RELATED RESEARCH TOPICS

1.
Theoretical computer science
–
It is not easy to circumscribe the theoretical areas precisely. Work in this field is often distinguished by its emphasis on mathematical technique, despite this broad scope, the theory people in computer science self-identify as different from the applied people. Some characterize themselves as doing the science underlying the field of computing, other theory-applied people suggest that it is impossible to separate theory and application. This means that the theory people regularly use experimental science done in less-theoretical areas such as software system research. It also means there is more cooperation than mutually exclusive competition between theory and application. These developments have led to the study of logic and computability. Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon, in the same decade, Donald Hebb introduced a mathematical model of learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of neural networks, in 1971, Stephen Cook and, working independently, Leonid Levin, proved that there exist practically relevant problems that are NP-complete – a landmark result in computational complexity theory. With the development of mechanics in the beginning of the 20th century came the concept that mathematical operations could be performed on an entire particle wavefunction. In other words, one could compute functions on multiple states simultaneously, modern theoretical computer science research is based on these basic developments, but includes many other mathematical and interdisciplinary problems that have been posed. An algorithm is a procedure for calculations. Algorithms are used for calculation, data processing, and automated reasoning, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function. The transition from one state to the next is not necessarily deterministic, some algorithms, known as randomized algorithms, a data structure is a particular way of organizing data in a computer so that it can be used efficiently. Different kinds of structures are suited to different kinds of applications. For example, databases use B-tree indexes for small percentages of data retrieval and compilers, data structures provide a means to manage large amounts of data efficiently for uses such as large databases and internet indexing services. Usually, efficient data structures are key to designing efficient algorithms, some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design. Storing and retrieving can be carried out on data stored in main memory and in secondary memory. A problem is regarded as inherently difficult if its solution requires significant resources, the theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage