1.
Outline of the metric system
–
The metric system can be described as all of the following, System – set of interacting or interdependent components forming an integrated whole. System of measurement – set of units which can be used to specify anything which can be measured, historically, systems of measurement were initially defined and regulated to support trade and internal commerce. Units were arbitrarily defined by fiat by the entities and were not necessarily well inter-related or self-consistent. When later analyzed and scientifically, some quantities were designated as fundamental units, introduction to the metric system International system of units is the system of units that has been officially endorsed under the Metre Convention since 1960. 1861 - Concept of unit coherence introduced by Maxwell - the base units were the centimetre, gram, History of metrication – metrication is the process by which legacy, national-specific systems of measurement were replaced by the metric system. Centimetre–gram–second system of units was the variant of the metric system that evolved in stages until it was superseded by SI. Gravitational metric system was a variant of the metric system that normalised the acceleration due to gravity. Metre–tonne–second system of units was a variant of the system used in French. Between 1812 and 1839 France used a system, Mesures usuelles History of the metre Prior to 1875 the metric system was controlled by the French Government. In that year, seventeen nations signed the Metre Convention and the management, Metre Convention describes the 1875 treaty and its development to the modern day. Three organisations, the CGPM, CIPM and BIPM were set up under the convention, general Conference on Weights and Measures – a meeting every four to six years of delegates from all member states. The International Committee for Weights and Measures – an advisory body to the CGPM consisting of prominent metrologists, both the European Union and the International Organization for Standardization have issued directives/recommendations to harmonise the use of units of measure. These documents endorse the use of SI for most purposes, European units of measurement directives ISO/IEC80000 New SI definitions – changes in the metric system, or more specifically, the International system of units that is expected to occur in 2018. Metric Association Metric Commission Metrication Board An Essay towards a Real Character and a Philosophical Language Reproduction –34
2.
Metric system
–
The metric system is an internationally agreed decimal system of measurement. Many sources also cite Liberia and Myanmar as the other countries not to have done so. Although the originators intended to devise a system that was accessible to all. Control of the units of measure was maintained by the French government until 1875, when it was passed to an intergovernmental organisation. From its beginning, the features of the metric system were the standard set of interrelated base units. These base units are used to larger and smaller units that could replace a huge number of other units of measure in existence. Although the system was first developed for use, the development of coherent units of measure made it particularly suitable for science. Although the metric system has changed and developed since its inception, designed for transnational use, it consisted of a basic set of units of measurement, now known as base units. At the outbreak of the French Revolution in 1789, most countries, the metric system was designed to be universal—in the words of the French philosopher Marquis de Condorcet it was to be for all people for all time. However, these overtures failed and the custody of the metric system remained in the hands of the French government until 1875. In languages where the distinction is made, unit names are common nouns, the concept of using consistent classical names for the prefixes was first proposed in a report by the Commission on Weights and Measures in May 1793. The prefix kilo, for example, is used to multiply the unit by 1000, thus the kilogram and kilometre are a thousand grams and metres respectively, and a milligram and millimetre are one thousandth of a gram and metre respectively. These relations can be written symbolically as,1 mg =0, however,1935 extensions to the prefix system did not follow this convention, the prefixes nano- and micro-, for example have Greek roots. During the 19th century the prefix myria-, derived from the Greek word μύριοι, was used as a multiplier for 10000, prefixes are not usually used to indicate multiples of a second greater than 1, the non-SI units of minute, hour and day are used instead. On the other hand, prefixes are used for multiples of the unit of volume. The base units used in the system must be realisable. Each of the units in SI is accompanied by a mise en pratique published by the BIPM that describes in detail at least one way in which the base unit can be measured. In practice, such realisation is done under the auspices of a mutual acceptance arrangement, in the original version of the metric system the base units could be derived from a specified length and the weight of a specified volume of pure water
3.
Length
–
In geometric measurements, length is the most extended dimension of an object. In the International System of Quantities, length is any quantity with dimension distance, in other contexts length is the measured dimension of an object. For example, it is possible to cut a length of a wire which is shorter than wire thickness. Length may be distinguished from height, which is vertical extent, and width or breadth, length is a measure of one dimension, whereas area is a measure of two dimensions and volume is a measure of three dimensions. In most systems of measurement, the unit of length is a base unit, measurement has been important ever since humans settled from nomadic lifestyles and started using building materials, occupying land and trading with neighbours. As society has become more technologically oriented, much higher accuracies of measurement are required in a diverse set of fields. One of the oldest units of measurement used in the ancient world was the cubit which was the length of the arm from the tip of the finger to the elbow. This could then be subdivided into shorter units like the foot, hand or finger, the cubit could vary considerably due to the different sizes of people. After Albert Einsteins special relativity, length can no longer be thought of being constant in all reference frames. Thus a ruler that is one meter long in one frame of reference will not be one meter long in a frame that is travelling at a velocity relative to the first frame. This means length of an object is variable depending on the observer, in the physical sciences and engineering, when one speaks of units of length, the word length is synonymous with distance. There are several units that are used to measure length, in the International System of Units, the basic unit of length is the metre and is now defined in terms of the speed of light. The centimetre and the kilometre, derived from the metre, are commonly used units. In U. S. customary units, English or Imperial system of units, commonly used units of length are the inch, the foot, the yard, and the mile. Units used to denote distances in the vastness of space, as in astronomy, are longer than those typically used on Earth and include the astronomical unit, the light-year. Dimension Distance Orders of magnitude Reciprocal length Smoot Unit of length
4.
Gram
–
The gram is a metric system unit of mass. Originally defined as the weight of a volume of pure water equal to the cube of the hundredth part of a metre. The only unit symbol for gram that is recognised by the International System of Units is g following the numeric value with a space, the SI does not support the use of abbreviations such as gr, gm or Gm. The word gramme was adopted by the French National Convention in its 1795 decree revising the system as replacing the gravet introduced in 1793. Its definition remained that of the weight of a centimetre of water. French gramme was taken from the Late Latin term gramma and this word, ultimately from Greek γράμμα letter had adopted a specialised meaning in Late Antiquity of one twenty-fourth part of an ounce, corresponding to about 1.14 grams. This use of the term is found in the carmen de ponderibus et mensuris composed around 400 AD, the gram was the fundamental unit of mass in the 19th-century centimetre–gram–second system of units. The gram is today the most widely used unit of measurement for non-liquid ingredients in cooking and grocery shopping worldwide. 1 gram =15.4323583529 grains 1 grain =0.06479891 grams 1 avoirdupois ounce =28.349523125 grams 1 troy ounce =31.1034768 grams 100 grams =3.527396195 ounces 1 gram =5 carats 1 gram =8. 1 gram is roughly equal to 1 small paper clip or pen cap, the Japanese 1 yen coin has a mass of one gram. Conversion of units Duella Gold gram Orders of magnitude Gram at Encyclopædia Britannica
5.
Mass
–
In physics, mass is a property of a physical body. It is the measure of a resistance to acceleration when a net force is applied. It also determines the strength of its gravitational attraction to other bodies. The basic SI unit of mass is the kilogram, Mass is not the same as weight, even though mass is often determined by measuring the objects weight using a spring scale, rather than comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity and this is because weight is a force, while mass is the property that determines the strength of this force. In Newtonian physics, mass can be generalized as the amount of matter in an object, however, at very high speeds, special relativity postulates that energy is an additional source of mass. Thus, any body having mass has an equivalent amount of energy. In addition, matter is a defined term in science. There are several distinct phenomena which can be used to measure mass, active gravitational mass measures the gravitational force exerted by an object. Passive gravitational mass measures the force exerted on an object in a known gravitational field. The mass of an object determines its acceleration in the presence of an applied force, according to Newtons second law of motion, if a body of fixed mass m is subjected to a single force F, its acceleration a is given by F/m. A bodys mass also determines the degree to which it generates or is affected by a gravitational field and this is sometimes referred to as gravitational mass. The standard International System of Units unit of mass is the kilogram, the kilogram is 1000 grams, first defined in 1795 as one cubic decimeter of water at the melting point of ice. Then in 1889, the kilogram was redefined as the mass of the prototype kilogram. As of January 2013, there are proposals for redefining the kilogram yet again. In this context, the mass has units of eV/c2, the electronvolt and its multiples, such as the MeV, are commonly used in particle physics. The atomic mass unit is 1/12 of the mass of a carbon-12 atom, the atomic mass unit is convenient for expressing the masses of atoms and molecules. Outside the SI system, other units of mass include, the slug is an Imperial unit of mass, the pound is a unit of both mass and force, used mainly in the United States
6.
Second
–
The second is the base unit of time in the International System of Units. It is qualitatively defined as the division of the hour by sixty. SI definition of second is the duration of 9192631770 periods of the corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom. Seconds may be measured using a mechanical, electrical or an atomic clock, SI prefixes are combined with the word second to denote subdivisions of the second, e. g. the millisecond, the microsecond, and the nanosecond. Though SI prefixes may also be used to form multiples of the such as kilosecond. The second is also the unit of time in other systems of measurement, the centimetre–gram–second, metre–kilogram–second, metre–tonne–second. Absolute zero implies no movement, and therefore zero external radiation effects, the second thus defined is consistent with the ephemeris second, which was based on astronomical measurements. The realization of the second is described briefly in a special publication from the National Institute of Standards and Technology. 1 international second is equal to, 1⁄60 minute 1⁄3,600 hour 1⁄86,400 day 1⁄31,557,600 Julian year 1⁄, more generally, = 1⁄, the Hellenistic astronomers Hipparchus and Ptolemy subdivided the day into sixty parts. They also used an hour, simple fractions of an hour. No sexagesimal unit of the day was used as an independent unit of time. The modern second is subdivided using decimals - although the third remains in some languages. The earliest clocks to display seconds appeared during the last half of the 16th century, the second became accurately measurable with the development of mechanical clocks keeping mean time, as opposed to the apparent time displayed by sundials. The earliest spring-driven timepiece with a hand which marked seconds is an unsigned clock depicting Orpheus in the Fremersdorf collection. During the 3rd quarter of the 16th century, Taqi al-Din built a clock with marks every 1/5 minute, in 1579, Jost Bürgi built a clock for William of Hesse that marked seconds. In 1581, Tycho Brahe redesigned clocks that displayed minutes at his observatory so they also displayed seconds, however, they were not yet accurate enough for seconds. In 1587, Tycho complained that his four clocks disagreed by plus or minus four seconds, in 1670, London clockmaker William Clement added this seconds pendulum to the original pendulum clock of Christiaan Huygens. From 1670 to 1680, Clement made many improvements to his clock and this clock used an anchor escapement mechanism with a seconds pendulum to display seconds in a small subdial
7.
Time
–
Time is the indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. Time is often referred to as the dimension, along with the three spatial dimensions. Time has long been an important subject of study in religion, philosophy, and science, nevertheless, diverse fields such as business, industry, sports, the sciences, and the performing arts all incorporate some notion of time into their respective measuring systems. Two contrasting viewpoints on time divide prominent philosophers, one view is that time is part of the fundamental structure of the universe—a dimension independent of events, in which events occur in sequence. Isaac Newton subscribed to this realist view, and hence it is referred to as Newtonian time. This second view, in the tradition of Gottfried Leibniz and Immanuel Kant, holds that time is neither an event nor a thing, Time in physics is unambiguously operationally defined as what a clock reads. Time is one of the seven fundamental physical quantities in both the International System of Units and International System of Quantities, Time is used to define other quantities—such as velocity—so defining time in terms of such quantities would result in circularity of definition. The operational definition leaves aside the question there is something called time, apart from the counting activity just mentioned, that flows. Investigations of a single continuum called spacetime bring questions about space into questions about time, questions that have their roots in the works of early students of natural philosophy. Furthermore, it may be there is a subjective component to time. Temporal measurement has occupied scientists and technologists, and was a motivation in navigation. Periodic events and periodic motion have long served as standards for units of time, examples include the apparent motion of the sun across the sky, the phases of the moon, the swing of a pendulum, and the beat of a heart. Currently, the unit of time, the second, is defined by measuring the electronic transition frequency of caesium atoms. Time is also of significant social importance, having economic value as well as value, due to an awareness of the limited time in each day. In day-to-day life, the clock is consulted for periods less than a day whereas the calendar is consulted for periods longer than a day, increasingly, personal electronic devices display both calendars and clocks simultaneously. The number that marks the occurrence of an event as to hour or date is obtained by counting from a fiducial epoch—a central reference point. Artifacts from the Paleolithic suggest that the moon was used to time as early as 6,000 years ago. Lunar calendars were among the first to appear, either 12 or 13 lunar months, without intercalation to add days or months to some years, seasons quickly drift in a calendar based solely on twelve lunar months
8.
Mechanics
–
Mechanics is an area of science concerned with the behaviour of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment. The scientific discipline has its origins in Ancient Greece with the writings of Aristotle, during the early modern period, scientists such as Khayaam, Galileo, Kepler, and Newton, laid the foundation for what is now known as classical mechanics. It is a branch of physics that deals with particles that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as a branch of science which deals with the motion of, historically, classical mechanics came first, while quantum mechanics is a comparatively recent invention. Classical mechanics originated with Isaac Newtons laws of motion in Philosophiæ Naturalis Principia Mathematica, both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other so-called exact sciences, essential in this respect is the relentless use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them. Quantum mechanics is of a scope, as it encompasses classical mechanics as a sub-discipline which applies under certain restricted circumstances. According to the principle, there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. The correspondence principle states that the behavior of systems described by quantum theories reproduces classical physics in the limit of quantum numbers. Quantum mechanics has superseded classical mechanics at the level and is indispensable for the explanation and prediction of processes at the molecular, atomic. However, for macroscopic processes classical mechanics is able to solve problems which are difficult in quantum mechanics and hence remains useful. Modern descriptions of such behavior begin with a definition of such quantities as displacement, time, velocity, acceleration, mass. Until about 400 years ago, however, motion was explained from a different point of view. He showed that the speed of falling objects increases steadily during the time of their fall and this acceleration is the same for heavy objects as for light ones, provided air friction is discounted. The English mathematician and physicist Isaac Newton improved this analysis by defining force and mass, for objects traveling at speeds close to the speed of light, Newton’s laws were superseded by Albert Einstein’s theory of relativity. For atomic and subatomic particles, Newton’s laws were superseded by quantum theory, for everyday phenomena, however, Newton’s three laws of motion remain the cornerstone of dynamics, which is the study of what causes motion. In analogy to the distinction between quantum and classical mechanics, Einsteins general and special theories of relativity have expanded the scope of Newton, the differences between relativistic and Newtonian mechanics become significant and even dominant as the velocity of a massive body approaches the speed of light. Relativistic corrections are also needed for quantum mechanics, although general relativity has not been integrated, the two theories remain incompatible, a hurdle which must be overcome in developing a theory of everything
9.
Electromagnetism
–
Electromagnetism is a branch of physics involving the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force usually exhibits electromagnetic fields such as fields, magnetic fields. The other three fundamental interactions are the interaction, the weak interaction, and gravitation. The word electromagnetism is a form of two Greek terms, ἤλεκτρον, ēlektron, amber, and μαγνῆτις λίθος magnētis lithos, which means magnesian stone. The electromagnetic force plays a role in determining the internal properties of most objects encountered in daily life. Ordinary matter takes its form as a result of forces between individual atoms and molecules in matter, and is a manifestation of the electromagnetic force. Electrons are bound by the force to atomic nuclei, and their orbital shapes. The electromagnetic force governs the processes involved in chemistry, which arise from interactions between the electrons of neighboring atoms, there are numerous mathematical descriptions of the electromagnetic field. In classical electrodynamics, electric fields are described as electric potential, although electromagnetism is considered one of the four fundamental forces, at high energy the weak force and electromagnetic force are unified as a single electroweak force. In the history of the universe, during the epoch the unified force broke into the two separate forces as the universe cooled. Originally, electricity and magnetism were considered to be two separate forces, Magnetic poles attract or repel one another in a manner similar to positive and negative charges and always exist as pairs, every north pole is yoked to a south pole. An electric current inside a wire creates a corresponding magnetic field outside the wire. Its direction depends on the direction of the current in the wire. A current is induced in a loop of wire when it is moved toward or away from a field, or a magnet is moved towards or away from it. While preparing for a lecture on 21 April 1820, Hans Christian Ørsted made a surprising observation. As he was setting up his materials, he noticed a compass needle deflected away from north when the electric current from the battery he was using was switched on. At the time of discovery, Ørsted did not suggest any explanation of the phenomenon. However, three later he began more intensive investigations
10.
Metre
–
The metre or meter, is the base unit of length in the International System of Units. The metre is defined as the length of the path travelled by light in a vacuum in 1/299792458 seconds, the metre was originally defined in 1793 as one ten-millionth of the distance from the equator to the North Pole. In 1799, it was redefined in terms of a metre bar. In 1960, the metre was redefined in terms of a number of wavelengths of a certain emission line of krypton-86. In 1983, the current definition was adopted, the imperial inch is defined as 0.0254 metres. One metre is about 3 3⁄8 inches longer than a yard, Metre is the standard spelling of the metric unit for length in nearly all English-speaking nations except the United States and the Philippines, which use meter. Measuring devices are spelled -meter in all variants of English, the suffix -meter has the same Greek origin as the unit of length. This range of uses is found in Latin, French, English. Thus calls for measurement and moderation. In 1668 the English cleric and philosopher John Wilkins proposed in an essay a decimal-based unit of length, as a result of the French Revolution, the French Academy of Sciences charged a commission with determining a single scale for all measures. In 1668, Wilkins proposed using Christopher Wrens suggestion of defining the metre using a pendulum with a length which produced a half-period of one second, christiaan Huygens had observed that length to be 38 Rijnland inches or 39.26 English inches. This is the equivalent of what is now known to be 997 mm, no official action was taken regarding this suggestion. In the 18th century, there were two approaches to the definition of the unit of length. One favoured Wilkins approach, to define the metre in terms of the length of a pendulum which produced a half-period of one second. The other approach was to define the metre as one ten-millionth of the length of a quadrant along the Earths meridian, that is, the distance from the Equator to the North Pole. This means that the quadrant would have defined as exactly 10000000 metres at that time. To establish a universally accepted foundation for the definition of the metre, more measurements of this meridian were needed. This portion of the meridian, assumed to be the length as the Paris meridian, was to serve as the basis for the length of the half meridian connecting the North Pole with the Equator
11.
Kilogram
–
The kilogram or kilogramme is the base unit of mass in the International System of Units and is defined as being equal to the mass of the International Prototype of the Kilogram. The avoirdupois pound, used in both the imperial and US customary systems, is defined as exactly 0.45359237 kg, making one kilogram approximately equal to 2.2046 avoirdupois pounds. Other traditional units of weight and mass around the world are also defined in terms of the kilogram, the gram, 1/1000 of a kilogram, was provisionally defined in 1795 as the mass of one cubic centimeter of water at the melting point of ice. The final kilogram, manufactured as a prototype in 1799 and from which the IPK was derived in 1875, had an equal to the mass of 1 dm3 of water at its maximum density. The kilogram is the only SI base unit with an SI prefix as part of its name and it is also the only SI unit that is still directly defined by an artifact rather than a fundamental physical property that can be reproduced in different laboratories. Three other base units and 17 derived units in the SI system are defined relative to the kilogram, only 8 other units do not require the kilogram in their definition, temperature, time and frequency, length, and angle. At its 2011 meeting, the CGPM agreed in principle that the kilogram should be redefined in terms of the Planck constant, the decision was originally deferred until 2014, in 2014 it was deferred again until the next meeting. There are currently several different proposals for the redefinition, these are described in the Proposed Future Definitions section below, the International Prototype Kilogram is rarely used or handled. In the decree of 1795, the term gramme thus replaced gravet, the French spelling was adopted in the United Kingdom when the word was used for the first time in English in 1797, with the spelling kilogram being adopted in the United States. In the United Kingdom both spellings are used, with kilogram having become by far the more common, UK law regulating the units to be used when trading by weight or measure does not prevent the use of either spelling. In the 19th century the French word kilo, a shortening of kilogramme, was imported into the English language where it has used to mean both kilogram and kilometer. In 1935 this was adopted by the IEC as the Giorgi system, now known as MKS system. In 1948 the CGPM commissioned the CIPM to make recommendations for a practical system of units of measurement. This led to the launch of SI in 1960 and the subsequent publication of the SI Brochure, the kilogram is a unit of mass, a property which corresponds to the common perception of how heavy an object is. Mass is a property, that is, it is related to the tendency of an object at rest to remain at rest, or if in motion to remain in motion at a constant velocity. Accordingly, for astronauts in microgravity, no effort is required to hold objects off the cabin floor, they are weightless. However, since objects in microgravity still retain their mass and inertia, the ratio of the force of gravity on the two objects, measured by the scale, is equal to the ratio of their masses. On April 7,1795, the gram was decreed in France to be the weight of a volume of pure water equal to the cube of the hundredth part of the metre
12.
International System of Units
–
The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, the system also establishes a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system was published in 1960 as the result of an initiative began in 1948. It is based on the system of units rather than any variant of the centimetre-gram-second system. The motivation for the development of the SI was the diversity of units that had sprung up within the CGS systems, the International System of Units has been adopted by most developed countries, however, the adoption has not been universal in all English-speaking countries. The metric system was first implemented during the French Revolution with just the metre and kilogram as standards of length, in the 1830s Carl Friedrich Gauss laid the foundations for a coherent system based on length, mass, and time. In the 1860s a group working under the auspices of the British Association for the Advancement of Science formulated the requirement for a coherent system of units with base units and derived units. Meanwhile, in 1875, the Treaty of the Metre passed responsibility for verification of the kilogram, in 1921, the Treaty was extended to include all physical quantities including electrical units originally defined in 1893. The units associated with these quantities were the metre, kilogram, second, ampere, kelvin, in 1971, a seventh base quantity, amount of substance represented by the mole, was added to the definition of SI. On 11 July 1792, the proposed the names metre, are, litre and grave for the units of length, area, capacity. The committee also proposed that multiples and submultiples of these units were to be denoted by decimal-based prefixes such as centi for a hundredth, on 10 December 1799, the law by which the metric system was to be definitively adopted in France was passed. Prior to this, the strength of the magnetic field had only been described in relative terms. The technique used by Gauss was to equate the torque induced on a magnet of known mass by the earth’s magnetic field with the torque induced on an equivalent system under gravity. The resultant calculations enabled him to assign dimensions based on mass, length, a French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention. Initially the convention only covered standards for the metre and the kilogram, one of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the prototypes to serve as the national prototype for that country. Initially its prime purpose was a periodic recalibration of national prototype metres. The official language of the Metre Convention is French and the version of all official documents published by or on behalf of the CGPM is the French-language version
13.
Force
–
In physics, a force is any interaction that, when unopposed, will change the motion of an object. In other words, a force can cause an object with mass to change its velocity, force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity and it is measured in the SI unit of newtons and represented by the symbol F. The original form of Newtons second law states that the net force acting upon an object is equal to the rate at which its momentum changes with time. In an extended body, each part usually applies forces on the adjacent parts, such internal mechanical stresses cause no accelation of that body as the forces balance one another. Pressure, the distribution of small forces applied over an area of a body, is a simple type of stress that if unbalanced can cause the body to accelerate. Stress usually causes deformation of materials, or flow in fluids. In part this was due to an understanding of the sometimes non-obvious force of friction. A fundamental error was the belief that a force is required to maintain motion, most of the previous misunderstandings about motion and force were eventually corrected by Galileo Galilei and Sir Isaac Newton. With his mathematical insight, Sir Isaac Newton formulated laws of motion that were not improved-on for nearly three hundred years, the Standard Model predicts that exchanged particles called gauge bosons are the fundamental means by which forces are emitted and absorbed. Only four main interactions are known, in order of decreasing strength, they are, strong, electromagnetic, weak, high-energy particle physics observations made during the 1970s and 1980s confirmed that the weak and electromagnetic forces are expressions of a more fundamental electroweak interaction. Since antiquity the concept of force has been recognized as integral to the functioning of each of the simple machines. The mechanical advantage given by a machine allowed for less force to be used in exchange for that force acting over a greater distance for the same amount of work. Analysis of the characteristics of forces ultimately culminated in the work of Archimedes who was famous for formulating a treatment of buoyant forces inherent in fluids. Aristotle provided a discussion of the concept of a force as an integral part of Aristotelian cosmology. In Aristotles view, the sphere contained four elements that come to rest at different natural places therein. Aristotle believed that objects on Earth, those composed mostly of the elements earth and water, to be in their natural place on the ground. He distinguished between the tendency of objects to find their natural place, which led to natural motion, and unnatural or forced motion
14.
Energy
–
In physics, energy is the property that must be transferred to an object in order to perform work on – or to heat – the object, and can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the transferred to an object by the mechanical work of moving it a distance of 1 metre against a force of 1 newton. Mass and energy are closely related, for example, with a sensitive enough scale, one could measure an increase in mass after heating an object. Living organisms require available energy to stay alive, such as the humans get from food. Civilisation gets the energy it needs from energy resources such as fuels, nuclear fuel. The processes of Earths climate and ecosystem are driven by the radiant energy Earth receives from the sun, the total energy of a system can be subdivided and classified in various ways. It may also be convenient to distinguish gravitational energy, thermal energy, several types of energy, electric energy. Many of these overlap, for instance, thermal energy usually consists partly of kinetic. Some types of energy are a mix of both potential and kinetic energy. An example is energy which is the sum of kinetic. Whenever physical scientists discover that a phenomenon appears to violate the law of energy conservation. Heat and work are special cases in that they are not properties of systems, in general we cannot measure how much heat or work are present in an object, but rather only how much energy is transferred among objects in certain ways during the occurrence of a given process. Heat and work are measured as positive or negative depending on which side of the transfer we view them from, the distinctions between different kinds of energy is not always clear-cut. In contrast to the definition, energeia was a qualitative philosophical concept, broad enough to include ideas such as happiness. The modern analog of this property, kinetic energy, differs from vis viva only by a factor of two, in 1807, Thomas Young was possibly the first to use the term energy instead of vis viva, in its modern sense. Gustave-Gaspard Coriolis described kinetic energy in 1829 in its modern sense, the law of conservation of energy was also first postulated in the early 19th century, and applies to any isolated system. It was argued for years whether heat was a physical substance, dubbed the caloric, or merely a physical quantity. In 1845 James Prescott Joule discovered the link between mechanical work and the generation of heat and these developments led to the theory of conservation of energy, formalized largely by William Thomson as the field of thermodynamics
15.
Pressure
–
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the relative to the ambient pressure. Various units are used to express pressure, Pressure may also be expressed in terms of standard atmospheric pressure, the atmosphere is equal to this pressure and the torr is defined as 1⁄760 of this. Manometric units such as the centimetre of water, millimetre of mercury, Pressure is the amount of force acting per unit area. The symbol for it is p or P, the IUPAC recommendation for pressure is a lower-case p. However, upper-case P is widely used. The usage of P vs p depends upon the field in one is working, on the nearby presence of other symbols for quantities such as power and momentum. Mathematically, p = F A where, p is the pressure, F is the normal force and it relates the vector surface element with the normal force acting on it. It is incorrect to say the pressure is directed in such or such direction, the pressure, as a scalar, has no direction. The force given by the relationship to the quantity has a direction. If we change the orientation of the element, the direction of the normal force changes accordingly. Pressure is distributed to solid boundaries or across arbitrary sections of normal to these boundaries or sections at every point. It is a parameter in thermodynamics, and it is conjugate to volume. The SI unit for pressure is the pascal, equal to one newton per square metre and this name for the unit was added in 1971, before that, pressure in SI was expressed simply in newtons per square metre. Other units of pressure, such as pounds per square inch, the CGS unit of pressure is the barye, equal to 1 dyn·cm−2 or 0.1 Pa. Pressure is sometimes expressed in grams-force or kilograms-force per square centimetre, but using the names kilogram, gram, kilogram-force, or gram-force as units of force is expressly forbidden in SI. The technical atmosphere is 1 kgf/cm2, since a system under pressure has potential to perform work on its surroundings, pressure is a measure of potential energy stored per unit volume. It is therefore related to density and may be expressed in units such as joules per cubic metre. Similar pressures are given in kilopascals in most other fields, where the prefix is rarely used
16.
Unit conversion
–
Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors. The process of conversion depends on the situation and the intended purpose. This may be governed by regulation, contract, technical specifications or other published standards, engineering judgment may include such factors as, The precision and accuracy of measurement and the associated uncertainty of measurement. The statistical confidence interval or tolerance interval of the initial measurement, the number of significant figures of the measurement. The intended use of the measurement including the engineering tolerances, historical definitions of the units and their derivatives used in old measurements, e. g. international foot vs. Some conversions from one system of units to another need to be exact and this is sometimes called soft conversion. It does not involve changing the configuration of the item being measured. By contrast, a conversion or an adaptive conversion may not be exactly equivalent. It changes the measurement to convenient and workable numbers and units in the new system and it sometimes involves a slightly different configuration, or size substitution, of the item. Nominal values are allowed and used. A conversion factor is used to change the units of a quantity without changing its value. The unity bracket method of unit conversion consists of a fraction in which the denominator is equal to the numerator, because of the identity property of multiplication, the value of a number will not change as long as it is multiplied by one. Also, if the numerator and denominator of a fraction are equal to each other, so as long as the numerator and denominator of the fraction are equivalent, they will not affect the value of the measured quantity. There are many applications that offer the thousands of the various units with conversions. For example, the free software movement offers a command line utility GNU units for Linux and this article gives lists of conversion factors for each of a number of physical quantities, which are listed in the index. For each physical quantity, a number of different units are shown, Conversion between units in the metric system can be discerned by their prefixes and are thus not listed in this article. Exceptions are made if the unit is known by another name. Within each table, the units are listed alphabetically, and the SI units are highlighted, notes, See Weight for detail of mass/weight distinction and conversion
17.
Exponentiation
–
Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent n. The exponent is usually shown as a superscript to the right of the base, Some common exponents have their own names, the exponent 2 is called the square of b or b squared, the exponent 3 is called the cube of b or b cubed. The exponent −1 of b, or 1 / b, is called the reciprocal of b, when n is a positive integer and b is not zero, b−n is naturally defined as 1/bn, preserving the property bn × bm = bn + m. The definition of exponentiation can be extended to any real or complex exponent. Exponentiation by integer exponents can also be defined for a variety of algebraic structures. The term power was used by the Greek mathematician Euclid for the square of a line, archimedes discovered and proved the law of exponents, 10a 10b = 10a+b, necessary to manipulate powers of 10. In the late 16th century, Jost Bürgi used Roman numerals for exponents, early in the 17th century, the first form of our modern exponential notation was introduced by Rene Descartes in his text titled La Géométrie, there, the notation is introduced in Book I. Nicolas Chuquet used a form of notation in the 15th century. The word exponent was coined in 1544 by Michael Stifel, samuel Jeake introduced the term indices in 1696. In the 16th century Robert Recorde used the square, cube, zenzizenzic, sursolid, zenzicube, second sursolid. Biquadrate has been used to refer to the power as well. Some mathematicians used exponents only for greater than two, preferring to represent squares as repeated multiplication. Thus they would write polynomials, for example, as ax + bxx + cx3 + d, another historical synonym, involution, is now rare and should not be confused with its more common meaning. In 1748 Leonhard Euler wrote consider exponentials or powers in which the exponent itself is a variable and it is clear that quantities of this kind are not algebraic functions, since in those the exponents must be constant. With this introduction of transcendental functions, Euler laid the foundation for the introduction of natural logarithm as the inverse function for y = ex. The expression b2 = b ⋅ b is called the square of b because the area of a square with side-length b is b2, the expression b3 = b ⋅ b ⋅ b is called the cube of b because the volume of a cube with side-length b is b3. The exponent indicates how many copies of the base are multiplied together, for example,35 =3 ⋅3 ⋅3 ⋅3 ⋅3 =243. The base 3 appears 5 times in the multiplication, because the exponent is 5
18.
Newton (unit)
–
The newton is the International System of Units derived unit of force. It is named after Isaac Newton in recognition of his work on classical mechanics, see below for the conversion factors. One newton is the force needed to one kilogram of mass at the rate of one metre per second squared in direction of the applied force. In 1948, the 9th CGPM resolution 7 adopted the name newton for this force, the MKS system then became the blueprint for todays SI system of units. The newton thus became the unit of force in le Système International dUnités. This SI unit is named after Isaac Newton, as with every International System of Units unit named for a person, the first letter of its symbol is upper case. Note that degree Celsius conforms to this rule because the d is lowercase. — Based on The International System of Units, section 5.2. Newtons second law of motion states that F = ma, where F is the applied, m is the mass of the object receiving the force. The newton is therefore, where the symbols are used for the units, N for newton, kg for kilogram, m for metre. In dimensional analysis, F = M L T2 where F is force, M is mass, L is length, at average gravity on earth, a kilogram mass exerts a force of about 9.8 newtons. An average-sized apple exerts about one newton of force, which we measure as the apples weight, for example, the tractive effort of a Class Y steam train and the thrust of an F100 fighter jet engine are both around 130 kN. One kilonewton,1 kN, is 102.0 kgf,1 kN =102 kg ×9.81 m/s2 So for example, a platform rated at 321 kilonewtons will safely support a 32,100 kilograms load. Specifications in kilonewtons are common in safety specifications for, the values of fasteners, Earth anchors. Working loads in tension and in shear, thrust of rocket engines and launch vehicles clamping forces of the various moulds in injection moulding machines used to manufacture plastic parts
19.
Voltage
–
Voltage, electric potential difference, electric pressure or electric tension is the difference in electric potential energy between two points per unit electric charge. The voltage between two points is equal to the work done per unit of charge against an electric field to move the test charge between two points. This is measured in units of volts, voltage can be caused by static electric fields, by electric current through a magnetic field, by time-varying magnetic fields, or some combination of these three. A voltmeter can be used to measure the voltage between two points in a system, often a reference potential such as the ground of the system is used as one of the points. A voltage may represent either a source of energy or lost, used, given two points in space, x A and x B, voltage is the difference in electric potential between those two points. Electric potential must be distinguished from electric energy by noting that the potential is a per-unit-charge quantity. Like mechanical potential energy, the zero of electric potential can be chosen at any point, so the difference in potential, i. e. the voltage, is the quantity which is physically meaningful. The voltage between point A to point B is equal to the work which would have to be done, per unit charge, against or by the electric field to move the charge from A to B. The voltage between the two ends of a path is the energy required to move a small electric charge along that path. Mathematically this is expressed as the integral of the electric field. In the general case, both an electric field and a dynamic electromagnetic field must be included in determining the voltage between two points. Historically this quantity has also called tension and pressure. Pressure is now obsolete but tension is used, for example within the phrase high tension which is commonly used in thermionic valve based electronics. Voltage is defined so that negatively charged objects are pulled towards higher voltages, therefore, the conventional current in a wire or resistor always flows from higher voltage to lower voltage. Current can flow from lower voltage to higher voltage, but only when a source of energy is present to push it against the electric field. This is the case within any electric power source, for example, inside a battery, chemical reactions provide the energy needed for ion current to flow from the negative to the positive terminal. The electric field is not the only factor determining charge flow in a material, the electric potential of a material is not even a well defined quantity, since it varies on the subatomic scale. A more convenient definition of voltage can be found instead in the concept of Fermi level, in this case the voltage between two bodies is the thermodynamic work required to move a unit of charge between them
20.
Maxwell's equations
–
Maxwells equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. They underpin all electric, optical and radio such as power generation, electric motors, wireless communication, cameras, televisions. Maxwells equations describe how electric and magnetic fields are generated by charges, currents, one important consequence of the equations is the demonstration of how fluctuating electric and magnetic fields can propagate at the speed of light. This electromagnetic radiation manifests itself in ways from radio waves to light. The equations have two major variants, the microscopic Maxwell equations have universal applicability but are unwieldy for common calculations. They relate the electric and magnetic fields to total charge and total current, including the complicated charges, the macroscopic Maxwell equations define two new auxiliary fields that describe the large-scale behaviour of matter without having to consider atomic scale details. However, their use requires experimentally determining parameters for a description of the electromagnetic response of materials. The term Maxwells equations is used for equivalent alternative formulations. The space-time formulations, are used in high energy and gravitational physics because they make the compatibility of the equations with special and general relativity manifest. In many situations, though, deviations from Maxwells equations are immeasurably small, exceptions include nonclassical light, photon-photon scattering, quantum optics, and many other phenomena related to photons or virtual photons. In the electric and magnetic field there are four equations. The two inhomogeneous equations describe how the fields vary in space due to sources, Gausss law describes how electric fields emanate from electric charges. Gausss law for magnetism describes magnetic fields as closed field lines not due to magnetic monopoles, the two homogeneous equations describe how the fields circulate around their respective sources. A separate law of nature, the Lorentz force law, describes how the electric and magnetic field act on charged particles, a version of this law was included in the original equations by Maxwell but, by convention, is no longer. The precise formulation of Maxwells equations depends on the definition of the quantities involved. Conventions differ with the systems, because various definitions and dimensions are changed by absorbing dimensionful factors like the speed of light c. This makes constants come out differently, the vector calculus formulation below has become standard. For formulations using tensor calculus or differential forms, see alternative formulations, for relativistically invariant formulations, see relativistic formulations
21.
One-to-one correspondence
–
In mathematical terms, a bijective function f, X → Y is a one-to-one and onto mapping of a set X to a set Y. A bijection from the set X to the set Y has a function from Y to X. If X and Y are finite sets, then the existence of a means they have the same number of elements. For infinite sets the picture is complicated, leading to the concept of cardinal number. A bijective function from a set to itself is called a permutation. Bijective functions are essential to many areas of including the definitions of isomorphism, homeomorphism, diffeomorphism, permutation group. Satisfying properties and means that a bijection is a function with domain X and it is more common to see properties and written as a single statement, Every element of X is paired with exactly one element of Y. Functions which satisfy property are said to be onto Y and are called surjections, Functions which satisfy property are said to be one-to-one functions and are called injections. With this terminology, a bijection is a function which is both a surjection and an injection, or using words, a bijection is a function which is both one-to-one and onto. Consider the batting line-up of a baseball or cricket team, the set X will be the players on the team and the set Y will be the positions in the batting order The pairing is given by which player is in what position in this order. Property is satisfied since each player is somewhere in the list, property is satisfied since no player bats in two positions in the order. Property says that for each position in the order, there is some player batting in that position, in a classroom there are a certain number of seats. A bunch of students enter the room and the instructor asks them all to be seated. After a quick look around the room, the instructor declares that there is a bijection between the set of students and the set of seats, where each student is paired with the seat they are sitting in. The instructor was able to conclude there were just as many seats as there were students. For any set X, the identity function 1X, X → X, the function f, R → R, f = 2x +1 is bijective, since for each y there is a unique x = /2 such that f = y. In more generality, any linear function over the reals, f, R → R, f = ax + b is a bijection, each real number y is obtained from the real number x = /a. The function f, R →, given by f = arctan is bijective since each real x is paired with exactly one angle y in the interval so that tan = x
22.
Carl Friedrich Gauss
–
Johann Carl Friedrich Gauss was born on 30 April 1777 in Brunswick, in the Duchy of Brunswick-Wolfenbüttel, as the son of poor working-class parents. Gauss later solved this puzzle about his birthdate in the context of finding the date of Easter and he was christened and confirmed in a church near the school he attended as a child. A contested story relates that, when he was eight, he figured out how to add up all the numbers from 1 to 100, there are many other anecdotes about his precocity while a toddler, and he made his first ground-breaking mathematical discoveries while still a teenager. He completed Disquisitiones Arithmeticae, his opus, in 1798 at the age of 21. This work was fundamental in consolidating number theory as a discipline and has shaped the field to the present day, while at university, Gauss independently rediscovered several important theorems. Gauss was so pleased by this result that he requested that a regular heptadecagon be inscribed on his tombstone, the stonemason declined, stating that the difficult construction would essentially look like a circle. The year 1796 was most productive for both Gauss and number theory and he discovered a construction of the heptadecagon on 30 March. He further advanced modular arithmetic, greatly simplifying manipulations in number theory, on 8 April he became the first to prove the quadratic reciprocity law. This remarkably general law allows mathematicians to determine the solvability of any quadratic equation in modular arithmetic, the prime number theorem, conjectured on 31 May, gives a good understanding of how the prime numbers are distributed among the integers. Gauss also discovered that every integer is representable as a sum of at most three triangular numbers on 10 July and then jotted down in his diary the note, ΕΥΡΗΚΑ. On October 1 he published a result on the number of solutions of polynomials with coefficients in finite fields, in 1831 Gauss developed a fruitful collaboration with the physics professor Wilhelm Weber, leading to new knowledge in magnetism and the discovery of Kirchhoffs circuit laws in electricity. It was during this time that he formulated his namesake law and they constructed the first electromechanical telegraph in 1833, which connected the observatory with the institute for physics in Göttingen. In 1840, Gauss published his influential Dioptrische Untersuchungen, in which he gave the first systematic analysis on the formation of images under a paraxial approximation. Among his results, Gauss showed that under a paraxial approximation an optical system can be characterized by its cardinal points and he derived the Gaussian lens formula. In 1845, he became associated member of the Royal Institute of the Netherlands, in 1854, Gauss selected the topic for Bernhard Riemanns Habilitationvortrag, Über die Hypothesen, welche der Geometrie zu Grunde liegen. On the way home from Riemanns lecture, Weber reported that Gauss was full of praise, Gauss died in Göttingen, on 23 February 1855 and is interred in the Albani Cemetery there. Two individuals gave eulogies at his funeral, Gausss son-in-law Heinrich Ewald and Wolfgang Sartorius von Waltershausen and his brain was preserved and was studied by Rudolf Wagner who found its mass to be 1,492 grams and the cerebral area equal to 219,588 square millimeters. Highly developed convolutions were also found, which in the early 20th century were suggested as the explanation of his genius, Gauss was a Lutheran Protestant, a member of the St. Albans Evangelical Lutheran church in Göttingen
23.
James Clerk Maxwell
–
James Clerk Maxwell FRS FRSE was a Scottish scientist in the field of mathematical physics. Maxwells equations for electromagnetism have been called the great unification in physics after the first one realised by Isaac Newton. With the publication of A Dynamical Theory of the Electromagnetic Field in 1865, Maxwell proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. The unification of light and electrical phenomena led to the prediction of the existence of radio waves, Maxwell helped develop the Maxwell–Boltzmann distribution, a statistical means of describing aspects of the kinetic theory of gases. He is also known for presenting the first durable colour photograph in 1861 and his discoveries helped usher in the era of modern physics, laying the foundation for such fields as special relativity and quantum mechanics. Many physicists regard Maxwell as the 19th-century scientist having the greatest influence on 20th-century physics and his contributions to the science are considered by many to be of the same magnitude as those of Isaac Newton and Albert Einstein. In the millennium poll—a survey of the 100 most prominent physicists—Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein. On the centenary of Maxwells birthday, Einstein described Maxwells work as the most profound and the most fruitful that physics has experienced since the time of Newton. James Clerk Maxwell was born on 13 June 1831 at 14 India Street, Edinburgh, to John Clerk Maxwell of Middlebie, an advocate and his father was a man of comfortable means of the Clerk family of Penicuik, holders of the baronetcy of Clerk of Penicuik. His fathers brother was the 6th Baronet, James was the first cousin of the artist Jemima Blackburn and cousin of the civil engineer William Dyce Cay. They were close friends and Cay acted as his best man when Maxwell married, Maxwells parents met and married when they were well into their thirties, his mother was nearly 40 when he was born. They had had one child, a daughter named Elizabeth. When Maxwell was young his family moved to Glenlair House, which his parents had built on the 1,500 acres Middlebie estate, all indications suggest that Maxwell had maintained an unquenchable curiosity from an early age. By the age of three, everything moved, shone, or made a noise drew the question, whats the go o that. And show me how it doos is never out of his mouth and he also investigates the hidden course of streams and bell-wires, the way the water gets from the pond through the wall. Recognising the potential of the boy, Maxwells mother Frances took responsibility for Jamess early education. At eight he could recite long passages of Milton and the whole of the 119th psalm, indeed, his knowledge of scripture was already very detailed, he could give chapter and verse for almost any quotation from the psalms. His mother was ill with abdominal cancer and, after an unsuccessful operation
24.
William Thomson, 1st Baron Kelvin
–
William Thomson, 1st Baron Kelvin, OM, GCVO, PC, FRS, FRSE was a Scots-Irish mathematical physicist and engineer who was born in Belfast in 1824. He worked closely with mathematics professor Hugh Blackburn in his work and he also had a career as an electric telegraph engineer and inventor, which propelled him into the public eye and ensured his wealth, fame and honour. For his work on the telegraph project he was knighted in 1866 by Queen Victoria. He had extensive maritime interests and was most noted for his work on the mariners compass, absolute temperatures are stated in units of kelvin in his honour. He was ennobled in 1892 in recognition of his achievements in thermodynamics and he was the first British scientist to be elevated to the House of Lords. The title refers to the River Kelvin, which close by his laboratory at the University of Glasgow. His home was the red sandstone mansion Netherhall, in Largs. William Thomsons father, James Thomson, was a teacher of mathematics and engineering at Royal Belfast Academical Institution, James Thomson married Margaret Gardner in 1817 and, of their children, four boys and two girls survived infancy. Margaret Thomson died in 1830 when William was six years old, William and his elder brother James were tutored at home by their father while the younger boys were tutored by their elder sisters. James was intended to benefit from the share of his fathers encouragement, affection. In 1832, his father was appointed professor of mathematics at Glasgow, the Thomson children were introduced to a broader cosmopolitan experience than their fathers rural upbringing, spending mid-1839 in London and the boys were tutored in French in Paris. Mid-1840 was spent in Germany and the Netherlands, language study was given a high priority. His sister, Anna Thomson, was the mother of James Thomson Bottomley FRSE, Thomson had heart problems and nearly died when he was 9 years old. In school, Thomson showed a keen interest in the classics along with his natural interest in the sciences, at the age of 12 he won a prize for translating Lucian of Samosatas Dialogues of the Gods from Latin to English. In the academic year 1839/1840, Thomson won the prize in astronomy for his Essay on the figure of the Earth which showed an early facility for mathematical analysis. Throughout his life, he would work on the problems raised in the essay as a strategy during times of personal stress. On the title page of this essay Thomson wrote the lines from Alexander Popes Essay on Man. These lines inspired Thomson to understand the world using the power and method of science, Go
25.
Materials science
–
The interdisciplinary field of materials science, also commonly termed materials science and engineering, involves the discovery and design of new materials, with an emphasis on solids. Materials science still incorporates elements of physics, chemistry, and engineering, as such, the field was long considered by academic institutions as a sub-field of these related fields. Materials science is a syncretic discipline hybridizing metallurgy, ceramics, solid-state physics and it is the first example of a new academic discipline emerging by fusion rather than fission. Many of the most pressing scientific problems humans currently face are due to the limits of the materials that are available, thus, breakthroughs in materials science are likely to affect the future of technology significantly. Materials scientists emphasize understanding how the history of a material influences its structure, the understanding of processing-structure-properties relationships is called the § materials paradigm. This paradigm is used to advance understanding in a variety of areas, including nanotechnology, biomaterials. Such investigations are key to understanding, for example, the causes of various accidents and incidents. The material of choice of a given era is often a defining point, phrases such as Stone Age, Bronze Age, Iron Age, and Steel Age are great examples. Originally deriving from the manufacture of ceramics and its putative derivative metallurgy, materials science is one of the oldest forms of engineering, modern materials science evolved directly from metallurgy, which itself evolved from mining and ceramics and the use of fire. Materials science has driven, and been driven by, the development of technologies such as rubbers, plastics, semiconductors. Before the 1960s, many materials science departments were named metallurgy departments, reflecting the 19th, a material is defined as a substance that is intended to be used for certain applications. There are a myriad of materials around us—they can be found in anything from buildings to spacecraft, Materials can generally be divided into two classes, crystalline and non-crystalline. The traditional examples of materials are metals, semiconductors, ceramics, New and advanced materials that are being developed include nanomaterials and biomaterials, etc. The basis of science involves studying the structure of materials. Once a materials scientist knows about this structure-property correlation, they can go on to study the relative performance of a material in a given application. The major determinants of the structure of a material and thus of its properties are its constituent chemical elements and these characteristics, taken together and related through the laws of thermodynamics and kinetics, govern a materials microstructure, and thus its properties. As mentioned above, structure is one of the most important components of the field of materials science, Materials science examines the structure of materials from the atomic scale, all the way up to the macro scale. Characterization is the way materials scientists examine the structure of a material, structure is studied at various levels, as detailed below
26.
Electrodynamics
–
The theory provides an excellent description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are described by quantum electrodynamics. Fundamental physical aspects of classical electrodynamics are presented in texts, such as those by Feynman, Leighton and Sands, Griffiths, Panofsky and Phillips. The physical phenomena that electromagnetism describes have been studied as separate fields since antiquity, for example, there were many advances in the field of optics centuries before light was understood to be an electromagnetic wave. For a detailed account, consult Pauli, Whittaker, Pais. The above equation illustrates that the Lorentz force is the sum of two vectors, one is the cross product of the velocity and magnetic field vectors. Based on the properties of the product, this produces a vector that is perpendicular to both the velocity and magnetic field vectors. The other vector is in the direction as the electric field. The sum of two vectors is the Lorentz force. In the absence of a field, the force is perpendicular to the velocity of the particle. If both electric and magnetic fields are present, the Lorentz force is the sum of both of these vectors, the electric field E is defined such that, on a stationary charge, F = q 0 E where q0 is what is known as a test charge. The size of the charge doesnt really matter, as long as it is small enough not to influence the field by its mere presence. What is plain from this definition, though, is that the unit of E is N/C and this unit is equal to V/m, see below. In electrostatics, where charges are not moving, around a distribution of point charges, both of the above equations are cumbersome, especially if one wants to determine E as a function of position. A scalar function called the potential can help. Electric potential, also called voltage, is defined by the line integral φ = − ∫ C E ⋅ d l where φ is the electric potential, unfortunately, this definition has a caveat. From Maxwells equations, it is clear that ∇ × E is not always zero, as a result, one must add a correction factor, which is generally done by subtracting the time derivative of the A vector potential described below. Whenever the charges are quasistatic, however, this condition will be essentially met, the scalar φ will add to other potentials as a scalar
27.
Astronomy
–
Astronomy is a natural science that studies celestial objects and phenomena. It applies mathematics, physics, and chemistry, in an effort to explain the origin of those objects and phenomena and their evolution. Objects of interest include planets, moons, stars, galaxies, and comets, while the phenomena include supernovae explosions, gamma ray bursts, more generally, all astronomical phenomena that originate outside Earths atmosphere are within the purview of astronomy. A related but distinct subject, physical cosmology, is concerned with the study of the Universe as a whole, Astronomy is the oldest of the natural sciences. The early civilizations in recorded history, such as the Babylonians, Greeks, Indians, Egyptians, Nubians, Iranians, Chinese, during the 20th century, the field of professional astronomy split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects, theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. The two fields complement each other, with theoretical astronomy seeking to explain the results and observations being used to confirm theoretical results. Astronomy is one of the few sciences where amateurs can play an active role, especially in the discovery. Amateur astronomers have made and contributed to many important astronomical discoveries, Astronomy means law of the stars. Astronomy should not be confused with astrology, the system which claims that human affairs are correlated with the positions of celestial objects. Although the two share a common origin, they are now entirely distinct. Generally, either the term astronomy or astrophysics may be used to refer to this subject, however, since most modern astronomical research deals with subjects related to physics, modern astronomy could actually be called astrophysics. Few fields, such as astrometry, are purely astronomy rather than also astrophysics, some titles of the leading scientific journals in this field includeThe Astronomical Journal, The Astrophysical Journal and Astronomy and Astrophysics. In early times, astronomy only comprised the observation and predictions of the motions of objects visible to the naked eye, in some locations, early cultures assembled massive artifacts that possibly had some astronomical purpose. Before tools such as the telescope were invented, early study of the stars was conducted using the naked eye, most of early astronomy actually consisted of mapping the positions of the stars and planets, a science now referred to as astrometry. From these observations, early ideas about the motions of the planets were formed, and the nature of the Sun, Moon, the Earth was believed to be the center of the Universe with the Sun, the Moon and the stars rotating around it. This is known as the model of the Universe, or the Ptolemaic system. The Babylonians discovered that lunar eclipses recurred in a cycle known as a saros
28.
Metric prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used
29.
SI derived unit
–
The International System of Units specifies a set of seven base units from which all other SI units of measurement are derived. Each of these units is either dimensionless or can be expressed as a product of powers of one or more of the base units. For example, the SI derived unit of area is the metre. The degree Celsius has an unclear status, and is arguably an exception to this rule. The names of SI units are written in lowercase, the symbols for units named after persons, however, are always written with an uppercase initial letter. In addition to the two dimensionless derived units radian and steradian,20 other derived units have special names, some other units such as the hour, litre, tonne, bar and electronvolt are not SI units, but are widely used in conjunction with SI units. Until 1995, the SI classified the radian and the steradian as supplementary units, but this designation was abandoned, International System of Quantities International System of Units International Vocabulary of Metrology Metric prefix Metric system Non-SI units mentioned in the SI Planck units SI base unit I. Mills, Tomislav Cvitas, Klaus Homann, Nikola Kallay, IUPAC, Quantities, Units and Symbols in Physical Chemistry. CS1 maint, Multiple names, authors list
30.
Derived unit
–
The International System of Units specifies a set of seven base units from which all other SI units of measurement are derived. Each of these units is either dimensionless or can be expressed as a product of powers of one or more of the base units. For example, the SI derived unit of area is the metre. The degree Celsius has an unclear status, and is arguably an exception to this rule. The names of SI units are written in lowercase, the symbols for units named after persons, however, are always written with an uppercase initial letter. In addition to the two dimensionless derived units radian and steradian,20 other derived units have special names, some other units such as the hour, litre, tonne, bar and electronvolt are not SI units, but are widely used in conjunction with SI units. Until 1995, the SI classified the radian and the steradian as supplementary units, but this designation was abandoned, International System of Quantities International System of Units International Vocabulary of Metrology Metric prefix Metric system Non-SI units mentioned in the SI Planck units SI base unit I. Mills, Tomislav Cvitas, Klaus Homann, Nikola Kallay, IUPAC, Quantities, Units and Symbols in Physical Chemistry. CS1 maint, Multiple names, authors list
31.
Velocity
–
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of its speed and direction of motion, Velocity is an important concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a vector quantity, both magnitude and direction are needed to define it. The scalar absolute value of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI system as metres per second or as the SI base unit of. For example,5 metres per second is a scalar, whereas 5 metres per second east is a vector, if there is a change in speed, direction or both, then the object has a changing velocity and is said to be undergoing an acceleration. To have a constant velocity, an object must have a constant speed in a constant direction, constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed. For example, a car moving at a constant 20 kilometres per hour in a path has a constant speed. Hence, the car is considered to be undergoing an acceleration, Speed describes only how fast an object is moving, whereas velocity gives both how fast and in what direction the object is moving. If a car is said to travel at 60 km/h, its speed has been specified, however, if the car is said to move at 60 km/h to the north, its velocity has now been specified. The big difference can be noticed when we consider movement around a circle and this is because the average velocity is calculated by only considering the displacement between the starting and the end points while the average speed considers only the total distance traveled. Velocity is defined as the rate of change of position with respect to time, average velocity can be calculated as, v ¯ = Δ x Δ t. The average velocity is less than or equal to the average speed of an object. This can be seen by realizing that while distance is always strictly increasing, from this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time is the displacement, x. In calculus terms, the integral of the velocity v is the displacement function x. In the figure, this corresponds to the area under the curve labeled s. Since the derivative of the position with respect to time gives the change in position divided by the change in time, although velocity is defined as the rate of change of position, it is often common to start with an expression for an objects acceleration. As seen by the three green tangent lines in the figure, an objects instantaneous acceleration at a point in time is the slope of the tangent to the curve of a v graph at that point. In other words, acceleration is defined as the derivative of velocity with respect to time, from there, we can obtain an expression for velocity as the area under an a acceleration vs. time graph
32.
Newton's laws of motion
–
Newtons laws of motion are three physical laws that, together, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. More precisely, the first law defines the force qualitatively, the second law offers a measure of the force. These three laws have been expressed in different ways, over nearly three centuries, and can be summarised as follows. The three laws of motion were first compiled by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica, Newton used them to explain and investigate the motion of many physical objects and systems. For example, in the volume of the text, Newton showed that these laws of motion, combined with his law of universal gravitation. Newtons laws are applied to objects which are idealised as single point masses, in the sense that the size and this can be done when the object is small compared to the distances involved in its analysis, or the deformation and rotation of the body are of no importance. In this way, even a planet can be idealised as a particle for analysis of its orbital motion around a star, in their original form, Newtons laws of motion are not adequate to characterise the motion of rigid bodies and deformable bodies. Leonhard Euler in 1750 introduced a generalisation of Newtons laws of motion for rigid bodies called Eulers laws of motion, if a body is represented as an assemblage of discrete particles, each governed by Newtons laws of motion, then Eulers laws can be derived from Newtons laws. Eulers laws can, however, be taken as axioms describing the laws of motion for extended bodies, Newtons laws hold only with respect to a certain set of frames of reference called Newtonian or inertial reference frames. Other authors do treat the first law as a corollary of the second, the explicit concept of an inertial frame of reference was not developed until long after Newtons death. In the given mass, acceleration, momentum, and force are assumed to be externally defined quantities. This is the most common, but not the interpretation of the way one can consider the laws to be a definition of these quantities. Newtonian mechanics has been superseded by special relativity, but it is useful as an approximation when the speeds involved are much slower than the speed of light. The first law states that if the net force is zero, the first law can be stated mathematically when the mass is a non-zero constant, as, ∑ F =0 ⇔ d v d t =0. Consequently, An object that is at rest will stay at rest unless a force acts upon it, an object that is in motion will not change its velocity unless a force acts upon it. This is known as uniform motion, an object continues to do whatever it happens to be doing unless a force is exerted upon it. If it is at rest, it continues in a state of rest, if an object is moving, it continues to move without turning or changing its speed
33.
Work (physics)
–
In physics, a force is said to do work if, when acting, there is a displacement of the point of application in the direction of the force. For example, when a ball is held above the ground and then dropped, the SI unit of work is the joule. The SI unit of work is the joule, which is defined as the work expended by a force of one newton through a distance of one metre. The dimensionally equivalent newton-metre is sometimes used as the unit for work, but this can be confused with the unit newton-metre. Usage of N⋅m is discouraged by the SI authority, since it can lead to confusion as to whether the quantity expressed in newton metres is a torque measurement, or a measurement of energy. Non-SI units of work include the erg, the foot-pound, the foot-poundal, the hour, the litre-atmosphere. Due to work having the physical dimension as heat, occasionally measurement units typically reserved for heat or energy content, such as therm, BTU. The work done by a constant force of magnitude F on a point that moves a distance s in a line in the direction of the force is the product W = F s. For example, if a force of 10 newtons acts along a point that travels 2 meters and this is approximately the work done lifting a 1 kg weight from ground level to over a persons head against the force of gravity. Notice that the work is doubled either by lifting twice the weight the distance or by lifting the same weight twice the distance. Work is closely related to energy, the work-energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body by the resultant force acting on that body. Conversely, a decrease in energy is caused by an equal amount of negative work done by the resultant force. From Newtons second law, it can be shown that work on a free, rigid body, is equal to the change in energy of the velocity and rotation of that body. The work of forces generated by a function is known as potential energy. These formulas demonstrate that work is the associated with the action of a force, so work subsequently possesses the physical dimensions. The work/energy principles discussed here are identical to Electric work/energy principles, constraint forces determine the movement of components in a system, constraining the object within a boundary. Constraint forces ensure the velocity in the direction of the constraint is zero and this only applies for a single particle system. For example, in an Atwood machine, the rope does work on each body, there are, however, cases where this is not true
34.
Viscosity
–
The viscosity of a fluid is a measure of its resistance to gradual deformation by shear stress or tensile stress. For liquids, it corresponds to the concept of thickness, for example. Viscosity is a property of the fluid which opposes the motion between the two surfaces of the fluid in a fluid that are moving at different velocities. For a given velocity pattern, the stress required is proportional to the fluids viscosity, a fluid that has no resistance to shear stress is known as an ideal or inviscid fluid. Zero viscosity is observed only at low temperatures in superfluids. Otherwise, all fluids have positive viscosity, and are said to be viscous or viscid. A fluid with a high viscosity, such as pitch. The word viscosity is derived from the Latin viscum, meaning mistletoe, the dynamic viscosity of a fluid expresses its resistance to shearing flows, where adjacent layers move parallel to each other with different speeds. It can be defined through the situation known as a Couette flow. This fluid has to be homogeneous in the layer and at different shear stresses, if the speed of the top plate is small enough, the fluid particles will move parallel to it, and their speed will vary linearly from zero at the bottom to u at the top. Each layer of fluid will move faster than the one just below it, in particular, the fluid will apply on the top plate a force in the direction opposite to its motion, and an equal but opposite one to the bottom plate. An external force is required in order to keep the top plate moving at constant speed. The magnitude F of this force is found to be proportional to the u and the area A of each plate. The proportionality factor μ in this formula is the viscosity of the fluid, the ratio u/y is called the rate of shear deformation or shear velocity, and is the derivative of the fluid speed in the direction perpendicular to the plates. Isaac Newton expressed the forces by the differential equation τ = μ ∂ u ∂ y, where τ = F/A. This formula assumes that the flow is moving along parallel lines and this equation can be used where the velocity does not vary linearly with y, such as in fluid flowing through a pipe. Use of the Greek letter mu for the dynamic viscosity is common among mechanical and chemical engineers. However, the Greek letter eta is used by chemists, physicists
35.
Shear stress
–
A shear stress, often denoted τ, is defined as the component of stress coplanar with a material cross section. Shear stress arises from the vector component parallel to the cross section. Normal stress, on the hand, arises from the force vector component perpendicular to the material cross section on which it acts. The formula to calculate average shear stress is force per unit area, τ = F A, where, τ = the shear stress, F = the force applied, A = the cross-sectional area of material with area parallel to the applied force vector. Pure shear stress is related to shear strain, denoted γ, by the following equation, τ = γ G where G is the shear modulus of the isotropic material. Here E is Youngs modulus and ν is Poissons ratio, beam shear is defined as the internal shear stress of a beam caused by the shear force applied to the beam. The beam shear formula is known as Zhuravskii shear stress formula after Dmitrii Ivanovich Zhuravskii who derived it in 1855. Shear stresses within a structure may be calculated by idealizing the cross-section of the structure into a set of stringers. Dividing the shear flow by the thickness of a portion of the semi-monocoque structure yields the shear stress. Any real fluids moving along solid boundary will incur a shear stress on that boundary, the no-slip condition dictates that the speed of the fluid at the boundary is zero, but at some height from the boundary the flow speed must equal that of the fluid. The region between two points is aptly named the boundary layer. For all Newtonian fluids in laminar flow the shear stress is proportional to the rate in the fluid where the viscosity is the constant of proportionality. However, for non-Newtonian fluids, this is no longer the case as for these fluids the viscosity is not constant, the shear stress is imparted onto the boundary as a result of this loss of velocity. Specifically, the shear stress is defined as, τ w ≡ τ = μ ∂ u ∂ y | y =0. For an isotropic Newtonian flow it is a scalar, while for anisotropic Newtonian flows it can be a second-order tensor too. On the other hand, given a shear stress as function of the flow velocity, the constant one finds in this case is the dynamic viscosity of the flow. On the other hand, a flow in which the viscosity were and this nonnewtonian flow is isotropic, so the viscosity is simply a scalar, μ =1 u. This relationship can be exploited to measure the shear stress
36.
Gradient
–
In mathematics, the gradient is a multi-variable generalization of the derivative. While a derivative can be defined on functions of a variable, for functions of several variables. The gradient is a function, as opposed to a derivative. If f is a differentiable, real-valued function of several variables, like the derivative, the gradient represents the slope of the tangent of the graph of the function. More precisely, the gradient points in the direction of the greatest rate of increase of the function, the components of the gradient in coordinates are the coefficients of the variables in the equation of the tangent space to the graph. The Jacobian is the generalization of the gradient for vector-valued functions of several variables, a further generalization for a function between Banach spaces is the Fréchet derivative. Consider a room in which the temperature is given by a field, T. At each point in the room, the gradient of T at that point will show the direction in which the temperature rises most quickly, the magnitude of the gradient will determine how fast the temperature rises in that direction. Consider a surface whose height above sea level at point is H, the gradient of H at a point is a vector pointing in the direction of the steepest slope or grade at that point. The steepness of the slope at point is given by the magnitude of the gradient vector. The gradient can also be used to measure how a scalar field changes in other directions, rather than just the direction of greatest change, suppose that the steepest slope on a hill is 40%. If a road goes directly up the hill, then the steepest slope on the road will also be 40%, if, instead, the road goes around the hill at an angle, then it will have a shallower slope. This observation can be stated as follows. If the hill height function H is differentiable, then the gradient of H dotted with a unit vector gives the slope of the hill in the direction of the vector. More precisely, when H is differentiable, the dot product of the gradient of H with a unit vector is equal to the directional derivative of H in the direction of that unit vector. The gradient of a function f is denoted ∇f or ∇→f where ∇ denotes the vector differential operator. The notation grad f is commonly used for the gradient. The gradient of f is defined as the vector field whose dot product with any vector v at each point x is the directional derivative of f along v. That is
37.
Pascal (unit)
–
The pascal is the SI derived unit of pressure used to quantify internal pressure, stress, Youngs modulus and ultimate tensile strength. It is defined as one newton per square meter and it is named after the French polymath Blaise Pascal. Common multiple units of the pascal are the hectopascal which is equal to one millibar, the unit of measurement called standard atmosphere is defined as 101,325 Pa and approximates to the average pressure at sea-level at the latitude 45° N. Meteorological reports typically state atmospheric pressure in hectopascals, the unit is named after Blaise Pascal, noted for his contributions to hydrodynamics and hydrostatics, and experiments with a barometer. The name pascal was adopted for the SI unit newton per square metre by the 14th General Conference on Weights, one pascal is the pressure exerted by a force of magnitude one newton perpendicularly upon an area of one square metre. The unit of measurement called atmosphere or standard atmosphere is 101325 Pa and this value is often used as a reference pressure and specified as such in some national and international standards, such as ISO2787, ISO2533 and ISO5024. In contrast, IUPAC recommends the use of 100 kPa as a standard pressure when reporting the properties of substances, geophysicists use the gigapascal in measuring or calculating tectonic stresses and pressures within the Earth. Medical elastography measures tissue stiffness non-invasively with ultrasound or magnetic resonance imaging, in materials science and engineering, the pascal measures the stiffness, tensile strength and compressive strength of materials. In engineering use, because the pascal represents a small quantity. The pascal is also equivalent to the SI unit of energy density and this applies not only to the thermodynamics of pressurised gases, but also to the energy density of electric, magnetic, and gravitational fields. In measurements of sound pressure, or loudness of sound, one pascal is equal to 94 decibels SPL, the quietest sound a human can hear, known as the threshold of hearing, is 0 dB SPL, or 20 µPa. The airtightness of buildings is measured at 50 Pa, the units of atmospheric pressure commonly used in meteorology were formerly the bar, which was close to the average air pressure on Earth, and the millibar. Since the introduction of SI units, meteorologists generally measure pressures in hectopascals unit, exceptions include Canada and Portugal, which use kilopascals. In many other fields of science, the SI is preferred, many countries also use the millibar or hectopascal to give aviation altimeter settings. In practically all fields, the kilopascal is used instead. Centimetre of water Metric prefix Orders of magnitude Pascals law
38.
Acceleration
–
Acceleration, in physics, is the rate of change of velocity of an object with respect to time. An objects acceleration is the net result of any and all forces acting on the object, the SI unit for acceleration is metre per second squared. Accelerations are vector quantities and add according to the parallelogram law, as a vector, the calculated net force is equal to the product of the objects mass and its acceleration. For example, when a car starts from a standstill and travels in a line at increasing speeds. If the car turns, there is an acceleration toward the new direction, in this example, we can call the forward acceleration of the car a linear acceleration, which passengers in the car might experience as a force pushing them back into their seats. When changing direction, we call this non-linear acceleration, which passengers might experience as a sideways force. If the speed of the car decreases, this is an acceleration in the direction from the direction of the vehicle. Passengers may experience deceleration as a force lifting them forwards, mathematically, there is no separate formula for deceleration, both are changes in velocity. Each of these accelerations might be felt by passengers until their velocity matches that of the car, an objects average acceleration over a period of time is its change in velocity divided by the duration of the period. Mathematically, a ¯ = Δ v Δ t, instantaneous acceleration, meanwhile, is the limit of the average acceleration over an infinitesimal interval of time. The SI unit of acceleration is the metre per second squared, or metre per second per second, as the velocity in metres per second changes by the acceleration value, every second. An object moving in a circular motion—such as a satellite orbiting the Earth—is accelerating due to the change of direction of motion, in this case it is said to be undergoing centripetal acceleration. Proper acceleration, the acceleration of a relative to a free-fall condition, is measured by an instrument called an accelerometer. As speeds approach the speed of light, relativistic effects become increasingly large and these components are called the tangential acceleration and the normal or radial acceleration. Geometrical analysis of space curves, which explains tangent, normal and binormal, is described by the Frenet–Serret formulas. Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an amount in every equal time period. A frequently cited example of uniform acceleration is that of an object in free fall in a gravitational field. The acceleration of a body in the absence of resistances to motion is dependent only on the gravitational field strength g
39.
Gal (unit)
–
The gal, sometimes called galileo after Galileo Galilei, is a unit of acceleration used extensively in the science of gravimetry. The gal is defined as 1 centimeter per second squared, the milligal and microgal refer respectively to one thousandth and one millionth of a gal. The gal is not part of the International System of Units, in 1978 the CIPM decided that it was permissible to use the gal with the SI until the CIPM considers that use is no longer necessary. However, use of the gal is deprecated by ISO 80000-3,2006. The gal is a unit, defined in terms of the centimeter-gram-second base unit of length, the centimeter, and the second. In SI base units,1 Gal is equal to 0.01 m/s2, the acceleration due to Earth’s gravity at its surface is 976 to 983 Gal, the variation being due mainly to differences in latitude and elevation. Mountains and masses of lesser density within the Earths crust typically cause variations in acceleration of tens to hundreds of milligals. The gravity gradient above Earths surface is about 3.1 µGal per centimeter of height, unless it is being used at the beginning of a sentence or in paragraph or section titles, the unit name gal is properly spelled with a lowercase g. As with the torr and its symbol, the unit name and its symbol are spelled identically except that the latter is capitalized
40.
Joule
–
The joule, symbol J, is a derived unit of energy in the International System of Units. It is equal to the transferred to an object when a force of one newton acts on that object in the direction of its motion through a distance of one metre. It is also the energy dissipated as heat when a current of one ampere passes through a resistance of one ohm for one second. It is named after the English physicist James Prescott Joule, one joule can also be defined as, The work required to move an electric charge of one coulomb through an electrical potential difference of one volt, or one coulomb volt. This relationship can be used to define the volt, the work required to produce one watt of power for one second, or one watt second. This relationship can be used to define the watt and this SI unit is named after James Prescott Joule. As with every International System of Units unit named for a person, note that degree Celsius conforms to this rule because the d is lowercase. — Based on The International System of Units, section 5.2. The CGPM has given the unit of energy the name Joule, the use of newton metres for torque and joules for energy is helpful to avoid misunderstandings and miscommunications. The distinction may be also in the fact that energy is a scalar – the dot product of a vector force. By contrast, torque is a vector – the cross product of a distance vector, torque and energy are related to one another by the equation E = τ θ, where E is energy, τ is torque, and θ is the angle swept. Since radians are dimensionless, it follows that torque and energy have the same dimensions, one joule in everyday life represents approximately, The energy required to lift a medium-size tomato 1 m vertically from the surface of the Earth. The energy released when that same tomato falls back down to the ground, the energy required to accelerate a 1 kg mass at 1 m·s−2 through a 1 m distance in space. The heat required to raise the temperature of 1 g of water by 0.24 °C, the typical energy released as heat by a person at rest every 1/60 s. The kinetic energy of a 50 kg human moving very slowly, the kinetic energy of a 56 g tennis ball moving at 6 m/s. The kinetic energy of an object with mass 1 kg moving at √2 ≈1.4 m/s, the amount of electricity required to light a 1 W LED for 1 s. Since the joule is also a watt-second and the unit for electricity sales to homes is the kW·h. For additional examples, see, Orders of magnitude The zeptojoule is equal to one sextillionth of one joule,160 zeptojoules is equivalent to one electronvolt. The nanojoule is equal to one billionth of one joule, one nanojoule is about 1/160 of the kinetic energy of a flying mosquito