector field can be visualized as assigning a vector to individual points within an n-dimensional space, in physics, a vector is additionally distinguished by how its coordinates change when one measures the same vector with respect to a different background coordinate system. The transformation properties of vectors distinguish a vector as a distinct entity from a simple list of scalars. Thus, suppose that is a choice of Cartesian coordinates, in terms of which the components of the vector V are V x =, then the components of the vector V in the new coordinates are required to satisfy the transformation law Such a transformation law is called contravariant. Given a differentiable manifold M, a field on M is an assignment of a tangent vector to each point in M. More precisely, a vector field F is a mapping from M into the tangent bundle TM so that p ∘ F is the identity mapping where p denotes the projection from TM to M, in other words, a vector field is a section of the tangent bundle. If the manifold M is smooth or analytic—that is, the change of coordinates is smooth —then one can make sense of the notion of vector fields. The collection of all vector fields on a smooth manifold M is often denoted by Γ or C∞. A vector field for the movement of air on Earth will associate for every point on the surface of the Earth a vector with the wind speed and direction for that point. This can be drawn using arrows to represent the wind, the length of the arrow will be an indication of the wind speed

10.
Cambridge University Press
–
Cambridge University Press is the publishing business of the University of Cambridge. Granted letters patent by Henry VIII in 1534, it is the worlds oldest publishing house and it also holds letters patent as the Queens Printer. The Presss mission is To further the Universitys mission by disseminating knowledge in the pursuit of education, learning, Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. With a global presence, publishing hubs, and offices in more than 40 countries. Its publishing includes journals, monographs, reference works, textbooks. Cambridge University Press is an enterprise that transfers part of its annual surplus back to the university. Cambridge University Press is both the oldest publishing house in the world and the oldest university press and it originated from Letters Patent granted to the University of Cambridge by Henry VIII in 1534, and has been producing books continuously since the first University Press book was printed. Cambridge is one of the two privileged presses, authors published by Cambridge have included John Milton, William Harvey, Isaac Newton, Bertrand Russell, and Stephen Hawking. In 1591, Thomass successor, John Legate, printed the first Cambridge Bible, the London Stationers objected strenuously, claiming that they had the monopoly on Bible printing. The universitys response was to point out the provision in its charter to print all manner of books. In July 1697 the Duke of Somerset made a loan of £200 to the university towards the house and presse and James Halman, Registrary of the University. It was in Bentleys time, in 1698, that a body of scholars was appointed to be responsible to the university for the Presss affairs. The Press Syndicates publishing committee still meets regularly, and its role still includes the review, John Baskerville became University Printer in the mid-eighteenth century. Baskervilles concern was the production of the finest possible books using his own type-design, a technological breakthrough was badly needed, and it came when Lord Stanhope perfected the making of stereotype plates. This involved making a mould of the surface of a page of type. The Press was the first to use this technique, and in 1805 produced the technically successful, under the stewardship of C. J. Clay, who was University Printer from 1854 to 1882, the Press increased the size and scale of its academic and educational publishing operation. An important factor in this increase was the inauguration of its list of schoolbooks, during Clays administration, the Press also undertook a sizable co-publishing venture with Oxford, the Revised Version of the Bible, which was begun in 1870 and completed in 1885. It was Wright who devised the plan for one of the most distinctive Cambridge contributions to publishing—the Cambridge Histories, the Cambridge Modern History was published between 1902 and 1912

11.
Topological vector space
–
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. As the name suggests the space blends a topological structure with the concept of a vector space. Hilbert spaces and Banach spaces are well-known examples, unless stated otherwise, the underlying field of a topological vector space is assumed to be either the complex numbers C or the real numbers R. Some authors require the topology on X to be T1, it follows that the space is Hausdorff. The topological and linear algebraic structures can be tied together even more closely with additional assumptions, the category of topological vector spaces over a given topological field K is commonly denoted TVSK or TVectK. The objects are the vector spaces over K and the morphisms are the continuous K-linear maps from one object to another. Every normed vector space has a topological structure, the norm induces a metric. This is a vector space because, The vector addition +, V × V → V is jointly continuous with respect to this topology. This follows directly from the triangle inequality obeyed by the norm, the scalar multiplication ·, K × V → V, where K is the underlying scalar field of V, is jointly continuous. This follows from the inequality and homogeneity of the norm. Therefore, all Banach spaces and Hilbert spaces are examples of vector spaces. There are topological spaces whose topology is not induced by a norm. These are all examples of Montel spaces, an infinite-dimensional Montel space is never normable. A topological field is a vector space over each of its subfields. A cartesian product of a family of vector spaces, when endowed with the product topology, is a topological vector space. For instance, the set X of all functions f, R → R, with this topology, X becomes a topological vector space, called the space of pointwise convergence. The reason for this name is the following, if is a sequence of elements in X, then fn has limit f in X if and only if fn has limit f for every real number x. This space is complete, but not normable, indeed, every neighborhood of 0 in the topology contains lines

12.
Banach space
–
In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn, Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces, the vector space structure allows one to relate the behavior of Cauchy sequences to that of converging series of vectors. All norms on a vector space are equivalent. Every finite-dimensional normed space over R or C is a Banach space, if X and Y are normed spaces over the same ground field K, the set of all continuous K-linear maps T, X → Y is denoted by B. In infinite-dimensional spaces, not all maps are continuous. For Y a Banach space, the space B is a Banach space with respect to this norm, if X is a Banach space, the space B = B forms a unital Banach algebra, the multiplication operation is given by the composition of linear maps. If X and Y are normed spaces, they are isomorphic normed spaces if there exists a linear bijection T, X → Y such that T, if one of the two spaces X or Y is complete then so is the other space. Two normed spaces X and Y are isometrically isomorphic if in addition, T is an isometry, the Banach–Mazur distance d between two isomorphic but not isometric spaces X and Y gives a measure of how much the two spaces X and Y differ. Every normed space X can be embedded in a Banach space. More precisely, there is a Banach space Y and an isometric mapping T, X → Y such that T is dense in Y. If Z is another Banach space such that there is an isomorphism from X onto a dense subset of Z. This Banach space Y is the completion of the normed space X, the underlying metric space for Y is the same as the metric completion of X, with the vector space operations extended from X to Y. The completion of X is often denoted by X ^, the cartesian product X × Y of two normed spaces is not canonically equipped with a norm. However, several equivalent norms are used, such as ∥ ∥1 = ∥ x ∥ + ∥ y ∥, ∥ ∥ ∞ = max. In this sense, the product X × Y is complete if and only if the two factors are complete. If M is a linear subspace of a normed space X, there is a natural norm on the quotient space X / M

13.
Euclidean space
–
In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and certain other spaces. It is named after the Ancient Greek mathematician Euclid of Alexandria, the term Euclidean distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions, classical Greek geometry defined the Euclidean plane and Euclidean three-dimensional space using certain postulates, while the other properties of these spaces were deduced as theorems. Geometric constructions are used to define rational numbers. It means that points of the space are specified with collections of real numbers and this approach brings the tools of algebra and calculus to bear on questions of geometry and has the advantage that it generalizes easily to Euclidean spaces of more than three dimensions. From the modern viewpoint, there is only one Euclidean space of each dimension. With Cartesian coordinates it is modelled by the coordinate space of the same dimension. In one dimension, this is the line, in two dimensions, it is the Cartesian plane, and in higher dimensions it is a coordinate space with three or more real number coordinates. One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance, for example, there are two fundamental operations on the plane. One is translation, which means a shifting of the plane so that point is shifted in the same direction. The other is rotation about a point in the plane. In order to all of this mathematically precise, the theory must clearly define the notions of distance, angle, translation. Even when used in theories, Euclidean space is an abstraction detached from actual physical locations, specific reference frames, measurement instruments. The standard way to such space, as carried out in the remainder of this article, is to define the Euclidean plane as a two-dimensional real vector space equipped with an inner product. The reason for working with vector spaces instead of Rn is that it is often preferable to work in a coordinate-free manner. Once the Euclidean plane has been described in language, it is actually a simple matter to extend its concept to arbitrary dimensions. For the most part, the vocabulary, formulae, and calculations are not made any more difficult by the presence of more dimensions. Intuitively, the distinction says merely that there is no choice of where the origin should go in the space

14.
Hilbert space
–
The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of algebra and calculus from the two-dimensional Euclidean plane. A Hilbert space is a vector space possessing the structure of an inner product that allows length. Furthermore, Hilbert spaces are complete, there are limits in the space to allow the techniques of calculus to be used. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional function spaces, the earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis —and ergodic theory, john von Neumann coined the term Hilbert space for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis, geometric intuition plays an important role in many aspects of Hilbert space theory. Exact analogs of the Pythagorean theorem and parallelogram law hold in a Hilbert space, at a deeper level, perpendicular projection onto a subspace plays a significant role in optimization problems and other aspects of the theory. An element of a Hilbert space can be specified by its coordinates with respect to a set of coordinate axes. When that set of axes is countably infinite, this means that the Hilbert space can also usefully be thought of in terms of the space of sequences that are square-summable. The latter space is often in the literature referred to as the Hilbert space. One of the most familiar examples of a Hilbert space is the Euclidean space consisting of vectors, denoted by ℝ3. The dot product takes two vectors x and y, and produces a real number x·y, If x and y are represented in Cartesian coordinates, then the dot product is defined by ⋅ = x 1 y 1 + x 2 y 2 + x 3 y 3. The dot product satisfies the properties, It is symmetric in x and y, x · y = y · x. It is linear in its first argument, · y = ax1 · y + bx2 · y for any scalars a, b, and vectors x1, x2, and y. It is positive definite, for all x, x · x ≥0, with equality if. An operation on pairs of vectors that, like the dot product, a vector space equipped with such an inner product is known as a inner product space. Every finite-dimensional inner product space is also a Hilbert space, multivariable calculus in Euclidean space relies on the ability to compute limits, and to have useful criteria for concluding that limits exist

15.
Inner product space
–
In linear algebra, an inner product space is a vector space with an additional structure called an inner product. This additional structure associates each pair of vectors in the space with a quantity known as the inner product of the vectors. Inner products allow the introduction of intuitive geometrical notions such as the length of a vector or the angle between two vectors. They also provide the means of defining orthogonality between vectors, inner product spaces generalize Euclidean spaces to vector spaces of any dimension, and are studied in functional analysis. An inner product induces a associated norm, thus an inner product space is also a normed vector space. A complete space with a product is called a Hilbert space. An space with a product is called a pre-Hilbert space, since its completion with respect to the norm induced by the inner product is a Hilbert space. Inner product spaces over the field of numbers are sometimes referred to as unitary spaces. In this article, the field of scalars denoted F is either the field of real numbers R or the field of complex numbers C, formally, an inner product space is a vector space V over the field F together with an inner product, i. e. Some authors, especially in physics and matrix algebra, prefer to define the inner product, then the first argument becomes conjugate linear, rather than the second. In those disciplines we would write the product ⟨ x, y ⟩ as ⟨ y | x ⟩, respectively y † x. Here the kets and columns are identified with the vectors of V and this reverse order is now occasionally followed in the more abstract literature, taking ⟨ x, y ⟩ to be conjugate linear in x rather than y. A few instead find a ground by recognizing both ⟨ ⋅, ⋅ ⟩ and ⟨ ⋅ | ⋅ ⟩ as distinct notations differing only in which argument is conjugate linear. There are various reasons why it is necessary to restrict the basefield to R and C in the definition. Briefly, the basefield has to contain an ordered subfield in order for non-negativity to make sense, the basefield has to have additional structure, such as a distinguished automorphism. More generally any quadratically closed subfield of R or C will suffice for this purpose, however in these cases when it is a proper subfield even finite-dimensional inner product spaces will fail to be metrically complete. In contrast all finite-dimensional inner product spaces over R or C, such as used in quantum computation, are automatically metrically complete. In some cases we need to consider non-negative semi-definite sesquilinear forms and this means that ⟨ x, x ⟩ is only required to be non-negative

16.
Polarization identity
–
In mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. Let ∥ x ∥ denote the norm of x and ⟨ x, y ⟩ the inner product of vectors x and y. The various forms given below are all related by the law,2 ∥ u ∥2 +2 ∥ v ∥2 = ∥ u + v ∥2 + ∥ u − v ∥2. The polarization identity can be generalized to other contexts in abstract algebra, linear algebra. If V is a vector space, then the inner product is defined by the polarization identity ⟨ x, y ⟩ =14 ∀ x, y ∈ V. If V is a vector space the inner product is given by the polarization identity, ⟨ x, y ⟩ =14 ∀ x, y ∈ V. Note that this defines a product which is linear in its first. To adjust for contrary definition, one needs to take the complex conjugate, a special case is an inner product given by the dot product, the so-called standard or Euclidean inner product. In this case, common forms of the identity include, u ⋅ v =12, u ⋅ v =12, u ⋅ v =14. The second form of the identity can be written as ∥ u − v ∥2 = ∥ u ∥2 + ∥ v ∥2 −2. This is essentially a form of the law of cosines for the triangle formed by the vectors u, v. In particular, u ⋅ v = ∥ u ∥ ∥ v ∥ cos θ, the basic relation between the norm and the dot product is given by the equation ∥ v ∥2 = v ⋅ v. Forms and of the polarization identity now follow by solving equations for u · v. In linear algebra, the identity applies to any norm on a vector space defined in terms of an inner product by the equation ∥ v ∥ = ⟨ v, v ⟩. This inequality ensures that the magnitude of the above defined cosine ≤1, the choice of the cosine function ensures that when ⟨ u, v ⟩ =0, the angle θ = π/2 or -π/2, where the sign is determined by an orientation on the vector space. In this case, the identities become ⟨ u, v ⟩ =12, ⟨ u, v ⟩ =12, ⟨ u, v ⟩ =14. Conversely, if a norm on a space satisfies the parallelogram law. In functional analysis, introduction of an inner product norm like this often is used to make a Banach space into a Hilbert space, the polarization identities are not restricted to inner products

17.
Norm (mathematics)
–
A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors. A norm must also satisfy certain properties pertaining to scalability and additivity which are given in the definition below. A simple example is the 2-dimensional Euclidean space R2 equipped with the Euclidean norm, elements in this vector space are usually drawn as arrows in a 2-dimensional cartesian coordinate system starting at the origin. The Euclidean norm assigns to each vector the length of its arrow, because of this, the Euclidean norm is often known as the magnitude. A vector space on which a norm is defined is called a vector space. Similarly, a space with a seminorm is called a seminormed vector space. It is often possible to supply a norm for a vector space in more than one way. If p =0 then v is the zero vector, by the first axiom, absolute homogeneity, we have p =0 and p = p, so that by the triangle inequality p ≥0. A seminorm on V is a p, V → R with the properties 1. and 2. Every vector space V with seminorm p induces a normed space V/W, called the quotient space, the induced norm on V/W is clearly well-defined and is given by, p = p. A topological vector space is called if the topology of the space can be induced by a norm. If a norm p, V → R is given on a vector space V then the norm of a vector v ∈ V is usually denoted by enclosing it within double vertical lines, such notation is also sometimes used if p is only a seminorm. For the length of a vector in Euclidean space, the notation | v | with single vertical lines is also widespread, in Unicode, the codepoint of the double vertical line character ‖ is U+2016. The double vertical line should not be confused with the parallel to symbol and this is usually not a problem because the former is used in parenthesis-like fashion, whereas the latter is used as an infix operator. The double vertical line used here should not be confused with the symbol used to denote lateral clicks. The single vertical line | is called vertical line in Unicode, the trivial seminorm has p =0 for all x in V. Every linear form f on a vector space defines a seminorm by x → | f |, the absolute value ∥ x ∥ = | x | is a norm on the one-dimensional vector spaces formed by the real or complex numbers. The absolute value norm is a case of the L1 norm

18.
Stereotype space
–
In functional analysis and related areas of mathematics stereotype spaces are topological vector spaces defined by a special variant of reflexivity condition. Each pseudocomplete barreled space X is stereotype, a metrizable locally convex space X is stereotype if and only if X is complete. Each infinite dimensional normed space X considered with the X ⋆ -weak topology is not stereotype, there exist stereotype spaces which are not Mackey spaces. Some simple connections between the properties of a stereotype space X and those of its dual space X ⋆ are expressed in the following list of regularities, the first results on this type of reflexivity of topological vector spaces were obtained by M. F. Smith in 1952. Further investigations were conducted by B. S. Brudovskii, W. C, waterhouse, K. Brauner, S. S. Akbarov, and E. T. Shavgulidze. Each locally convex space X can be transformed into a space with the help of the standard operations of pseudocompletion and pseudosaturation defined by the following two propositions. If X is a locally convex space, then its pseudosaturation X △ is stereotype. Dually, if X is a locally convex space, then its pseudocompletion X ▽ is stereotype. For arbitrary locally convex space X the spaces X △ ▽ and X ▽ △ are stereotype and it defines two natural tensor products X ⊛ Y, = Hom ⋆, X ⊙ Y, = Hom. This condition is weaker than the existence of the Schauder basis, the following proposition holds, If two stereotype spaces X and Y have the stereotype approximation property, then the spaces Hom, X ⊛ Y and X ⊙ Y have the stereotype approximation property as well. In particular, if X has the approximation property, then the same is true for X ⋆. This allows to reduce the list of counterexamples in comparison with the Banach theory, the arising theory of stereotype algebras allows to simplify constructions in the duality theories for non-commutative groups. In particular, the group algebras in these theories become Hopf algebras in the algebraic sense. Schaefer, Helmuth H. Topological vector spaces, Robertson, A. P. Robertson, W. J. Topological vector spaces. The Pontrjagin duality theorem in linear spaces, on k- and c-reflexivity of locally convex vector spaces. Brauner, K. Duals of Fréchet spaces and a generalization of the Banach-Dieudonné theorem, Akbarov, S. S. Pontryagin duality in the theory of topological vector spaces and in topological algebra. Akbarov, S. S. Holomorphic functions of exponential type, envelopes and refinements in categories, with applications to functional analysis. On two classes of spaces reflexive in the sense of Pontryagin, Akbarov, S. S. Pontryagin duality and topological algebras

19.
Dual space
–
In mathematics, any vector space V has a corresponding dual vector space consisting of all linear functionals on V together with a naturally induced linear structure. The dual space as defined above is defined for all vector spaces, when defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space. Dual vector spaces find application in many branches of mathematics that use vector spaces, when applied to vector spaces of functions, dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the space is an important concept in functional analysis. Given any vector space V over a field F, the dual space V∗ is defined as the set of all linear maps φ, V → F, since linear maps are vector space homomorphisms, the dual space is also sometimes denoted by Hom. The dual space V∗ itself becomes a space over F when equipped with an addition and scalar multiplication satisfying, = φ + ψ = a for all φ and ψ ∈ V∗, x ∈ V. Elements of the dual space V∗ are sometimes called covectors or one-forms. The pairing of a functional φ in the dual space V∗ and this pairing defines a nondegenerate bilinear mapping ⟨·, ·⟩, V∗ × V → F called the natural pairing. If V is finite-dimensional, then V∗ has the dimension as V. Given a basis in V, it is possible to construct a basis in V∗. This dual basis is a set of linear functionals on V, defined by the relation e i = c i, i =1, …, n for any choice of coefficients ci ∈ F. In particular, letting in turn one of those coefficients be equal to one. For example, if V is R2, and its basis chosen to be, then e1 and e2 are one-forms such that e1 =1, e1 =0, e2 =0, and e2 =1. In particular, if we interpret Rn as the space of columns of n real numbers, such a row acts on Rn as a linear functional by ordinary matrix multiplication. One way to see this is that a functional maps every n-vector x into a number y. So an element of V∗ can be thought of as a particular family of parallel lines covering the plane. To compute the value of a functional on a given vector, or, informally, one counts how many lines the vector crosses. The dimension of R∞ is countably infinite, whereas RN does not have a countable basis, again the sum is finite because fα is nonzero for only finitely many α

20.
Operator topologies
–
In the mathematical field of functional analysis there are several standard topologies which are given to the algebra B of bounded linear operators on a Hilbert space H. Let be a sequence of operators on the Hilbert space H. Consider the statement that Tn converges to some operator T in H. This could have different meanings, If ∥ T n − T ∥ →0, that is. If T n x → T x for all x in H, finally, suppose T n x → T x in the weak topology of H. This means that F → F for all linear functionals F on H, in this case we say that T n → T in the weak operator topology. All of these notions make sense and are useful for a Banach space in place of the Hilbert space H, there are many topologies that can be defined on B besides the ones used above. These topologies are all convex, which implies that they are defined by a family of seminorms. In analysis, a topology is called if it has many open sets and weak if it has few open sets, so that the corresponding modes of convergence are, respectively, strong. The diagram on the right is a summary of the relations, the Banach space B has a predual B*, consisting of the trace class operators, whose dual is B. The seminorm pw for w positive in the predual is defined to be 1/2, If B is a vector space of linear maps on the vector space A, then σ is defined to be the weakest topology on A such that all elements of B are continuous. The norm topology or uniform topology or uniform operator topology is defined by the usual norm ||x|| on B and it is stronger than all the other topologies below. The weak topology is σ, in words the weakest topology such that all elements of the dual B* are continuous. It is the topology on the Banach space B. It is stronger than the ultraweak and weak operator topologies and it is stronger than the weak operator topology. The strong* operator topology or strong* topology is defined by the seminorms ||x|| and ||x*|| for h in H and it is stronger than the strong and weak operator topologies. The strong operator topology or strong topology is defined by the seminorms ||x|| for h in H and it is stronger than the weak operator topology. The weak operator topology or weak topology is defined by the seminorms || for h1, the continuous linear functionals on B for the weak, strong, and strong* topologies are the same, and are the finite linear combinations of the linear functionals for h1, h2 in H