1.
Base (geometry)

This term is commonly applied to triangles, trapezoids, cones, pyramids and frustums. Bases are commonly used to calculate the areas and volumes of figures, in speaking about these processes, the measure of a figures base is often referred to as its base. Some figures have two bases, both of which are used to calculate the extent of the figures. The extended base of a triangle is the line contains the base. The extended base is important in the context of obtuse triangles, the altitudes from the acute vertices are external to the triangle and perpendicularly intersect the extended opposite base

2.
New York City

The City of New York, often called New York City or simply New York, is the most populous city in the United States. With an estimated 2015 population of 8,550,405 distributed over an area of about 302.6 square miles. Located at the tip of the state of New York. Home to the headquarters of the United Nations, New York is an important center for international diplomacy and has described as the cultural and financial capital of the world. Situated on one of the worlds largest natural harbors, New York City consists of five boroughs, the five boroughs – Brooklyn, Manhattan, The Bronx, and Staten Island – were consolidated into a single city in 1898. In 2013, the MSA produced a gross metropolitan product of nearly US$1.39 trillion, in 2012, the CSA generated a GMP of over US$1.55 trillion. NYCs MSA and CSA GDP are higher than all but 11 and 12 countries, New York City traces its origin to its 1624 founding in Lower Manhattan as a trading post by colonists of the Dutch Republic and was named New Amsterdam in 1626.

The city and its surroundings came under English control in 1664 and were renamed New York after King Charles II of England granted the lands to his brother, New York served as the capital of the United States from 1785 until 1790. It has been the countrys largest city since 1790, the Statue of Liberty greeted millions of immigrants as they came to the Americas by ship in the late 19th and early 20th centuries and is a symbol of the United States and its democracy. In the 21st century, New York has emerged as a node of creativity and entrepreneurship, social tolerance. Several sources have ranked New York the most photographed city in the world, the names of many of the citys bridges, tapered skyscrapers, and parks are known around the world. Manhattans real estate market is among the most expensive in the world, Manhattans Chinatown incorporates the highest concentration of Chinese people in the Western Hemisphere, with multiple signature Chinatowns developing across the city. Providing continuous 24/7 service, the New York City Subway is one of the most extensive metro systems worldwide, with 472 stations in operation.

Over 120 colleges and universities are located in New York City, including Columbia University, New York University, and Rockefeller University, during the Wisconsinan glaciation, the New York City region was situated at the edge of a large ice sheet over 1,000 feet in depth. The ice sheet scraped away large amounts of soil, leaving the bedrock that serves as the foundation for much of New York City today. Later on, movement of the ice sheet would contribute to the separation of what are now Long Island and Staten Island. The first documented visit by a European was in 1524 by Giovanni da Verrazzano, a Florentine explorer in the service of the French crown and he claimed the area for France and named it Nouvelle Angoulême. Heavy ice kept him from further exploration, and he returned to Spain in August and he proceeded to sail up what the Dutch would name the North River, named first by Hudson as the Mauritius after Maurice, Prince of Orange

3.
Vertex (geometry)

In geometry, a vertex is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. A vertex is a point of a polygon, polyhedron, or other higher-dimensional polytope. However, in theory, vertices may have fewer than two incident edges, which is usually not allowed for geometric vertices. However, a smooth approximation to a polygon will have additional vertices. A polygon vertex xi of a simple polygon P is a principal polygon vertex if the diagonal intersects the boundary of P only at x and x, there are two types of principal vertices and mouths. A principal vertex xi of a simple polygon P is called an ear if the diagonal that bridges xi lies entirely in P, according to the two ears theorem, every simple polygon has at least two ears. A principal vertex xi of a simple polygon P is called a mouth if the diagonal lies outside the boundary of P. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula.

Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces, for example, a cube has 12 edges and 6 faces, and hence 8 vertices

4.
Cone

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex. A cone is formed by a set of segments, half-lines, or lines connecting a common point. If the enclosed points are included in the base, the cone is a solid object, otherwise it is a two-dimensional object in three-dimensional space. In the case of an object, the boundary formed by these lines or partial lines is called the lateral surface, if the lateral surface is unbounded. In the case of line segments, the cone does not extend beyond the base, while in the case of half-lines, in the case of lines, the cone extends infinitely far in both directions from the apex, in which case it is sometimes called a double cone. Either half of a cone on one side of the apex is called a nappe. The axis of a cone is the line, passing through the apex. If the base is right circular the intersection of a plane with this surface is a conic section, in general, the base may be any shape and the apex may lie anywhere.

Contrasted with right cones are oblique cones, in which the axis passes through the centre of the base non-perpendicularly, a cone with a polygonal base is called a pyramid. Depending on the context, cone may mean specifically a convex cone or a projective cone, cones can be generalized to higher dimensions. The perimeter of the base of a cone is called the directrix, the base radius of a circular cone is the radius of its base, often this is simply called the radius of the cone. The aperture of a circular cone is the maximum angle between two generatrix lines, if the generatrix makes an angle θ to the axis, the aperture is 2θ. A cone with a region including its apex cut off by a plane is called a cone, if the truncation plane is parallel to the cones base. An elliptical cone is a cone with an elliptical base, a generalized cone is the surface created by the set of lines passing through a vertex and every point on a boundary. The slant height of a circular cone is the distance from any point on the circle to the apex of the cone.

It is given by r 2 + h 2, where r is the radius of the cirf the cone and this application is primarily useful in determining the slant height of a cone when given other information regarding the radius or height. The volume V of any conic solid is one third of the product of the area of the base A B and the height h V =13 A B h. In modern mathematics, this formula can easily be computed using calculus – it is, up to scaling, the integral ∫ x 2 d x =13 x 3

5.
Geometry

Geometry is a branch of mathematics concerned with questions of shape, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry.

These include the concepts of points, planes, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, planes, triangles, similarity, solid figures, Euclidean geometry has applications in computer science and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques.

It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space

6.
Isosceles triangle

In geometry, an isosceles triangle is a triangle that has two sides of equal length. By the isosceles triangle theorem, the two angles opposite the sides are themselves equal, while if the third side is different the third angle is different. By the Steiner–Lehmus theorem, every triangle with two angle bisectors of equal length is isosceles, in an isosceles triangle that has exactly two equal sides, the equal sides are called legs and the third side is called the base. The angle included by the legs is called the vertex angle, the vertex opposite the base is called the apex. In the equilateral triangle case, since all sides are equal, any side can be called the base, if needed, and the term leg is not generally used. A triangle with two equal sides has exactly one axis of symmetry, which goes through the vertex angle. Thus the axis of symmetry coincides with the bisector of the vertex angle, the median drawn to the base, the altitude drawn from the vertex angle. Whether the isosceles triangle is acute, right or obtuse depends on the vertex angle, in Euclidean geometry, the base angles cannot be obtuse or right because their measures would sum to at least 180°, the total of all angles in any Euclidean triangle.

The Euler line of any triangle goes through the orthocenter, its centroid. In an isosceles triangle with two equal sides, the Euler line coincides with the axis of symmetry. This can be seen as follows, if the vertex angle is acute, the orthocenter, the centroid, and the circumcenter all fall inside the triangle. In an isosceles triangle the incenter lies on the Euler line, the Steiner inellipse of any triangle is the unique ellipse that is internally tangent to the triangles three sides at their midpoints. For any isosceles triangle with area T and perimeter p, we have 2 p b 3 − p 2 b 2 +16 T2 =0. By substituting the height, the formula for the area of a triangle can be derived from the general formula one-half the base times the height. This is what Herons formula reduces to in the isosceles case, if the apex angle and leg lengths of an isosceles triangle are known, the area of that triangle is, T =2 = a 2 sin cos . This is derived by drawing a line from the base of the triangle. The bases of two right triangles are both equal to the hypotenuse times the sine of the bisected angle by definition of the term sine.

For the same reason, the heights of these triangles are equal to the times the cosine of the bisected angle

7.
Pyramid (geometry)

In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face and it is a conic solid with polygonal base. A pyramid with a base has n +1 vertices, n +1 faces. A right pyramid has its apex directly above the centroid of its base, nonright pyramids are called oblique pyramids. A regular pyramid has a polygon base and is usually implied to be a right pyramid. When unspecified, a pyramid is usually assumed to be a square pyramid. A triangle-based pyramid is often called a tetrahedron. Among oblique pyramids, like acute and obtuse triangles, a pyramid can be called if its apex is above the interior of the base and obtuse if its apex is above the exterior of the base. A right-angled pyramid has its apex above an edge or vertex of the base, in a tetrahedron these qualifiers change based on which face is considered the base. Pyramids are a subclass of the prismatoids, pyramids can be doubled into bipyramids by adding a second offset point on the other side of the base plane.

A right pyramid with a base has isosceles triangle sides, with symmetry is Cnv or. It can be given an extended Schläfli symbol ∨, representing a point, a join operation creates a new edge between all pairs of vertices of the two joined figures. The trigonal or triangular pyramid with all equilateral triangles faces becomes the regular tetrahedron, a lower symmetry case of the triangular pyramid is C3v, which has an equilateral triangle base, and 3 identical isosceles triangle sides. The square and pentagonal pyramids can be composed of convex polygons. Right pyramids with regular star polygon bases are called star pyramids, for example, the pentagrammic pyramid has a pentagram base and 5 intersecting triangle sides. A right pyramid can be named as ∨P, where is the point, ∨ is a join operator. It has C1v symmetry from two different base-apex orientations, and C2v in its full symmetry, a rectangular right pyramid, written as ∨, and a rhombic pyramid, as ∨, both have symmetry C2v. The volume of a pyramid is V =13 b h and this works for any polygon, regular or non-regular, and any location of the apex, provided that h is measured as the perpendicular distance from the plane containing the base

8.
International Standard Book Number

The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay.

The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces.

Separating the parts of a 10-digit ISBN is done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker