Inventiones Mathematicae

Inventiones Mathematicae is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world; as of 2016, the managing editors are Jean-Benoît Bost. The journal is abstracted and indexed in: Official website

International Standard Serial Number

An International Standard Serial Number is an eight-digit serial number used to uniquely identify a serial publication, such as a magazine. The ISSN is helpful in distinguishing between serials with the same title. ISSN are used in ordering, interlibrary loans, other practices in connection with serial literature; the ISSN system was first drafted as an International Organization for Standardization international standard in 1971 and published as ISO 3297 in 1975. ISO subcommittee TC 46/SC 9 is responsible for maintaining the standard; when a serial with the same content is published in more than one media type, a different ISSN is assigned to each media type. For example, many serials are published both in electronic media; the ISSN system refers to these types as electronic ISSN, respectively. Conversely, as defined in ISO 3297:2007, every serial in the ISSN system is assigned a linking ISSN the same as the ISSN assigned to the serial in its first published medium, which links together all ISSNs assigned to the serial in every medium.

The format of the ISSN is an eight digit code, divided by a hyphen into two four-digit numbers. As an integer number, it can be represented by the first seven digits; the last code digit, which may be 0-9 or an X, is a check digit. Formally, the general form of the ISSN code can be expressed as follows: NNNN-NNNC where N is in the set, a digit character, C is in; the ISSN of the journal Hearing Research, for example, is 0378-5955, where the final 5 is the check digit, C=5. To calculate the check digit, the following algorithm may be used: Calculate the sum of the first seven digits of the ISSN multiplied by its position in the number, counting from the right—that is, 8, 7, 6, 5, 4, 3, 2, respectively: 0 ⋅ 8 + 3 ⋅ 7 + 7 ⋅ 6 + 8 ⋅ 5 + 5 ⋅ 4 + 9 ⋅ 3 + 5 ⋅ 2 = 0 + 21 + 42 + 40 + 20 + 27 + 10 = 160 The modulus 11 of this sum is calculated. For calculations, an upper case X in the check digit position indicates a check digit of 10. To confirm the check digit, calculate the sum of all eight digits of the ISSN multiplied by its position in the number, counting from the right.

The modulus 11 of the sum must be 0. There is an online ISSN checker. ISSN codes are assigned by a network of ISSN National Centres located at national libraries and coordinated by the ISSN International Centre based in Paris; the International Centre is an intergovernmental organization created in 1974 through an agreement between UNESCO and the French government. The International Centre maintains a database of all ISSNs assigned worldwide, the ISDS Register otherwise known as the ISSN Register. At the end of 2016, the ISSN Register contained records for 1,943,572 items. ISSN and ISBN codes are similar in concept. An ISBN might be assigned for particular issues of a serial, in addition to the ISSN code for the serial as a whole. An ISSN, unlike the ISBN code, is an anonymous identifier associated with a serial title, containing no information as to the publisher or its location. For this reason a new ISSN is assigned to a serial each time it undergoes a major title change. Since the ISSN applies to an entire serial a new identifier, the Serial Item and Contribution Identifier, was built on top of it to allow references to specific volumes, articles, or other identifiable components.

Separate ISSNs are needed for serials in different media. Thus, the print and electronic media versions of a serial need separate ISSNs. A CD-ROM version and a web version of a serial require different ISSNs since two different media are involved. However, the same ISSN can be used for different file formats of the same online serial; this "media-oriented identification" of serials made sense in the 1970s. In the 1990s and onward, with personal computers, better screens, the Web, it makes sense to consider only content, independent of media; this "content-oriented identification" of serials was a repressed demand during a decade, but no ISSN update or initiative occurred. A natural extension for ISSN, the unique-identification of the articles in the serials, was the main demand application. An alternative serials' contents model arrived with the indecs Content Model and its application, the digital object identifier, as ISSN-independent initiative, consolidated in the 2000s. Only in 2007, ISSN-L was defined in the

Enriques–Kodaira classification

In mathematics, the Enriques–Kodaira classification is a classification of compact complex surfaces into ten classes. For each of these classes, the surfaces in the class can be parametrized by a moduli space. For most of the classes the moduli spaces are well understood, but for the class of surfaces of general type the moduli spaces seem too complicated to describe explicitly, though some components are known. Max Noether began the systematic study of algebraic surfaces, Guido Castelnuovo proved important parts of the classification. Federigo Enriques described the classification of complex projective surfaces. Kunihiko Kodaira extended the classification to include non-algebraic compact surfaces; the analogous classification of surfaces in positive characteristic was begun by David Mumford and completed by Enrico Bombieri and David Mumford. The Enriques–Kodaira classification of compact complex surfaces states that every nonsingular minimal compact complex surface is of one of the 10 types listed on this page.

For the 9 classes of surfaces other than general type, there is a complete description of what all the surfaces look like. For surfaces of general type not much is known about their explicit classification, though many examples have been found; the classification of algebraic surfaces in positive characteristic is similar to that of algebraic surfaces in characteristic 0, except that there are no Kodaira surfaces or surfaces of type VII, there are some extra families of Enriques surfaces in characteristic 2, hyperelliptic surfaces in characteristics 2 and 3, in Kodaira dimension 1 in characteristics 2 and 3 one allows quasielliptic fibrations. These extra families can be understood as follows: In characteristic 0 these surfaces are the quotients of surfaces by finite groups, but in finite characteristics it is possible to take quotients by finite group schemes that are not étale. Oscar Zariski constructed some surfaces in positive characteristic that are unirational but not rational, derived from inseparable extensions.

In positive characteristic Serre showed that h 0 may differ from h 1, Igusa showed that when they are equal they may be greater than the irregularity. The most important invariants of a compact complex surfaces used in the classification can be given in terms of the dimensions of various coherent sheaf cohomology groups; the basic ones are the plurigenera and the Hodge numbers defined as follows: K is the canonical line bundle whose sections are the holomorphic 2-forms. P n = dim H n ⩾ 1 are called the plurigenera, they are i.e. invariant under blowing up. Using Seiberg–Witten theory, Robert Friedman and John Morgan showed that for complex manifolds they only depend on the underlying oriented smooth 4-manifold. For non-Kähler surfaces the plurigenera are determined by the fundamental group, but for Kähler surfaces there are examples of surfaces that are homeomorphic but have different plurigenera and Kodaira dimensions; the individual plurigenera are not used. Κ is the Kodaira dimension: it is − ∞ if the plurigenera are all 0, is otherwise the smallest number such that P n / n κ is bounded.

Enriques did not use this definition: instead he used the values of P 12 and K ⋅ K = c 1 2. These determine the Kodaira dimension given the following correspondence: κ = − ∞ ⟷ P 12 = 0 κ = 0 ⟷ P 12 = 1 κ = 1 ⟷ P 12 > 1 and K ⋅ K = 0 κ = 2 ⟷ P 12 > 1 and K ⋅ K > 0 {\displaystyle {\begin\kappa =-\infty &\longleftrightarrow P_=0\\\kappa =0&\longleftrightarrow P_=1\\\kappa =1&\longleftrightarrow P_>1K\cdot K=0\\\kappa =2

Algebraic geometry

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques from commutative algebra, for solving geometrical problems about these sets of zeros; the fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, parabolas, hyperbolas, cubic curves like elliptic curves, quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the curve and relations between the curves given by different equations.

Algebraic geometry occupies a central place in modern mathematics and has multiple conceptual connections with such diverse fields as complex analysis and number theory. A study of systems of polynomial equations in several variables, the subject of algebraic geometry starts where equation solving leaves off, it becomes more important to understand the intrinsic properties of the totality of solutions of a system of equations, than to find a specific solution. In the 20th century, algebraic geometry split into several subareas; the mainstream of algebraic geometry is devoted to the study of the complex points of the algebraic varieties and more to the points with coordinates in an algebraically closed field. Real algebraic geometry is the study of the real points of an algebraic variety. Diophantine geometry and, more arithmetic geometry is the study of the points of an algebraic variety with coordinates in fields that are not algebraically closed and occur in algebraic number theory, such as the field of rational numbers, number fields, finite fields, function fields, p-adic fields.

A large part of singularity theory is devoted to the singularities of algebraic varieties. Computational algebraic geometry is an area that has emerged at the intersection of algebraic geometry and computer algebra, with the rise of computers, it consists of algorithm design and software development for the study of properties of explicitly given algebraic varieties. Much of the development of the mainstream of algebraic geometry in the 20th century occurred within an abstract algebraic framework, with increasing emphasis being placed on "intrinsic" properties of algebraic varieties not dependent on any particular way of embedding the variety in an ambient coordinate space. One key achievement of this abstract algebraic geometry is Grothendieck's scheme theory which allows one to use sheaf theory to study algebraic varieties in a way, similar to its use in the study of differential and analytic manifolds; this is obtained by extending the notion of point: In classical algebraic geometry, a point of an affine variety may be identified, through Hilbert's Nullstellensatz, with a maximal ideal of the coordinate ring, while the points of the corresponding affine scheme are all prime ideals of this ring.

This means that a point of such a scheme may be either a subvariety. This approach enables a unification of the language and the tools of classical algebraic geometry concerned with complex points, of algebraic number theory. Wiles' proof of the longstanding conjecture called Fermat's last theorem is an example of the power of this approach. In classical algebraic geometry, the main objects of interest are the vanishing sets of collections of polynomials, meaning the set of all points that satisfy one or more polynomial equations. For instance, the two-dimensional sphere of radius 1 in three-dimensional Euclidean space R3 could be defined as the set of all points with x 2 + y 2 + z 2 − 1 = 0. A "slanted" circle in R3 can be defined as the set of all points which satisfy the two polynomial equations x 2 + y 2 + z 2 − 1 = 0, x + y + z = 0. First we start with a field k. In classical algebraic geometry, this field was always the complex numbers C, but many of the same results are true if we assume only that k is algebraically closed.

We consider the affine space of dimension n over denoted An. When one fixes a coordinate system, one may identify An with kn; the purpose of not working with kn is to emphasize that one "forgets" the vector space structure that kn carries. A function f: An → A1 is said to be polynomial if it can be written as a polynomial, that is, if there is a polynomial p in k such that f = p for every point M with coordinates in An; the property of a function to be polynomial does not depend on the choice of a coordinate system in An. When a coordinate system is chosen, the regular functions on the affine n-space may be identified with the ring of polynomial functions in n variables over k. Therefore, the set of the