1.
Number theory
–
Number theory or, in older usage, arithmetic is a branch of pure mathematics devoted primarily to the study of the integers. It is sometimes called The Queen of Mathematics because of its place in the discipline. Number theorists study prime numbers as well as the properties of objects out of integers or defined as generalizations of the integers. Integers can be considered either in themselves or as solutions to equations, questions in number theory are often best understood through the study of analytical objects that encode properties of the integers, primes or other number-theoretic objects in some fashion. One may also study real numbers in relation to rational numbers, the older term for number theory is arithmetic. By the early century, it had been superseded by number theory. The use of the arithmetic for number theory regained some ground in the second half of the 20th century. In particular, arithmetical is preferred as an adjective to number-theoretic. The first historical find of a nature is a fragment of a table. The triples are too many and too large to have been obtained by brute force, the heading over the first column reads, The takiltum of the diagonal which has been subtracted such that the width. The tables layout suggests that it was constructed by means of what amounts, in language, to the identity 2 +1 =2. If some other method was used, the triples were first constructed and then reordered by c / a, presumably for use as a table. It is not known what these applications may have been, or whether there could have any, Babylonian astronomy, for example. It has been suggested instead that the table was a source of examples for school problems. While Babylonian number theory—or what survives of Babylonian mathematics that can be called thus—consists of this single, striking fragment, late Neoplatonic sources state that Pythagoras learned mathematics from the Babylonians. Much earlier sources state that Thales and Pythagoras traveled and studied in Egypt, Euclid IX 21—34 is very probably Pythagorean, it is very simple material, but it is all that is needed to prove that 2 is irrational. Pythagorean mystics gave great importance to the odd and the even, the discovery that 2 is irrational is credited to the early Pythagoreans. This forced a distinction between numbers, on the one hand, and lengths and proportions, on the other hand, the Pythagorean tradition spoke also of so-called polygonal or figurate numbers
2.
Root of unity
–
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that gives 1 when raised to some positive integer power n. Roots of unity are used in branches of mathematics, and are especially important in number theory, the theory of group characters. In field theory and ring theory the notion of root of unity also applies to any ring with an identity element. Any algebraically closed field has exactly n nth roots of unity if n is not divisible by the characteristic of the field, an nth root of unity, where n is a positive integer, is a number z satisfying the equation z n =1. Without further specification, the roots of unity are complex numbers, however the defining equation of roots of unity is meaningful over any field F, and this allows considering roots of unity in F. Whichever is the field F, the roots of unity in F are either numbers, if the characteristic of F is 0, or, otherwise. Conversely, every element in a finite field is a root of unity in that field. See Root of unity modulo n and Finite field for further details, an nth root of unity is primitive if it is not a kth root of unity for some smaller k, z k ≠1. Every nth root of unity z is a primitive ath root of unity for some a where 1 ≤ a ≤ n. In fact, if z1 =1 then z is a primitive first root of unity, otherwise if z2 =1 then z is a second root of unity. And, as z is a root of unity, one finds a first a such that za =1. If z is an nth root of unity and a ≡ b then za = zb, Therefore, given a power za of z, it can be assumed that 1 ≤ a ≤ n. Any integer power of an nth root of unity is also an nth root of unity, n = z k n = k =1 k =1. In particular, the reciprocal of an nth root of unity is its complex conjugate, let z be a primitive nth root of unity. Zn−1, zn = z0 =1 are all distinct, assume the contrary, that za = zb where 1 ≤ a < b ≤ n. But 0 < b − a < n, which contradicts z being primitive. Since an nth-degree polynomial equation can only have n distinct roots, from the preceding, it follows that if z is a primitive nth root of unity, z a = z b ⟺ a ≡ b. If z is not primitive there is only one implication, a ≡ b ⟹ z a = z b
3.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
4.
Chinese remainder theorem
–
This theorem has this name because it is a theorem about remainders and was first discovered in the 3rd century AD by the Chinese mathematician Sunzi in Sunzi Suanjing. The Chinese remainder theorem is true over every principal ideal domain and it has been generalized to any commutative ring, with a formulation involving ideals. What amounts to an algorithm for solving this problem was described by Aryabhata, special cases of the Chinese remainder theorem were also known to Brahmagupta, and appear in Fibonaccis Liber Abaci. The result was later generalized with a solution called Dayanshu in Qin Jiushaos 1247 Mathematical Treatise in Nine Sections. The notion of congruences was first introduced and used by Gauss in his Disquisitiones Arithmeticae of 1801, Gauss introduces a procedure for solving the problem that had already been used by Euler but was in fact an ancient method that had appeared several times. Nk be integers greater than 1, which are often called moduli or divisors, Let us denote by N the product of the ni. The Chinese remainder theorem asserts that if the ni are pairwise coprime and this may be restated as follows in term of congruences, If the ni are pairwise coprime, and if a1. Ak are any integers, then there exists an x such that x ≡ a 1 ⋮ x ≡ a k. This means that for doing a sequence of operations in Z / N Z, one may do the same computation independently in each Z / n i Z. This may be faster than the direct computation if N. This is widely used, under the name multi-modular computation, for linear algebra over the integers or the rational numbers, the theorem can also be restated in the language of combinatorics as the fact that the infinite arithmetic progressions of integers form a Helly family. The existence and the uniqueness of the solution may be proven independently, however, the first proof of existence, given below, uses this uniqueness. Suppose that x and y are both solutions to all the congruences, as x and y give the same remainder, when divided by ni, their difference x − y is a multiple of each ni. As the ni are pairwise coprime, their product N divides also x − y, If x and y are supposed to be non negative and less than N, then their difference may be a multiple of N only if x = y. The map x ↦ maps congruence classes modulo N to sequences of congruence classes modulo ni, the proof of uniqueness shows that this map is injective. As the domain and the codomain of this map have the number of elements, the map is also surjective. This proof is simple but does not provide any direct way for computing a solution. Moreover, it cannot be generalized to situations where the following proof can
5.
John Friedlander
–
John Friedlander is a Canadian mathematician specializing in analytic number theory. He received his B. Sc. from the University of Toronto in 1965, an M. A. from the University of Waterloo in 1966, and a Ph. D. from Pennsylvania State University in 1972. He was a lecturer at M. I. T. in 1974-76, and has been on the faculty of the University of Toronto since 1977 and he has also spent several years at the Institute for Advanced Study where he has collaborated with Enrico Bombieri and many others. In 1997, in joint work with Henryk Iwaniec, Friedlander proved that infinitely many prime numbers can be obtained as the sum of a square and fourth power, Friedlander and Iwaniec improved Enrico Bombieris asymptotic sieve technique to construct their proof. In 1999, Friedlander received the Jeffery–Williams Prize, in 1988, Friedlander became a fellow of the Royal Society of Canada. In 2002, CRM-Fields-PIMS prize In 2012 he became a fellow of the American Mathematical Society, John Friedlander at the Mathematics Genealogy Project John Friedlanders profile in Torontos Focus on Research
6.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n
7.
International Standard Serial Number
–
An International Standard Serial Number is an eight-digit serial number used to uniquely identify a serial publication. The ISSN is especially helpful in distinguishing between serials with the same title, ISSN are used in ordering, cataloging, interlibrary loans, and other practices in connection with serial literature. The ISSN system was first drafted as an International Organization for Standardization international standard in 1971, ISO subcommittee TC 46/SC9 is responsible for maintaining the standard. When a serial with the content is published in more than one media type. For example, many serials are published both in print and electronic media, the ISSN system refers to these types as print ISSN and electronic ISSN, respectively. The format of the ISSN is an eight digit code, divided by a hyphen into two four-digit numbers, as an integer number, it can be represented by the first seven digits. The last code digit, which may be 0-9 or an X, is a check digit. Formally, the form of the ISSN code can be expressed as follows, NNNN-NNNC where N is in the set, a digit character. The ISSN of the journal Hearing Research, for example, is 0378-5955, where the final 5 is the check digit, for calculations, an upper case X in the check digit position indicates a check digit of 10. To confirm the check digit, calculate the sum of all eight digits of the ISSN multiplied by its position in the number, the modulus 11 of the sum must be 0. There is an online ISSN checker that can validate an ISSN, ISSN codes are assigned by a network of ISSN National Centres, usually located at national libraries and coordinated by the ISSN International Centre based in Paris. The International Centre is an organization created in 1974 through an agreement between UNESCO and the French government. The International Centre maintains a database of all ISSNs assigned worldwide, at the end of 2016, the ISSN Register contained records for 1,943,572 items. ISSN and ISBN codes are similar in concept, where ISBNs are assigned to individual books, an ISBN might be assigned for particular issues of a serial, in addition to the ISSN code for the serial as a whole. An ISSN, unlike the ISBN code, is an identifier associated with a serial title. For this reason a new ISSN is assigned to a serial each time it undergoes a major title change, separate ISSNs are needed for serials in different media. Thus, the print and electronic versions of a serial need separate ISSNs. Also, a CD-ROM version and a web version of a serial require different ISSNs since two different media are involved, however, the same ISSN can be used for different file formats of the same online serial
8.
On-Line Encyclopedia of Integer Sequences
–
The On-Line Encyclopedia of Integer Sequences, also cited simply as Sloanes, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs, Sloane continues to be involved in the OEIS in his role as President of the OEIS Foundation. OEIS records information on integer sequences of interest to professional mathematicians and amateurs, and is widely cited. As of 30 December 2016 it contains nearly 280,000 sequences, the database is searchable by keyword and by subsequence. Neil Sloane started collecting integer sequences as a student in 1965 to support his work in combinatorics. The database was at first stored on punched cards and he published selections from the database in book form twice, A Handbook of Integer Sequences, containing 2,372 sequences in lexicographic order and assigned numbers from 1 to 2372. The Encyclopedia of Integer Sequences with Simon Plouffe, containing 5,488 sequences and these books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service, as a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998. The database continues to grow at a rate of some 10,000 entries a year, Sloane has personally managed his sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database. In 2004, Sloane celebrated the addition of the 100, 000th sequence to the database, A100000, in 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS. org was created to simplify the collaboration of the OEIS editors and contributors, besides integer sequences, the OEIS also catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences. Sequences of rationals are represented by two sequences, the sequence of numerators and the sequence of denominators, important irrational numbers such as π =3.1415926535897. are catalogued under representative integer sequences such as decimal expansions, binary expansions, or continued fraction expansions. The OEIS was limited to plain ASCII text until 2011, yet it still uses a form of conventional mathematical notation. Greek letters are represented by their full names, e. g. mu for μ. Every sequence is identified by the letter A followed by six digits, sometimes referred to without the leading zeros, individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces, a represents the nth term of the sequence. Zero is often used to represent non-existent sequence elements, for example, A104157 enumerates the smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists. The value of a is 2, a is 1480028129, but there is no such 2×2 magic square, so a is 0
9.
Least common multiple
–
Since division of integers by zero is undefined, this definition has meaning only if a and b are both different from zero. However, some authors define lcm as 0 for all a, the LCM is the lowest common denominator that must be determined before fractions can be added, subtracted or compared. The LCM of more than two integers is also well-defined, it is the smallest positive integer that is divisible by each of them, a multiple of a number is the product of that number and an integer. For example,10 is a multiple of 5 because 5 ×2 =10, because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle,10 is the least common multiple of −5, in this article we will denote the least common multiple of two integers a and b as lcm. The programming language J uses a*. b What is the LCM of 4 and 6. Multiples of 4 are,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76. and the multiples of 6 are,6,12,18,24,30,36,42,48,54,60,66,72. Common multiples of 4 and 6 are simply the numbers that are in both lists,12,24,36,48,60,72. So, from this list of the first few common multiples of the numbers 4 and 6, their least common multiple is 12. For instance,221 +16 =442 +742 =1142 where the denominator 42 was used because it is the least common multiple of 21 and 6. This formula is valid when exactly one of a and b is 0. However, if both a and b are 0, this formula would cause division by zero, lcm =0 is a special case, there are fast algorithms for computing the GCD that do not require the numbers to be factored, such as the Euclidean algorithm. To return to the example above, lcm =21 ⋅6 gcd =21 ⋅6 gcd =21 ⋅63 =1263 =42. Because gcd is a divisor of both a and b, it is efficient to compute the LCM by dividing before multiplying. This reduces the size of one input for both the division and the multiplication, and reduces the required storage needed for intermediate results. Because gcd is a divisor of both a and b, the division is guaranteed to yield an integer, so the result can be stored in an integer. Done this way, the previous becomes, lcm =21 gcd ⋅6 =21 gcd ⋅6 =213 ⋅6 =7 ⋅6 =42. The unique factorization theorem says that every integer greater than 1 can be written in only one way as a product of prime numbers
10.
ArXiv
–
In many fields of mathematics and physics, almost all scientific papers are self-archived on the arXiv repository. Begun on August 14,1991, arXiv. org passed the half-million article milestone on October 3,2008, by 2014 the submission rate had grown to more than 8,000 per month. The arXiv was made possible by the low-bandwidth TeX file format, around 1990, Joanne Cohn began emailing physics preprints to colleagues as TeX files, but the number of papers being sent soon filled mailboxes to capacity. Additional modes of access were added, FTP in 1991, Gopher in 1992. The term e-print was quickly adopted to describe the articles and its original domain name was xxx. lanl. gov. Due to LANLs lack of interest in the rapidly expanding technology, in 1999 Ginsparg changed institutions to Cornell University and it is now hosted principally by Cornell, with 8 mirrors around the world. Its existence was one of the factors that led to the current movement in scientific publishing known as open access. Mathematicians and scientists regularly upload their papers to arXiv. org for worldwide access, Ginsparg was awarded a MacArthur Fellowship in 2002 for his establishment of arXiv. The annual budget for arXiv is approximately $826,000 for 2013 to 2017, funded jointly by Cornell University Library, annual donations were envisaged to vary in size between $2,300 to $4,000, based on each institution’s usage. As of 14 January 2014,174 institutions have pledged support for the period 2013–2017 on this basis, in September 2011, Cornell University Library took overall administrative and financial responsibility for arXivs operation and development. Ginsparg was quoted in the Chronicle of Higher Education as saying it was supposed to be a three-hour tour, however, Ginsparg remains on the arXiv Scientific Advisory Board and on the arXiv Physics Advisory Committee. The lists of moderators for many sections of the arXiv are publicly available, additionally, an endorsement system was introduced in 2004 as part of an effort to ensure content that is relevant and of interest to current research in the specified disciplines. Under the system, for categories that use it, an author must be endorsed by an established arXiv author before being allowed to submit papers to those categories. Endorsers are not asked to review the paper for errors, new authors from recognized academic institutions generally receive automatic endorsement, which in practice means that they do not need to deal with the endorsement system at all. However, the endorsement system has attracted criticism for allegedly restricting scientific inquiry, perelman appears content to forgo the traditional peer-reviewed journal process, stating, If anybody is interested in my way of solving the problem, its all there – let them go and read about it. The arXiv generally re-classifies these works, e. g. in General mathematics, papers can be submitted in any of several formats, including LaTeX, and PDF printed from a word processor other than TeX or LaTeX. The submission is rejected by the software if generating the final PDF file fails, if any image file is too large. ArXiv now allows one to store and modify an incomplete submission, the time stamp on the article is set when the submission is finalized
11.
Square-free integer
–
In mathematics, a square-free, or quadratfrei integer, is an integer which is divisible by no other perfect square than 1. For example,10 is square-free but 18 is not, as 18 is divisible by 9 =32. The smallest positive square-free numbers are 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,37,38,39. The radical of an integer is its largest square-free factor, an integer is square-free if and only if it is equal to its radical. Any arbitrary positive integer n can be represented in a way as the product of a powerful number and a square-free integer. The square-free factor is the largest square-free divisor k of n that is coprime with n/k, a positive integer n is square-free if and only if in the prime factorization of n, no prime factor occurs with an exponent larger than one. Another way of stating the same is that for every prime factor p of n, also n is square-free if and only if in every factorization n = ab, the factors a and b are coprime. An immediate result of this definition is that all numbers are square-free. A positive integer n is square-free if and only if all abelian groups of n are isomorphic. This follows from the classification of finitely generated abelian groups, a integer n is square-free if and only if the factor ring Z / nZ is a product of fields. This follows from the Chinese remainder theorem and the fact that a ring of the form Z / kZ is a field if, for every positive integer n, the set of all positive divisors of n becomes a partially ordered set if we use divisibility as the order relation. This partially ordered set is always a distributive lattice and it is a Boolean algebra if and only if n is square-free. A positive integer n is square-free if and only if μ ≠0, a positive integer n is squarefree if and only if ∑ d 2 ∣ n μ =1. This results from the properties of Möbius function, and the fact that this sum is equal to ∑ d ∣ m μ, where m is the largest divisor of n such that m2 divides n. The Dirichlet generating function for the numbers is ζ ζ = ∑ n =1 ∞ | μ | n s where ζ is the Riemann zeta function. This is easily seen from the Euler product ζ ζ = ∏ p = ∏ p, let Q denote the number of square-free integers between 1 and x. For large n, 3/4 of the positive integers less than n are not divisible by 4, 8/9 of these numbers are not divisible by 9, and so on. Under the Riemann hypothesis, the term can be further reduced to yield Q = x ζ + O =6 x π2 + O