1.
Addition
–
Addition is one of the four basic operations of arithmetic, with the others being subtraction, multiplication and division. The addition of two numbers is the total amount of those quantities combined. For example, in the picture on the right, there is a combination of three apples and two together, making a total of five apples. This observation is equivalent to the mathematical expression 3 +2 =5 i. e.3 add 2 is equal to 5, besides counting fruits, addition can also represent combining other physical objects. In arithmetic, rules for addition involving fractions and negative numbers have been devised amongst others, in algebra, addition is studied more abstractly. It is commutative, meaning that order does not matter, and it is associative, repeated addition of 1 is the same as counting, addition of 0 does not change a number. Addition also obeys predictable rules concerning related operations such as subtraction and multiplication, performing addition is one of the simplest numerical tasks. Addition of very small numbers is accessible to toddlers, the most basic task,1 +1, can be performed by infants as young as five months and even some members of other animal species. In primary education, students are taught to add numbers in the system, starting with single digits. Mechanical aids range from the ancient abacus to the modern computer, Addition is written using the plus sign + between the terms, that is, in infix notation. The result is expressed with an equals sign, for example, 3½ =3 + ½ =3.5. This notation can cause confusion since in most other contexts juxtaposition denotes multiplication instead, the sum of a series of related numbers can be expressed through capital sigma notation, which compactly denotes iteration. For example, ∑ k =15 k 2 =12 +22 +32 +42 +52 =55. The numbers or the objects to be added in addition are collectively referred to as the terms, the addends or the summands. This is to be distinguished from factors, which are multiplied, some authors call the first addend the augend. In fact, during the Renaissance, many authors did not consider the first addend an addend at all, today, due to the commutative property of addition, augend is rarely used, and both terms are generally called addends. All of the above terminology derives from Latin, using the gerundive suffix -nd results in addend, thing to be added. Likewise from augere to increase, one gets augend, thing to be increased, sum and summand derive from the Latin noun summa the highest, the top and associated verb summare

2.
Subtraction
–
Subtraction is a mathematical operation that represents the operation of removing objects from a collection. It is signified by the minus sign, for example, in the picture on the right, there are 5 −2 apples—meaning 5 apples with 2 taken away, which is a total of 3 apples. It is anticommutative, meaning that changing the order changes the sign of the answer and it is not associative, meaning that when one subtracts more than two numbers, the order in which subtraction is performed matters. Subtraction of 0 does not change a number, subtraction also obeys predictable rules concerning related operations such as addition and multiplication. All of these rules can be proven, starting with the subtraction of integers and generalizing up through the real numbers, general binary operations that continue these patterns are studied in abstract algebra. Performing subtraction is one of the simplest numerical tasks, subtraction of very small numbers is accessible to young children. In primary education, students are taught to subtract numbers in the system, starting with single digits. Subtraction is written using the minus sign − between the terms, that is, in infix notation, the result is expressed with an equals sign. This is most common in accounting, formally, the number being subtracted is known as the subtrahend, while the number it is subtracted from is the minuend. All of this terminology derives from Latin, subtraction is an English word derived from the Latin verb subtrahere, which is in turn a compound of sub from under and trahere to pull, thus to subtract is to draw from below, take away. Using the gerundive suffix -nd results in subtrahend, thing to be subtracted, likewise from minuere to reduce or diminish, one gets minuend, thing to be diminished. Imagine a line segment of length b with the left end labeled a, starting from a, it takes b steps to the right to reach c. This movement to the right is modeled mathematically by addition, a + b = c, from c, it takes b steps to the left to get back to a. This movement to the left is modeled by subtraction, c − b = a, now, a line segment labeled with the numbers 1,2, and 3. From position 3, it takes no steps to the left to stay at 3 and it takes 2 steps to the left to get to position 1, so 3 −2 =1. This picture is inadequate to describe what would happen after going 3 steps to the left of position 3, to represent such an operation, the line must be extended. To subtract arbitrary natural numbers, one begins with a line containing every natural number, from 3, it takes 3 steps to the left to get to 0, so 3 −3 =0. But 3 −4 is still invalid since it leaves the line

3.
Multiplication
–
Multiplication is one of the four elementary, mathematical operations of arithmetic, with the others being addition, subtraction and division. Multiplication can also be visualized as counting objects arranged in a rectangle or as finding the area of a rectangle whose sides have given lengths, the area of a rectangle does not depend on which side is measured first, which illustrates the commutative property. The product of two measurements is a new type of measurement, for multiplying the lengths of the two sides of a rectangle gives its area, this is the subject of dimensional analysis. The inverse operation of multiplication is division, for example, since 4 multiplied by 3 equals 12, then 12 divided by 3 equals 4. Multiplication by 3, followed by division by 3, yields the original number, Multiplication is also defined for other types of numbers, such as complex numbers, and more abstract constructs, like matrices. For these more abstract constructs, the order that the operands are multiplied sometimes does matter, a listing of the many different kinds of products that are used in mathematics is given in the product page. In arithmetic, multiplication is often written using the sign × between the terms, that is, in infix notation, there are other mathematical notations for multiplication, Multiplication is also denoted by dot signs, usually a middle-position dot,5 ⋅2 or 5. 2 The middle dot notation, encoded in Unicode as U+22C5 ⋅ dot operator, is standard in the United States, the United Kingdom, when the dot operator character is not accessible, the interpunct is used. In other countries use a comma as a decimal mark. In algebra, multiplication involving variables is often written as a juxtaposition, the notation can also be used for quantities that are surrounded by parentheses. In matrix multiplication, there is a distinction between the cross and the dot symbols. The cross symbol generally denotes the taking a product of two vectors, yielding a vector as the result, while the dot denotes taking the dot product of two vectors, resulting in a scalar. In computer programming, the asterisk is still the most common notation and this is due to the fact that most computers historically were limited to small character sets that lacked a multiplication sign, while the asterisk appeared on every keyboard. This usage originated in the FORTRAN programming language, the numbers to be multiplied are generally called the factors. The number to be multiplied is called the multiplicand, while the number of times the multiplicand is to be multiplied comes from the multiplier. Usually the multiplier is placed first and the multiplicand is placed second, however sometimes the first factor is the multiplicand, additionally, there are some sources in which the term multiplicand is regarded as a synonym for factor. In algebra, a number that is the multiplier of a variable or expression is called a coefficient, the result of a multiplication is called a product. A product of integers is a multiple of each factor, for example,15 is the product of 3 and 5, and is both a multiple of 3 and a multiple of 5

4.
Product (mathematics)
–
In mathematics, a product is the result of multiplying, or an expression that identifies factors to be multiplied. Thus, for instance,6 is the product of 2 and 3, the order in which real or complex numbers are multiplied has no bearing on the product, this is known as the commutative law of multiplication. When matrices or members of various other associative algebras are multiplied, matrix multiplication, for example, and multiplication in other algebras is in general non-commutative. There are many different kinds of products in mathematics, besides being able to multiply just numbers, polynomials or matricies, an overview of these different kinds of products is given here. Placing several stones into a pattern with r rows and s columns gives r ⋅ s = ∑ i =1 s r = ∑ j =1 r s stones. Integers allow positive and negative numbers, the product of two quaternions can be found in the article on quaternions. However, it is interesting to note that in this case, the product operator for the product of a sequence is denoted by the capital Greek letter Pi ∏. The product of a sequence consisting of one number is just that number itself. The product of no factors at all is known as the empty product, commutative rings have a product operation. Under the Fourier transform, convolution becomes point-wise function multiplication, others have very different names but convey essentially the same idea. A brief overview of these is given here, by the very definition of a vector space, one can form the product of any scalar with any vector, giving a map R × V → V. A scalar product is a map, ⋅, V × V → R with the following conditions. From the scalar product, one can define a norm by letting ∥ v ∥, = v ⋅ v, now we consider the composition of two linear mappings between finite dimensional vector spaces. Let the linear mapping f map V to W, and let the linear mapping g map W to U, then one can get g ∘ f = g = g j k f i j v i b U k. Or in matrix form, g ∘ f = G F v, in which the i-row, j-column element of F, denoted by Fij, is fji, the composition of more than two linear mappings can be similarly represented by a chain of matrix multiplication. To see this, let r = dim, s = dim, let U = be a basis of U, V = be a basis of V and W = be a basis of W. Then B ⋅ A = M W U ∈ R s × t is the matrix representing g ∘ f, U → W, in other words, the matrix product is the description in coordinates of the composition of linear functions. For inifinite-dimensional vector spaces, one also has the, Tensor product of Hilbert spaces Topological tensor product, the tensor product, outer product and Kronecker product all convey the same general idea

5.
Division (mathematics)
–
Division is one of the four basic operations of arithmetic, the others being addition, subtraction, and multiplication. The division of two numbers is the process of calculating the number of times one number is contained within one another. For example, in the picture on the right, the 20 apples are divided into groups of five apples, Division can also be thought of as the process of evaluating a fraction, and fractional notation is commonly used to represent division. Division is the inverse of multiplication, if a × b = c, then a = c ÷ b, as long as b is not zero. Division by zero is undefined for the numbers and most other contexts, because if b =0, then a cannot be deduced from b and c. In some contexts, division by zero can be defined although to a limited extent, in division, the dividend is divided by the divisor to get a quotient. In the above example,20 is the dividend, five is the divisor, in some cases, the divisor may not be contained fully by the dividend, for example,10 ÷3 leaves a remainder of one, as 10 is not a multiple of three. Sometimes this remainder is added to the quotient as a fractional part, but in the context of integer division, where numbers have no fractional part, the remainder is kept separately or discarded. Besides dividing apples, division can be applied to other physical, Division has been defined in several contexts, such as for the real and complex numbers and for more abstract contexts such as for vector spaces and fields. Division is the most mentally difficult of the four operations of arithmetic. Teaching the objective concept of dividing integers introduces students to the arithmetic of fractions, unlike addition, subtraction, and multiplication, the set of all integers is not closed under division. Dividing two integers may result in a remainder, to complete the division of the remainder, the number system is extended to include fractions or rational numbers as they are more generally called. When students advance to algebra, the theory of division intuited from arithmetic naturally extends to algebraic division of variables, polynomials. Division is often shown in algebra and science by placing the dividend over the divisor with a line, also called a fraction bar. For example, a divided by b is written a b This can be read out loud as a divided by b, a fraction is a division expression where both dividend and divisor are integers, and there is no implication that the division must be evaluated further. A second way to show division is to use the obelus, common in arithmetic, in this manner, ISO 80000-2-9.6 states it should not be used. The obelus is also used alone to represent the operation itself. In some non-English-speaking cultures, a divided by b is written a, b and this notation was introduced in 1631 by William Oughtred in his Clavis Mathematicae and later popularized by Gottfried Wilhelm Leibniz

6.
Exponentiation
–
Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent n. The exponent is usually shown as a superscript to the right of the base, Some common exponents have their own names, the exponent 2 is called the square of b or b squared, the exponent 3 is called the cube of b or b cubed. The exponent −1 of b, or 1 / b, is called the reciprocal of b, when n is a positive integer and b is not zero, b−n is naturally defined as 1/bn, preserving the property bn × bm = bn + m. The definition of exponentiation can be extended to any real or complex exponent. Exponentiation by integer exponents can also be defined for a variety of algebraic structures. The term power was used by the Greek mathematician Euclid for the square of a line, archimedes discovered and proved the law of exponents, 10a 10b = 10a+b, necessary to manipulate powers of 10. In the late 16th century, Jost Bürgi used Roman numerals for exponents, early in the 17th century, the first form of our modern exponential notation was introduced by Rene Descartes in his text titled La Géométrie, there, the notation is introduced in Book I. Nicolas Chuquet used a form of notation in the 15th century. The word exponent was coined in 1544 by Michael Stifel, samuel Jeake introduced the term indices in 1696. In the 16th century Robert Recorde used the square, cube, zenzizenzic, sursolid, zenzicube, second sursolid. Biquadrate has been used to refer to the power as well. Some mathematicians used exponents only for greater than two, preferring to represent squares as repeated multiplication. Thus they would write polynomials, for example, as ax + bxx + cx3 + d, another historical synonym, involution, is now rare and should not be confused with its more common meaning. In 1748 Leonhard Euler wrote consider exponentials or powers in which the exponent itself is a variable and it is clear that quantities of this kind are not algebraic functions, since in those the exponents must be constant. With this introduction of transcendental functions, Euler laid the foundation for the introduction of natural logarithm as the inverse function for y = ex. The expression b2 = b ⋅ b is called the square of b because the area of a square with side-length b is b2, the expression b3 = b ⋅ b ⋅ b is called the cube of b because the volume of a cube with side-length b is b3. The exponent indicates how many copies of the base are multiplied together, for example,35 =3 ⋅3 ⋅3 ⋅3 ⋅3 =243. The base 3 appears 5 times in the multiplication, because the exponent is 5

7.
Nth root
–
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using numbers, as in fourth root, twentieth root. For example,2 is a root of 4, since 22 =4. −2 is also a root of 4, since 2 =4. A real number or complex number has n roots of degree n. While the roots of 0 are not distinct, the n nth roots of any real or complex number are all distinct. If n is odd and x is real, one nth root is real and has the sign as x. Finally, if x is not real, then none of its nth roots is real. Roots are usually using the radical symbol or radix or √, with x or √ x denoting the square root, x 3 denoting the cube root, x 4 denoting the fourth root. In the expression x n, n is called the index, is the sign or radix. For example, −8 has three roots, −2,1 + i √3 and 1 − i √3. Out of these,1 + i √3 has the least argument,4 has two square roots,2 and −2, having arguments 0 and π respectively. So 2 is considered the root on account of having the lesser argument. An unresolved root, especially one using the symbol, is often referred to as a surd or a radical. Nth roots can also be defined for complex numbers, and the roots of 1 play an important role in higher mathematics. The origin of the root symbol √ is largely speculative, some sources imply that the symbol was first used by Arab mathematicians. One of those mathematicians was Abū al-Hasan ibn Alī al-Qalasādī, legend has it that it was taken from the Arabic letter ج, which is the first letter in the Arabic word جذر. However, many scholars, including Leonhard Euler, believe it originates from the letter r, the symbol was first seen in print without the vinculum in the year 1525 in Die Coss by Christoff Rudolff, a German mathematician

8.
Logarithm
–
In mathematics, the logarithm is the inverse operation to exponentiation. That means the logarithm of a number is the exponent to which another fixed number, in simple cases the logarithm counts factors in multiplication. For example, the base 10 logarithm of 1000 is 3, the logarithm of x to base b, denoted logb, is the unique real number y such that by = x. For example, log2 =6, as 64 =26, the logarithm to base 10 is called the common logarithm and has many applications in science and engineering. The natural logarithm has the e as its base, its use is widespread in mathematics and physics. The binary logarithm uses base 2 and is used in computer science. Logarithms were introduced by John Napier in the early 17th century as a means to simplify calculations and they were rapidly adopted by navigators, scientists, engineers, and others to perform computations more easily, using slide rules and logarithm tables. The present-day notion of logarithms comes from Leonhard Euler, who connected them to the function in the 18th century. Logarithmic scales reduce wide-ranging quantities to tiny scopes, for example, the decibel is a unit quantifying signal power log-ratios and amplitude log-ratios. In chemistry, pH is a measure for the acidity of an aqueous solution. Logarithms are commonplace in scientific formulae, and in measurements of the complexity of algorithms and they describe musical intervals, appear in formulas counting prime numbers, inform some models in psychophysics, and can aid in forensic accounting. In the same way as the logarithm reverses exponentiation, the logarithm is the inverse function of the exponential function applied to complex numbers. The discrete logarithm is another variant, it has uses in public-key cryptography, the idea of logarithms is to reverse the operation of exponentiation, that is, raising a number to a power. For example, the power of 2 is 8, because 8 is the product of three factors of 2,23 =2 ×2 ×2 =8. It follows that the logarithm of 8 with respect to base 2 is 3, the third power of some number b is the product of three factors equal to b. More generally, raising b to the power, where n is a natural number, is done by multiplying n factors equal to b. The n-th power of b is written bn, so that b n = b × b × ⋯ × b ⏟ n factors, exponentiation may be extended to by, where b is a positive number and the exponent y is any real number. For example, b−1 is the reciprocal of b, that is, the logarithm of a positive real number x with respect to base b, a positive real number not equal to 1, is the exponent by which b must be raised to yield x

9.
Radix
–
In mathematical numeral systems, the radix or base is the number of unique digits, including zero, used to represent numbers in a positional numeral system. For example, for the system the radix is ten. For example,10 represents the one hundred, while 2 represents the number four. Radix is a Latin word for root, root can be considered a synonym for base in the arithmetical sense. In the system with radix 13, for example, a string of such as 398 denotes the number 3 ×132 +9 ×131 +8 ×130. More generally, in a system with radix b, a string of digits d1 … dn denotes the number d1bn−1 + d2bn−2 + … + dnb0, commonly used numeral systems include, For a larger list, see List of numeral systems. The octal and hexadecimal systems are used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, a similar relationship holds between every octal digit and every possible sequence of three binary digits, since eight is the cube of two. However, other systems are possible, e. g. golden ratio base. Base Radix economy Non-standard positional numeral systems Base Convert, a floating-point base calculator MathWorld entry on base