1.
Analytic geometry
–
In classical mathematics, analytic geometry, also known as coordinate geometry, or Cartesian geometry, is the study of geometry using a coordinate system. Analytic geometry is used in physics and engineering, and also in aviation, rocketry, space science. It is the foundation of most modern fields of geometry, including algebraic, differential, discrete, usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and squares, often in two and sometimes in three dimensions. Geometrically, one studies the Euclidean plane and Euclidean space, the numerical output, however, might also be a vector or a shape. That the algebra of the numbers can be employed to yield results about the linear continuum of geometry relies on the Cantor–Dedekind axiom. Apollonius in the Conics further developed a method that is so similar to analytic geometry that his work is thought to have anticipated the work of Descartes by some 1800 years. He further developed relations between the abscissas and the corresponding ordinates that are equivalent to rhetorical equations of curves and that is, equations were determined by curves, but curves were not determined by equations. Coordinates, variables, and equations were subsidiary notions applied to a specific geometric situation, analytic geometry was independently invented by René Descartes and Pierre de Fermat, although Descartes is sometimes given sole credit. Cartesian geometry, the term used for analytic geometry, is named after Descartes. This work, written in his native French tongue, and its philosophical principles, initially the work was not well received, due, in part, to the many gaps in arguments and complicated equations. Only after the translation into Latin and the addition of commentary by van Schooten in 1649 did Descartess masterpiece receive due recognition, Pierre de Fermat also pioneered the development of analytic geometry. Although not published in his lifetime, a form of Ad locos planos et solidos isagoge was circulating in Paris in 1637. Clearly written and well received, the Introduction also laid the groundwork for analytical geometry, as a consequence of this approach, Descartes had to deal with more complicated equations and he had to develop the methods to work with polynomial equations of higher degree. It was Leonard Euler who first applied the method in a systematic study of space curves and surfaces. In analytic geometry, the plane is given a coordinate system, similarly, Euclidean space is given coordinates where every point has three coordinates. The value of the coordinates depends on the choice of the point of origin. These are typically written as an ordered pair and this system can also be used for three-dimensional geometry, where every point in Euclidean space is represented by an ordered triple of coordinates. In polar coordinates, every point of the plane is represented by its distance r from the origin and its angle θ from the polar axis
2.
Curve
–
In mathematics, a curve is, generally speaking, an object similar to a line but that need not be straight. Thus, a curve is a generalization of a line, in that curvature is not necessarily zero, various disciplines within mathematics have given the term different meanings depending on the area of study, so the precise meaning depends on context. However, many of these meanings are special instances of the definition which follows, a curve is a topological space which is locally homeomorphic to a line. In everyday language, this means that a curve is a set of points which, near each of its points, looks like a line, a simple example of a curve is the parabola, shown to the right. A large number of curves have been studied in multiple mathematical fields. A closed curve is a curve that forms a path whose starting point is also its ending point—that is, closely related meanings include the graph of a function and a two-dimensional graph. Interest in curves began long before they were the subject of mathematical study and this can be seen in numerous examples of their decorative use in art and on everyday objects dating back to prehistoric times. Curves, or at least their graphical representations, are simple to create, historically, the term line was used in place of the more modern term curve. Hence the phrases straight line and right line were used to distinguish what are called lines from curved lines. For example, in Book I of Euclids Elements, a line is defined as a breadthless length, Euclids idea of a line is perhaps clarified by the statement The extremities of a line are points. Later commentators further classified according to various schemes. For example, Composite lines Incomposite lines Determinate Indeterminate The Greek geometers had studied many kinds of curves. One reason was their interest in solving problems that could not be solved using standard compass. These curves include, The conic sections, deeply studied by Apollonius of Perga The cissoid of Diocles, studied by Diocles, the conchoid of Nicomedes, studied by Nicomedes as a method to both double the cube and to trisect an angle. The Archimedean spiral, studied by Archimedes as a method to trisect an angle, the spiric sections, sections of tori studied by Perseus as sections of cones had been studied by Apollonius. A fundamental advance in the theory of curves was the advent of analytic geometry in the seventeenth century and this enabled a curve to be described using an equation rather than an elaborate geometrical construction. Previously, curves had been described as geometrical or mechanical according to how they were, or supposedly could be, conic sections were applied in astronomy by Kepler. Newton also worked on an example in the calculus of variations
3.
Limit of a function
–
In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input. Formal definitions, first devised in the early 19th century, are given below, informally, a function f assigns an output f to every input x. We say the function has a limit L at an input p, more specifically, when f is applied to any input sufficiently close to p, the output value is forced arbitrarily close to L. On the other hand, if some inputs very close to p are taken to outputs that stay a distance apart. The notion of a limit has many applications in modern calculus, in particular, the many definitions of continuity employ the limit, roughly, a function is continuous if all of its limits agree with the values of the function. It also appears in the definition of the derivative, in the calculus of one variable, however, his work was not known during his lifetime. Weierstrass first introduced the definition of limit in the form it is usually written today. He also introduced the notations lim and limx→x0, the modern notation of placing the arrow below the limit symbol is due to Hardy in his book A Course of Pure Mathematics in 1908. Imagine a person walking over a landscape represented by the graph of y = f and her horizontal position is measured by the value of x, much like the position given by a map of the land or by a global positioning system. Her altitude is given by the coordinate y and she is walking towards the horizontal position given by x = p. As she gets closer and closer to it, she notices that her altitude approaches L, if asked about the altitude of x = p, she would then answer L. What, then, does it mean to say that her altitude approaches L. It means that her altitude gets nearer and nearer to L except for a small error in accuracy. For example, suppose we set a particular goal for our traveler. She reports back that indeed she can get within ten meters of L, since she notes that when she is within fifty horizontal meters of p, the accuracy goal is then changed, can she get within one vertical meter. If she is anywhere within seven meters of p, then her altitude always remains within one meter from the target L. This explicit statement is quite close to the definition of the limit of a function with values in a topological space. To say that lim x → p f = L, means that ƒ can be made as close as desired to L by making x close enough, the following definitions are the generally accepted ones for the limit of a function in various contexts. Suppose f, R → R is defined on the real line, the value of the limit does not depend on the value of f, nor even that p be in the domain of f
4.
Projective geometry
–
Projective geometry is a topic of mathematics. It is the study of properties that are invariant with respect to projective transformations. This means that, compared to elementary geometry, projective geometry has a different setting, projective space, properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a transformation matrix and translations. The first issue for geometers is what kind of geometry is adequate for a novel situation, one source for projective geometry was indeed the theory of perspective. Another difference from elementary geometry is the way in which parallel lines can be said to meet in a point at infinity, again this notion has an intuitive basis, such as railway tracks meeting at the horizon in a perspective drawing. See projective plane for the basics of geometry in two dimensions. While the ideas were available earlier, projective geometry was mainly a development of the 19th century and this included the theory of complex projective space, the coordinates used being complex numbers. Several major types of more abstract mathematics were based on projective geometry and it was also a subject with a large number of practitioners for its own sake, as synthetic geometry. Another topic that developed from axiomatic studies of projective geometry is finite geometry, the topic of projective geometry is itself now divided into many research subtopics, two examples of which are projective algebraic geometry and projective differential geometry. Projective geometry is an elementary form of geometry, meaning that it is not based on a concept of distance. In two dimensions it begins with the study of configurations of points and lines and that there is indeed some geometric interest in this sparse setting was first established by Desargues and others in their exploration of the principles of perspective art. In higher dimensional spaces there are considered hyperplanes, and other linear subspaces, Projective geometry can also be seen as a geometry of constructions with a straight-edge alone. Since projective geometry excludes compass constructions, there are no circles, no angles, no measurements, no parallels and it was realised that the theorems that do apply to projective geometry are simpler statements. For example, the different conic sections are all equivalent in projective geometry, during the early 19th century the work of Jean-Victor Poncelet, Lazare Carnot and others established projective geometry as an independent field of mathematics. Its rigorous foundations were addressed by Karl von Staudt and perfected by Italians Giuseppe Peano, Mario Pieri, Alessandro Padoa, after much work on the very large number of theorems in the subject, therefore, the basics of projective geometry became understood. The incidence structure and the cross-ratio are fundamental invariants under projective transformations, Projective geometry can be modeled by the affine plane plus a line at infinity and then treating that line as ordinary. An algebraic model for doing projective geometry in the style of geometry is given by homogeneous coordinates. In a foundational sense, projective geometry and ordered geometry are elementary since they involve a minimum of axioms and either can be used as the foundation for affine, Projective geometry is not ordered and so it is a distinct foundation for geometry
5.
Tangent
–
In geometry, the tangent line to a plane curve at a given point is the straight line that just touches the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve, a similar definition applies to space curves and curves in n-dimensional Euclidean space. Similarly, the tangent plane to a surface at a point is the plane that just touches the surface at that point. The concept of a tangent is one of the most fundamental notions in geometry and has been extensively generalized. The word tangent comes from the Latin tangere, to touch, euclid makes several references to the tangent to a circle in book III of the Elements. In Apollonius work Conics he defines a tangent as being a line such that no other straight line could fall between it and the curve, archimedes found the tangent to an Archimedean spiral by considering the path of a point moving along the curve. Independently Descartes used his method of normals based on the observation that the radius of a circle is always normal to the circle itself and these methods led to the development of differential calculus in the 17th century. Many people contributed, Roberval discovered a method of drawing tangents. René-François de Sluse and Johannes Hudde found algebraic algorithms for finding tangents, further developments included those of John Wallis and Isaac Barrow, leading to the theory of Isaac Newton and Gottfried Leibniz. An 1828 definition of a tangent was a line which touches a curve. This old definition prevents inflection points from having any tangent and it has been dismissed and the modern definitions are equivalent to those of Leibniz who defined the tangent line as the line through a pair of infinitely close points on the curve. The tangent at A is the limit when point B approximates or tends to A, the existence and uniqueness of the tangent line depends on a certain type of mathematical smoothness, known as differentiability. At most points, the tangent touches the curve without crossing it, a point where the tangent crosses the curve is called an inflection point. Circles, parabolas, hyperbolas and ellipses do not have any point, but more complicated curves do have, like the graph of a cubic function. Conversely, it may happen that the curve lies entirely on one side of a line passing through a point on it. This is the case, for example, for a passing through the vertex of a triangle. In convex geometry, such lines are called supporting lines, the geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th century, suppose that a curve is given as the graph of a function, y = f
6.
Point at infinity
–
In geometry, a point at infinity or ideal point is an idealized limiting point at the end of each line. In the case of a plane, there is one ideal point for each pencil of parallel lines of the plane. Adjoining these points produces a plane, in which no point can be distinguished. This holds for a geometry over any field, and more generally over any division ring, in the real case, a point at infinity completes a line into a topologically closed curve. In higher dimensions, all the points at infinity form a subspace of one dimension less than that of the whole projective space to which they belong. A point at infinity can also be added to the line, thereby turning it into a closed surface known as the complex projective line, CP1. In the case of a space, each line has two distinct ideal points. Here, the set of ideal points takes the form of a quadric, in an affine or Euclidean space of higher dimension, the points at infinity are the points which are added to the space to get the projective completion. As a projective space over a field is an algebraic variety. Similarly, if the field is the real or the complex field. In artistic drawing and technical perspective, the projection on the plane of the point at infinity of a class of parallel lines is called their vanishing point. In hyperbolic geometry, points at infinity are typically named ideal points, all points at infinity together form the Cayley absolute or boundary of a hyperbolic plane. This construction can be generalized to topological spaces, projective line is the Alexandroff extension of the corresponding field. Thus the circle is the one-point compactification of the line. Division by zero Midpoint § Generalizations Asymptote § Algebraic curves
7.
Greek language
–
Greek is an independent branch of the Indo-European family of languages, native to Greece and other parts of the Eastern Mediterranean. It has the longest documented history of any living language, spanning 34 centuries of written records and its writing system has been the Greek alphabet for the major part of its history, other systems, such as Linear B and the Cypriot syllabary, were used previously. The alphabet arose from the Phoenician script and was in turn the basis of the Latin, Cyrillic, Armenian, Coptic, Gothic and many other writing systems. Together with the Latin texts and traditions of the Roman world, during antiquity, Greek was a widely spoken lingua franca in the Mediterranean world and many places beyond. It would eventually become the official parlance of the Byzantine Empire, the language is spoken by at least 13.2 million people today in Greece, Cyprus, Italy, Albania, Turkey, and the Greek diaspora. Greek roots are used to coin new words for other languages, Greek. Greek has been spoken in the Balkan peninsula since around the 3rd millennium BC, the earliest written evidence is a Linear B clay tablet found in Messenia that dates to between 1450 and 1350 BC, making Greek the worlds oldest recorded living language. Among the Indo-European languages, its date of earliest written attestation is matched only by the now extinct Anatolian languages, the Greek language is conventionally divided into the following periods, Proto-Greek, the unrecorded but assumed last ancestor of all known varieties of Greek. The unity of Proto-Greek would have ended as Hellenic migrants entered the Greek peninsula sometime in the Neolithic era or the Bronze Age, Mycenaean Greek, the language of the Mycenaean civilisation. It is recorded in the Linear B script on tablets dating from the 15th century BC onwards, Ancient Greek, in its various dialects, the language of the Archaic and Classical periods of the ancient Greek civilisation. It was widely known throughout the Roman Empire, after the Roman conquest of Greece, an unofficial bilingualism of Greek and Latin was established in the city of Rome and Koine Greek became a first or second language in the Roman Empire. The origin of Christianity can also be traced through Koine Greek, Medieval Greek, also known as Byzantine Greek, the continuation of Koine Greek in Byzantine Greece, up to the demise of the Byzantine Empire in the 15th century. Much of the written Greek that was used as the language of the Byzantine Empire was an eclectic middle-ground variety based on the tradition of written Koine. Modern Greek, Stemming from Medieval Greek, Modern Greek usages can be traced in the Byzantine period and it is the language used by the modern Greeks, and, apart from Standard Modern Greek, there are several dialects of it. In the modern era, the Greek language entered a state of diglossia, the historical unity and continuing identity between the various stages of the Greek language is often emphasised. Greek speakers today still tend to regard literary works of ancient Greek as part of their own rather than a foreign language and it is also often stated that the historical changes have been relatively slight compared with some other languages. According to one estimation, Homeric Greek is probably closer to demotic than 12-century Middle English is to modern spoken English, Greek is spoken by about 13 million people, mainly in Greece, Albania and Cyprus, but also worldwide by the large Greek diaspora. Greek is the language of Greece, where it is spoken by almost the entire population
8.
Apollonius of Perga
–
Apollonius of Perga was a Greek geometer and astronomer known for his theories on the topic of conic sections. Beginning from the theories of Euclid and Archimedes on the topic and his definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. Apollonius worked on other topics, including astronomy. Most of the work has not survived except in references in other authors. His hypothesis of eccentric orbits to explain the apparently aberrant motion of the planets, for such an important contributor to the field of mathematics, scant biographical information remains. The 6th century Palestinian commentator, Eutocius of Ascalon, on Apollonius’ major work, Conics, states, “Apollonius, the geometrician. Came from Perga in Pamphylia in the times of Ptolemy Euergetes, the ruins of the city yet stand. It was a center of Hellenistic culture, Euergetes, “benefactor, ” identifies Ptolemy III Euergetes, third Greek dynast of Egypt in the diadochi succession. Presumably, his “times” are his regnum, 246-222/221 BC, times are always recorded by ruler or officiating magistrate, so that if Apollonius was born earlier than 246, it would have been the “times” of Euergetes’ father. The identity of Herakleios is uncertain, the approximate times of Apollonius are thus certain, but no exact dates can be given. The figure Specific birth and death years stated by the scholars are only speculative. Eutocius appears to associate Perga with the Ptolemaic dynasty of Egypt, never under Egypt, Perga in 246 BC belonged to the Seleucid Empire, an independent diadochi state ruled by the Seleucid dynasty. Someone designated “of Perga” might well be expected to have lived and worked there, to the contrary, if Apollonius was later identified with Perga, it was not on the basis of his residence. The remaining autobiographical material implies that he lived, studied and wrote in Alexandria, philip was assassinated in 336 BC. Alexander went on to fulfill his plan by conquering the vast Iranian empire, the material is located in the surviving false “Prefaces” of the books of his Conics. These are letters delivered to friends of Apollonius asking them to review the book enclosed with the letter. The Preface to Book I, addressed to one Eudemus, reminds him that Conics was initially requested by a house guest at Alexandria, Naucrates had the first draft of all eight books in his hands by the end of the visit. Apollonius refers to them as being “without a thorough purgation” and he intended to verify and emend the books, releasing each one as it was completed
9.
Conic section
–
In mathematics, a conic section is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse, the circle is a special case of the ellipse, and is of sufficient interest in its own right that it was sometimes called a fourth type of conic section. The conic sections have been studied by the ancient Greek mathematicians with this work culminating around 200 BC, the conic sections of the Euclidean plane have various distinguishing properties. Many of these have used as the basis for a definition of the conic sections. The type of conic is determined by the value of the eccentricity, in analytic geometry, a conic may be defined as a plane algebraic curve of degree 2, that is, as the set of points whose coordinates satisfy a quadratic equation in two variables. This equation may be written in form, and some geometric properties can be studied as algebraic conditions. In the Euclidean plane, the conic sections appear to be different from one another. By extending the geometry to a projective plane this apparent difference vanishes, further extension, by expanding the real coordinates to admit complex coordinates, provides the means to see this unification algebraically. The conic sections have been studied for thousands of years and have provided a source of interesting. A conic is the curve obtained as the intersection of a plane, called the cutting plane and we shall assume that the cone is a right circular cone for the purpose of easy description, but this is not required, any double cone with some circular cross-section will suffice. Planes that pass through the vertex of the cone will intersect the cone in a point and these are called degenerate conics and some authors do not consider them to be conics at all. Unless otherwise stated, we assume that conic refers to a non-degenerate conic. There are three types of conics, the ellipse, parabola, and hyperbola, the circle is a special kind of ellipse, although historically it had been considered as a fourth type. The circle and the ellipse arise when the intersection of the cone and plane is a closed curve, if the cutting plane is parallel to exactly one generating line of the cone, then the conic is unbounded and is called a parabola. In the remaining case, the figure is a hyperbola, in this case, the plane will intersect both halves of the cone, producing two separate unbounded curves. A property that the conic sections share is often presented as the following definition, a conic section is the locus of all points P whose distance to a fixed point F is a constant multiple of the distance from P to a fixed line L. For 0 < e <1 we obtain an ellipse, for e =1 a parabola, a circle is a limiting case and is not defined by a focus and directrix, in the plane. The eccentricity of a circle is defined to be zero and its focus is the center of the circle, an ellipse and a hyperbola each have two foci and distinct directrices for each of them
10.
Cartesian coordinates
–
Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair. The coordinates can also be defined as the positions of the projections of the point onto the two axis, expressed as signed distances from the origin. One can use the principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes. In general, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n and these coordinates are equal, up to sign, to distances from the point to n mutually perpendicular hyperplanes. The invention of Cartesian coordinates in the 17th century by René Descartes revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra. Using the Cartesian coordinate system, geometric shapes can be described by Cartesian equations, algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2, centered at the origin of the plane, a familiar example is the concept of the graph of a function. Cartesian coordinates are also tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering. They are the most common system used in computer graphics, computer-aided geometric design. Nicole Oresme, a French cleric and friend of the Dauphin of the 14th Century, used similar to Cartesian coordinates well before the time of Descartes. The adjective Cartesian refers to the French mathematician and philosopher René Descartes who published this idea in 1637 and it was independently discovered by Pierre de Fermat, who also worked in three dimensions, although Fermat did not publish the discovery. Both authors used a single axis in their treatments and have a length measured in reference to this axis. The concept of using a pair of axes was introduced later, after Descartes La Géométrie was translated into Latin in 1649 by Frans van Schooten and these commentators introduced several concepts while trying to clarify the ideas contained in Descartes work. Many other coordinate systems have developed since Descartes, such as the polar coordinates for the plane. The development of the Cartesian coordinate system would play a role in the development of the Calculus by Isaac Newton. The two-coordinate description of the plane was later generalized into the concept of vector spaces. Choosing a Cartesian coordinate system for a one-dimensional space – that is, for a straight line—involves choosing a point O of the line, a unit of length, and an orientation for the line. An orientation chooses which of the two half-lines determined by O is the positive, and which is negative, we say that the line is oriented from the negative half towards the positive half
11.
Line (geometry)
–
The notion of line or straight line was introduced by ancient mathematicians to represent straight objects with negligible width and depth. Lines are an idealization of such objects, the straight line is that which is equally extended between its points. In modern mathematics, given the multitude of geometries, the concept of a line is tied to the way the geometry is described. When a geometry is described by a set of axioms, the notion of a line is left undefined. The properties of lines are determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry, thus in differential geometry a line may be interpreted as a geodesic, while in some projective geometries a line is a 2-dimensional vector space. This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a light ray as being a line, to avoid this vicious circle certain concepts must be taken as primitive concepts, terms which are given no definition. In geometry, it is frequently the case that the concept of line is taken as a primitive, in those situations where a line is a defined concept, as in coordinate geometry, some other fundamental ideas are taken as primitives. When the line concept is a primitive, the behaviour and properties of lines are dictated by the axioms which they must satisfy, in a non-axiomatic or simplified axiomatic treatment of geometry, the concept of a primitive notion may be too abstract to be dealt with. In this circumstance it is possible that a description or mental image of a notion is provided to give a foundation to build the notion on which would formally be based on the axioms. Descriptions of this type may be referred to, by some authors and these are not true definitions and could not be used in formal proofs of statements. The definition of line in Euclids Elements falls into this category, when geometry was first formalised by Euclid in the Elements, he defined a general line to be breadthless length with a straight line being a line which lies evenly with the points on itself. These definitions serve little purpose since they use terms which are not, themselves, in fact, Euclid did not use these definitions in this work and probably included them just to make it clear to the reader what was being discussed. In an axiomatic formulation of Euclidean geometry, such as that of Hilbert, for example, for any two distinct points, there is a unique line containing them, and any two distinct lines intersect in at most one point. In two dimensions, i. e. the Euclidean plane, two lines which do not intersect are called parallel, in higher dimensions, two lines that do not intersect are parallel if they are contained in a plane, or skew if they are not. Any collection of many lines partitions the plane into convex polygons. Lines in a Cartesian plane or, more generally, in affine coordinates, in two dimensions, the equation for non-vertical lines is often given in the slope-intercept form, y = m x + b where, m is the slope or gradient of the line. B is the y-intercept of the line, X is the independent variable of the function y = f
12.
Calculus
–
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. It has two branches, differential calculus, and integral calculus, these two branches are related to each other by the fundamental theorem of calculus. Both branches make use of the notions of convergence of infinite sequences. Generally, modern calculus is considered to have developed in the 17th century by Isaac Newton. Today, calculus has widespread uses in science, engineering and economics, Calculus is a part of modern mathematics education. A course in calculus is a gateway to other, more advanced courses in mathematics devoted to the study of functions and limits, Calculus has historically been called the calculus of infinitesimals, or infinitesimal calculus. Calculus is also used for naming some methods of calculation or theories of computation, such as calculus, calculus of variations, lambda calculus. The ancient period introduced some of the ideas that led to integral calculus, the method of exhaustion was later discovered independently in China by Liu Hui in the 3rd century AD in order to find the area of a circle. In the 5th century AD, Zu Gengzhi, son of Zu Chongzhi, indian mathematicians gave a non-rigorous method of a sort of differentiation of some trigonometric functions. In the Middle East, Alhazen derived a formula for the sum of fourth powers. He used the results to carry out what would now be called an integration, Cavalieris work was not well respected since his methods could lead to erroneous results, and the infinitesimal quantities he introduced were disreputable at first. The formal study of calculus brought together Cavalieris infinitesimals with the calculus of finite differences developed in Europe at around the same time, pierre de Fermat, claiming that he borrowed from Diophantus, introduced the concept of adequality, which represented equality up to an infinitesimal error term. The combination was achieved by John Wallis, Isaac Barrow, and James Gregory, in other work, he developed series expansions for functions, including fractional and irrational powers, and it was clear that he understood the principles of the Taylor series. He did not publish all these discoveries, and at this time infinitesimal methods were considered disreputable. These ideas were arranged into a calculus of infinitesimals by Gottfried Wilhelm Leibniz. He is now regarded as an independent inventor of and contributor to calculus, unlike Newton, Leibniz paid a lot of attention to the formalism, often spending days determining appropriate symbols for concepts. Leibniz and Newton are usually credited with the invention of calculus. Newton was the first to apply calculus to general physics and Leibniz developed much of the used in calculus today
13.
Limit (mathematics)
–
In mathematics, a limit is the value that a function or sequence approaches as the input or index approaches some value. Limits are essential to calculus and are used to define continuity, derivatives, the concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. In formulas, a limit is usually written as lim n → c f = L and is read as the limit of f of n as n approaches c equals L. Here lim indicates limit, and the fact that function f approaches the limit L as n approaches c is represented by the right arrow, suppose f is a real-valued function and c is a real number. Intuitively speaking, the lim x → c f = L means that f can be made to be as close to L as desired by making x sufficiently close to c. The first inequality means that the distance x and c is greater than 0 and that x ≠ c, while the second indicates that x is within distance δ of c. Note that the definition of a limit is true even if f ≠ L. Indeed. Now since x +1 is continuous in x at 1, we can now plug in 1 for x, in addition to limits at finite values, functions can also have limits at infinity. In this case, the limit of f as x approaches infinity is 2, in mathematical notation, lim x → ∞2 x −1 x =2. Consider the following sequence,1.79,1.799,1.7999 and it can be observed that the numbers are approaching 1.8, the limit of the sequence. Formally, suppose a1, a2. is a sequence of real numbers, intuitively, this means that eventually all elements of the sequence get arbitrarily close to the limit, since the absolute value | an − L | is the distance between an and L. Not every sequence has a limit, if it does, it is called convergent, one can show that a convergent sequence has only one limit. The limit of a sequence and the limit of a function are closely related, on one hand, the limit as n goes to infinity of a sequence a is simply the limit at infinity of a function defined on the natural numbers n. On the other hand, a limit L of a function f as x goes to infinity, if it exists, is the same as the limit of any sequence a that approaches L. Note that one such sequence would be L + 1/n, in non-standard analysis, the limit of a sequence can be expressed as the standard part of the value a H of the natural extension of the sequence at an infinite hypernatural index n=H. Thus, lim n → ∞ a n = st , here the standard part function st rounds off each finite hyperreal number to the nearest real number. This formalizes the intuition that for very large values of the index. Conversely, the part of a hyperreal a = represented in the ultrapower construction by a Cauchy sequence, is simply the limit of that sequence
14.
Vertical line test
–
In mathematics, the vertical line test is a visual way to determine if a curve is a graph of a function or not. A function can only have one output, y, for each unique input, x. If a vertical line intersects a curve on a more than once then for one value of x the curve has more than one value of y, and so. If all vertical lines intersect a curve at most once then the curve represents a function, to use the vertical line test, take a ruler or other straight edge and draw a line parallel to the y-axis for any chosen value of x. If the vertical line you drew intersects the more than once for any value of x then the graph is not the graph of a function. If, alternatively, a line intersects the graph no more than once, no matter where the vertical line is placed. For example, a curve which is any straight line other than a line will be the graph of a function. As another example, a parabola is not the graph of a function because some vertical lines will intersect the parabola twice
15.
Continuous function
–
In mathematics, a continuous function is a function for which sufficiently small changes in the input result in arbitrarily small changes in the output. Otherwise, a function is said to be a discontinuous function, a continuous function with a continuous inverse function is called a homeomorphism. Continuity of functions is one of the concepts of topology. The introductory portion of this focuses on the special case where the inputs and outputs of functions are real numbers. In addition, this article discusses the definition for the general case of functions between two metric spaces. In order theory, especially in theory, one considers a notion of continuity known as Scott continuity. Other forms of continuity do exist but they are not discussed in this article, as an example, consider the function h, which describes the height of a growing flower at time t. By contrast, if M denotes the amount of money in an account at time t, then the function jumps at each point in time when money is deposited or withdrawn. A form of the definition of continuity was first given by Bernard Bolzano in 1817. Cauchy defined infinitely small quantities in terms of quantities. The formal definition and the distinction between pointwise continuity and uniform continuity were first given by Bolzano in the 1830s but the work wasnt published until the 1930s, all three of those nonequivalent definitions of pointwise continuity are still in use. Eduard Heine provided the first published definition of continuity in 1872. This is not a definition of continuity since the function f =1 x is continuous on its whole domain of R ∖ A function is continuous at a point if it does not have a hole or jump. A “hole” or “jump” in the graph of a function if the value of the function at a point c differs from its limiting value along points that are nearby. Such a point is called a discontinuity, a function is then continuous if it has no holes or jumps, that is, if it is continuous at every point of its domain. Otherwise, a function is discontinuous, at the points where the value of the function differs from its limiting value, there are several ways to make this definition mathematically rigorous. These definitions are equivalent to one another, so the most convenient definition can be used to determine whether a function is continuous or not. In the definitions below, f, I → R. is a function defined on a subset I of the set R of real numbers and this subset I is referred to as the domain of f
16.
Rational function
–
In mathematics, a rational function is any function which can be defined by a rational fraction, i. e. an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be numbers, they may be taken in any field K. In this case, one speaks of a function and a rational fraction over K. The values of the variables may be taken in any field L containing K, then the domain of the function is the set of the values of the variables for which the denominator is not zero and the codomain is L. The set of functions over a field K is a field. A function f is called a function if and only if it can be written in the form f = P Q where P and Q are polynomials in x and Q is not the zero polynomial. The domain of f is the set of all points x for which the denominator Q is not zero and it is a common usage to identify f and f 1, that is to extend by continuity the domain of f to that of f 1. Indeed, one can define a rational fraction as a class of fractions of polynomials. In this case P Q is equivalent to P1 Q1, a proper rational function is a rational function in which the degree of P is no greater than the degree of Q and both are real polynomials. The rational function f = x 3 −2 x 2 is not defined at x 2 =5 ⇔ x = ±5 and it is asymptotic to x 2 as x approaches infinity. A constant function such as f = π is a function since constants are polynomials. Note that the function itself is rational, even though the value of f is irrational for all x, every polynomial function f = P is a rational function with Q =1. A function that cannot be written in form, such as f = sin , is not a rational function. The adjective irrational is not generally used for functions, the rational function f = x x is equal to 1 for all x except 0, where there is a removable singularity. The sum, product, or quotient of two functions is itself a rational function. However, the process of reduction to standard form may result in the removal of such singularities unless care is taken. Using the definition of functions as equivalence classes gets around this. For example,1 x 2 − x +2 = ∑ k =0 ∞ a k x k, combining like terms gives 1 =2 a 0 + x + ∑ k =2 ∞ x k
17.
Homothetic transformation
–
In Euclidean geometry homotheties are the similarities that fix a point and either preserve or reverse the direction of all vectors. Together with the translations, all homotheties of a space form a group. These are precisely the transformations with the property that the image of every line L is a line parallel to L. In projective geometry, a transformation is a similarity transformation that leaves the line at infinity pointwise invariant. In Euclidean geometry, a homothety of ratio λ multiplies distances between points by |λ| and all areas by λ2, the first number is called the ratio of magnification or dilation factor or scale factor or similitude ratio. Such a transformation can be called an enlargement if the scale factor exceeds 1, the image of a point after a homothety with center and scale factor λ is given by. Hadamard, J. Lessons in Plane Geometry, meserve, Bruce E. Homothetic transformations, Fundamental Concepts of Geometry, Addison-Wesley, pp. 166–169. Tuller, Annita, A Modern Introduction to Geometries
18.
Parametric equation
–
In mathematics, parametric equations define a group of quantities as functions of one or more independent variables called parameters. For example, the equations x = cos t y = sin t form a representation of the unit circle. Parametric equations are used in kinematics, where the trajectory of an object is represented by equations depending on time as the parameter. Because of this application, a parameter is often labeled t, however. Parameterizations are non-unique, more than one set of equations can specify the same curve. In kinematics, objects paths through space are described as parametric curves. Used in this way, the set of equations for the objects coordinates collectively constitute a vector-valued function for position. Such parametric curves can then be integrated and differentiated termwise, thus, if a particles position is described parametrically as r = then its velocity can be found as v = r ′ = and its acceleration as a = r ″ =. Another important use of equations is in the field of computer-aided design. For example, consider the three representations, all of which are commonly used to describe planar curves. These problems can be addressed by rewriting the non-parametric equations in parametric form, numerous problems in integer geometry can be solved using parametric equations. A classical such solution is Euclids parametrization of right triangles such that the lengths of their sides a, b, by multiplying a, b and c by an arbitrary positive integer, one gets a parametrization of all right triangles whose three sides have integer lengths. Converting a set of equations to a single equation involves eliminating the variable t from the simultaneous equations x = x, y = y. If one of these equations can be solved for t, the expression obtained can be substituted into the equation to obtain an equation involving x and y only. If the parametrization is given by rational functions x = p r, y = q r, where p, q, r are set-wise coprime polynomials, in some cases there is no single equation in closed form that is equivalent to the parametric equations. The simplest equation for a parabola, y = x 2 can be parameterized by using a free parameter t, and setting x = t, y = t 2 f o r − ∞ < t < ∞. More generally, any given by an explicit equation y = f can be parameterized by using a free parameter t. A more sophisticated example is the following, consider the unit circle which is described by the ordinary equation x 2 + y 2 =1
19.
Graph of a function
–
In mathematics, the graph of a function f is the collection of all ordered pairs. If the function x is a scalar, the graph is a two-dimensional graph. If the function x is an ordered pair of real numbers, the graph is the collection of all ordered triples. Graphing on a Cartesian plane is referred to as curve sketching. The graph of a function on real numbers may be mapped directly to the representation of the function. The concept of the graph of a function is generalized to the graph of a relation, note that although a function is always identified with its graph, they are not the same because it will happen that two functions with different codomain could have the same graph. For example, the cubic polynomial mentioned below is a surjection if its codomain is the real numbers, to test whether a graph of a curve is a function of x, one uses the vertical line test. To test whether a graph of a curve is a function of y, if the function has an inverse, the graph of the inverse can be found by reflecting the graph of the original function over the line y = x. In science, engineering, technology, finance, and other areas, in the simplest case one variable is plotted as a function of another, typically using rectangular axes, see Plot for details. In the modern foundation of mathematics known as set theory, a function, F = { a, if x =1, d, if x =2, c, if x =3, is. The graph of the polynomial on the real line f = x 3 −9 x is. If this set is plotted on a Cartesian plane, the result is a curve, the graph of the trigonometric function f = sin cos is. If this set is plotted on a three dimensional Cartesian coordinate system, the result is a surface, oftentimes it is helpful to show with the graph, the gradient of the function and several level curves. The level curves can be mapped on the surface or can be projected on the bottom plane. The second figure shows such a drawing of the graph of the function, f = −2 Given a function f of n variables, x 1, …, x n, the normal to the graph is. This is seen by considering the graph as a set of the function g = f − z. The graph of a function is contained in a Cartesian product of sets, fibre bundles arent cartesian products, but appear to be up close. There is a notion of a graph on a fibre bundle called a section