1.
Regular polygon
–
In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be convex or star, in the limit, a sequence of regular polygons with an increasing number of sides becomes a circle, if the perimeter is fixed, or a regular apeirogon, if the edge length is fixed. These properties apply to all regular polygons, whether convex or star, a regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle and that is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon also has a circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon, a regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. The symmetry group of a regular polygon is dihedral group Dn, D2, D3. It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center, if n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all pass through a vertex. All regular simple polygons are convex and those having the same number of sides are also similar. An n-sided convex regular polygon is denoted by its Schläfli symbol, for n <3 we have two degenerate cases, Monogon, degenerate in ordinary space. Digon, a line segment, degenerate in ordinary space. In certain contexts all the polygons considered will be regular, in such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular, for n >2 the number of diagonals is n 2, i. e.0,2,5,9. for a triangle, square, pentagon, hexagon. The diagonals divide the polygon into 1,4,11,24, for a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices equals n. For a regular simple n-gon with circumradius R and distances di from a point in the plane to the vertices. For a regular n-gon, the sum of the distances from any interior point to the n sides is n times the apothem. This is a generalization of Vivianis theorem for the n=3 case, the sum of the perpendiculars from a regular n-gons vertices to any line tangent to the circumcircle equals n times the circumradius
2.
Edge (geometry)
–
For edge in graph theory, see Edge In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a segment on the boundary. In a polyhedron or more generally a polytope, an edge is a segment where two faces meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal. In graph theory, an edge is an abstract object connecting two vertices, unlike polygon and polyhedron edges which have a concrete geometric representation as a line segment. However, any polyhedron can be represented by its skeleton or edge-skeleton, conversely, the graphs that are skeletons of three-dimensional polyhedra can be characterized by Steinitzs theorem as being exactly the 3-vertex-connected planar graphs. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces, for example, a cube has 8 vertices and 6 faces, and hence 12 edges. In a polygon, two edges meet at each vertex, more generally, by Balinskis theorem, at least d edges meet at every vertex of a convex polytope. Similarly, in a polyhedron, exactly two faces meet at every edge, while in higher dimensional polytopes three or more two-dimensional faces meet at every edge. Thus, the edges of a polygon are its facets, the edges of a 3-dimensional convex polyhedron are its ridges, archived from the original on 4 February 2007
3.
Vertex (geometry)
–
In geometry, a vertex is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. A vertex is a point of a polygon, polyhedron, or other higher-dimensional polytope. However, in theory, vertices may have fewer than two incident edges, which is usually not allowed for geometric vertices. However, a smooth approximation to a polygon will also have additional vertices. A polygon vertex xi of a simple polygon P is a principal polygon vertex if the diagonal intersects the boundary of P only at x and x, there are two types of principal vertices, ears and mouths. A principal vertex xi of a simple polygon P is called an ear if the diagonal that bridges xi lies entirely in P, according to the two ears theorem, every simple polygon has at least two ears. A principal vertex xi of a simple polygon P is called a mouth if the diagonal lies outside the boundary of P. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces, for example, a cube has 12 edges and 6 faces, and hence 8 vertices
4.
Dihedral group
–
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of groups, and they play an important role in group theory, geometry. The notation for the group of order n differs in geometry. In geometry, Dn or Dihn refers to the symmetries of the n-gon, in abstract algebra, Dn refers to the dihedral group of order n. The geometric convention is used in this article, a regular polygon with n sides has 2 n different symmetries, n rotational symmetries and n reflection symmetries. Usually, we take n ≥3 here. The associated rotations and reflections make up the dihedral group D n, if n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is even, there are n/2 axes of symmetry connecting the midpoints of opposite sides, in either case, there are n axes of symmetry and 2 n elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes, as with any geometric object, the composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, the following Cayley table shows the effect of composition in the group D3. R0 denotes the identity, r1 and r2 denote counterclockwise rotations by 120° and 240° respectively, for example, s2s1 = r1, because the reflection s1 followed by the reflection s2 results in a rotation of 120°. The order of elements denoting the composition is right to left, the composition operation is not commutative. In all cases, addition and subtraction of subscripts are to be performed using modular arithmetic with modulus n, if we center the regular polygon at the origin, then elements of the dihedral group act as linear transformations of the plane. This lets us represent elements of Dn as matrices, with composition being matrix multiplication and this is an example of a group representation. For example, the elements of the group D4 can be represented by the eight matrices. In general, the matrices for elements of Dn have the following form, rk is a rotation matrix, expressing a counterclockwise rotation through an angle of 2πk/n. Sk is a reflection across a line makes an angle of πk/n with the x-axis. Further equivalent definitions of Dn are, D1 is isomorphic to Z2, D2 is isomorphic to K4, the Klein four-group. D1 and D2 are exceptional in that, D1 and D2 are the only abelian dihedral groups, Dn is a subgroup of the symmetric group Sn for n ≥3
5.
Internal and external angles
–
In geometry, an angle of a polygon is formed by two sides of the polygon that share an endpoint. For a simple polygon, regardless of whether it is convex or non-convex, a polygon has exactly one internal angle per vertex. If every internal angle of a polygon is less than 180°. In contrast, an angle is an angle formed by one side of a simple polygon. The sum of the angle and the external angle on the same vertex is 180°. The sum of all the angles of a simple polygon is 180° where n is the number of sides. The formula can be proved using induction and starting with a triangle for which the angle sum is 180°. The sum of the angles of any simple convex or non-convex polygon is 360°. The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles, in other words, 360k° represents the sum of all the exterior angles. For example, for convex and concave polygons k =1, since the exterior angle sum is 360°
6.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
7.
Dual polygon
–
In geometry, polygons are associated into pairs called duals, where the vertices of one correspond to the edges of the other. The dual of a polygon is an isotoxal polygon. For example, the rectangle and rhombus are duals, in a cyclic polygon, longer sides correspond to larger exterior angles in the dual, and shorter sides to smaller angles. Further, congruent sides in the original polygon yields congruent angles in the dual, for example, the dual of a highly acute isosceles triangle is an obtuse isosceles triangle. In the Dorman Luke construction, each face of a polyhedron is the dual polygon of the corresponding vertex figure. As an example of the duality of polygons we compare properties of the cyclic. This duality is perhaps more clear when comparing an isosceles trapezoid to a kite. The simplest qualitative construction of a polygon is a rectification operation. New edges are formed between these new vertices and that is, the polygon generated by applying it twice is in general not similar to the original polygon. As with dual polyhedra, one can take a circle and perform polar reciprocation in it. Combinatorially, one can define a polygon as a set of vertices, a set of edges, then the dual polygon is obtained by simply switching the vertices and edges. Thus for the triangle with vertices and edges, the triangle has vertices, and edges, where B connects AB & BC. This is not a particularly fruitful avenue, as combinatorially, there is a family of polygons, geometric duality of polygons is more varied. Dual curve Dual polyhedron Self-dual polygon Dual Polygon Applet by Don Hatch
8.
Convex polygon
–
A convex polygon is a simple polygon in which no line segment between two points on the boundary ever goes outside the polygon. Equivalently, it is a polygon whose interior is a convex set. In a convex polygon, all angles are less than or equal to 180 degrees. A simple polygon which is not convex is called concave, the following properties of a simple polygon are all equivalent to convexity, Every internal angle is less than or equal to 180 degrees. Every point on line segment between two points inside or on the boundary of the polygon remains inside or on the boundary. The polygon is contained in a closed half-plane defined by each of its edges. For each edge, the points are all on the same side of the line that the edge defines. The angle at each vertex contains all vertices in its edges. The polygon is the hull of its edges. Additional properties of convex polygons include, The intersection of two convex polygons is a convex polygon, a convex polygon may br triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices. Hellys theorem, For every collection of at least three convex polygons, if the intersection of three of them is nonempty, then the whole collection has a nonempty intersection. Krein–Milman theorem, A convex polygon is the hull of its vertices. Thus it is defined by the set of its vertices. Hyperplane separation theorem, Any two convex polygons with no points in common have a separator line, if the polygons are closed and at least one of them is compact, then there are even two parallel separator lines. Inscribed triangle property, Of all triangles contained in a convex polygon, inscribing triangle property, every convex polygon with area A can be inscribed in a triangle of area at most equal to 2A. Equality holds for a parallelogram.5 × Area ≤ Area ≤2 × Area, the mean width of a convex polygon is equal to its perimeter divided by pi. So its width is the diameter of a circle with the perimeter as the polygon. Every polygon inscribed in a circle, if not self-intersecting, is convex, however, not every convex polygon can be inscribed in a circle
9.
Circumscribed circle
–
In geometry, the circumscribed circle or circumcircle of a polygon is a circle which passes through all the vertices of the polygon. The center of circle is called the circumcenter and its radius is called the circumradius. A polygon which has a circle is called a cyclic polygon. All regular simple polygons, all isosceles trapezoids, all triangles, a related notion is the one of a minimum bounding circle, which is the smallest circle that completely contains the polygon within it. All triangles are cyclic, i. e. every triangle has a circumscribed circle and this can be proven on the grounds that the general equation for a circle with center and radius r in the Cartesian coordinate system is 2 +2 = r 2. Since this equation has three parameters only three points coordinate pairs are required to determine the equation of a circle, since a triangle is defined by its three vertices, and exactly three points are required to determine a circle, every triangle can be circumscribed. The circumcenter of a triangle can be constructed by drawing any two of the three perpendicular bisectors, the center is the point where the perpendicular bisectors intersect, and the radius is the length to any of the three vertices. This is because the circumcenter is equidistant from any pair of the triangles vertices, in coastal navigation, a triangles circumcircle is sometimes used as a way of obtaining a position line using a sextant when no compass is available. The horizontal angle between two landmarks defines the circumcircle upon which the observer lies, in the Euclidean plane, it is possible to give explicitly an equation of the circumcircle in terms of the Cartesian coordinates of the vertices of the inscribed triangle. Suppose that A = B = C = are the coordinates of points A, B, using the polarization identity, these equations reduce to the condition that the matrix has a nonzero kernel. Thus the circumcircle may alternatively be described as the locus of zeros of the determinant of this matrix, a similar approach allows one to deduce the equation of the circumsphere of a tetrahedron. A unit vector perpendicular to the containing the circle is given by n ^ = × | × |. An equation for the circumcircle in trilinear coordinates x, y, z is a/x + b/y + c/z =0, an equation for the circumcircle in barycentric coordinates x, y, z is a2/x + b2/y + c2/z =0. The isogonal conjugate of the circumcircle is the line at infinity, given in coordinates by ax + by + cz =0. Additionally, the circumcircle of a triangle embedded in d dimensions can be using a generalized method. Let A, B, and C be d-dimensional points, which form the vertices of a triangle and we start by transposing the system to place C at the origin, a = A − C, b = B − C. The circumcenter, p0, is given by p 0 = ×2 ∥ a × b ∥2 + C, the Cartesian coordinates of the circumcenter are U x =1 D U y =1 D with D =2. Without loss of generality this can be expressed in a form after translation of the vertex A to the origin of the Cartesian coordinate systems
10.
Equilateral polygon
–
In geometry, three or more than three straight lines make a polygon and an equilateral polygon is a polygon which has all sides of the same length. Except in the case, it need not be equiangular. If the number of sides is at least five, an equilateral polygon need not be a convex polygon, all regular polygons and isotoxal polygons are equilateral. An equilateral triangle is a triangle with 60° internal angles. An equilateral quadrilateral is called a rhombus, an isotoxal polygon described by an angle α and it includes the square as a special case. A convex equilateral pentagon can be described by two angles α and β, which determine the other angles. Concave equilateral pentagons exist, as do concave equilateral polygons with any number of sides. An equilateral polygon which is cyclic is a regular polygon, a tangential polygon is equilateral if and only if the alternate angles are equal. Thus if the number of n is odd, a tangential polygon is equilateral if. The principal diagonals of a hexagon each divide the hexagon into quadrilaterals, in any convex equilateral hexagon with common side a, there exists a principal diagonal d1 such that d 1 a ≤2 and a principal diagonal d2 such that d 2 a >3. Triambi are equilateral hexagons with trigonal symmetry, Equilateral triangle With interactive animation A Property of Equiangular Polygons, a discussion of Vivianis theorem at Cut-the-knot
11.
Isogonal figure
–
In geometry, a polytope is isogonal or vertex-transitive if, loosely speaking, all its vertices are equivalent. That implies that each vertex is surrounded by the kinds of face in the same or reverse order. Technically, we say that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope is transitive on its vertices, all vertices of a finite n-dimensional isogonal figure exist on an -sphere. The term isogonal has long used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups, all regular polygons, apeirogons and regular star polygons are isogonal. The dual of a polygon is an isotoxal polygon. Some even-sided polygons and apeirogons which alternate two edge lengths, for example a rectangle, are isogonal, all planar isogonal 2n-gons have dihedral symmetry with reflection lines across the mid-edge points. An isogonal polyhedron and 2D tiling has a kind of vertex. An isogonal polyhedron with all faces is also a uniform polyhedron. Geometrically distorted variations of uniform polyhedra and tilings can also be given the vertex configuration, isogonal polyhedra and 2D tilings may be further classified, Regular if it is also isohedral and isotoxal, this implies that every face is the same kind of regular polygon. Quasi-regular if it is also isotoxal but not isohedral, semi-regular if every face is a regular polygon but it is not isohedral or isotoxal. Uniform if every face is a polygon, i. e. it is regular, quasiregular or semi-regular. Noble if it is also isohedral and these definitions can be extended to higher-dimensional polytopes and tessellations. Most generally, all uniform polytopes are isogonal, for example, the dual of an isogonal polytope is called an isotope which is transitive on its facets. A polytope or tiling may be called if its vertices form k transitivity classes. A more restrictive term, k-uniform is defined as a figure constructed only from regular polygons. They can be represented visually with colors by different uniform colorings, edge-transitive Face-transitive Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.369 Transitivity Grünbaum, Branko, Shephard, G. C
12.
Isotoxal figure
–
In geometry, a polytope, or a tiling, is isotoxal or edge-transitive if its symmetries act transitively on its edges. The term isotoxal is derived from the Greek τοξον meaning arc, an isotoxal polygon is an equilateral polygon, but not all equilateral polygons are isotoxal. The duals of isotoxal polygons are isogonal polygons, in general, an isotoxal 2n-gon will have Dn dihedral symmetry. A rhombus is a polygon with D2 symmetry. All regular polygons are isotoxal, having double the symmetry order. A regular 2n-gon is a polygon and can be marked with alternately colored vertices. An isotoxal polyhedron or tiling must be either isogonal or isohedral or both, regular polyhedra are isohedral, isogonal and isotoxal. Quasiregular polyhedra are isogonal and isotoxal, but not isohedral, their duals are isohedral and isotoxal, not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal. An isotoxal polyhedron has the dihedral angle for all edges. There are nine convex isotoxal polyhedra formed from the Platonic solids,8 formed by the Kepler–Poinsot polyhedra, cS1 maint, Multiple names, authors list Coxeter, Harold Scott MacDonald, Longuet-Higgins, M. S. Miller, J. C. P. Uniform polyhedra, Philosophical Transactions of the Royal Society of London, mathematical and Physical Sciences,246, 401–450, doi,10. 1098/rsta.1954.0003, ISSN 0080-4614, JSTOR91532, MR0062446
13.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
14.
Polygon
–
In elementary geometry, a polygon /ˈpɒlɪɡɒn/ is a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed polygonal chain or circuit. These segments are called its edges or sides, and the points where two edges meet are the vertices or corners. The interior of the polygon is called its body. An n-gon is a polygon with n sides, for example, a polygon is a 2-dimensional example of the more general polytope in any number of dimensions. The basic geometrical notion of a polygon has been adapted in various ways to suit particular purposes, mathematicians are often concerned only with the bounding closed polygonal chain and with simple polygons which do not self-intersect, and they often define a polygon accordingly. A polygonal boundary may be allowed to intersect itself, creating star polygons and these and other generalizations of polygons are described below. The word polygon derives from the Greek adjective πολύς much, many and it has been suggested that γόνυ knee may be the origin of “gon”. Polygons are primarily classified by the number of sides, Polygons may be characterized by their convexity or type of non-convexity, Convex, any line drawn through the polygon meets its boundary exactly twice. As a consequence, all its interior angles are less than 180°, equivalently, any line segment with endpoints on the boundary passes through only interior points between its endpoints. Non-convex, a line may be found which meets its boundary more than twice, equivalently, there exists a line segment between two boundary points that passes outside the polygon. Simple, the boundary of the polygon does not cross itself, there is at least one interior angle greater than 180°. Star-shaped, the interior is visible from at least one point. The polygon must be simple, and may be convex or concave, self-intersecting, the boundary of the polygon crosses itself. Branko Grünbaum calls these coptic, though this term does not seem to be widely used, star polygon, a polygon which self-intersects in a regular way. A polygon cannot be both a star and star-shaped, equiangular, all corner angles are equal. Cyclic, all lie on a single circle, called the circumcircle. Isogonal or vertex-transitive, all lie within the same symmetry orbit. The polygon is cyclic and equiangular
15.
Truncation (geometry)
–
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Keplers names for the Archimedean solids, in general any polyhedron can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, there are no degrees of freedom, and it represents a fixed geometric, just like the regular polyhedra. In general all single ringed uniform polytopes have a uniform truncation, for example, the icosidodecahedron, represented as Schläfli symbols r or, and Coxeter-Dynkin diagram or has a uniform truncation, the truncated icosidodecahedron, represented as tr or t. In the Coxeter-Dynkin diagram, the effect of a truncation is to ring all the adjacent to the ringed node. A truncated n-sided polygon will have 2n sides, a regular polygon uniformly truncated will become another regular polygon, t is. A complete truncation, r, is another regular polygon in its dual position, a regular polygon can also be represented by its Coxeter-Dynkin diagram, and its uniform truncation, and its complete truncation. Star polygons can also be truncated, a truncated pentagram will look like a pentagon, but is actually a double-covered decagon with two sets of overlapping vertices and edges. A truncated great heptagram gives a tetradecagram and this sequence shows an example of the truncation of a cube, using four steps of a continuous truncating process between a full cube and a rectified cube. The final polyhedron is a cuboctahedron, the middle image is the uniform truncated cube. It is represented by a Schläfli symbol t, a bitruncation is a deeper truncation, removing all the original edges, but leaving an interior part of the original faces. The truncated octahedron is a cube, 2t is an example. A complete bitruncation is called a birectification that reduces original faces to points, for polyhedra, this becomes the dual polyhedron. An octahedron is a birectification of the cube, = 2r is an example, another type of truncation is called cantellation, cuts edge and vertices, removing original edges and replacing them with rectangles. Higher dimensional polytopes have higher truncations, runcination cuts faces, edges, in 5-dimensions sterication cuts cells, faces, and edges. Edge-truncation is a beveling or chamfer for polyhedra, similar to cantellation but retains original vertices, in 4-polytopes edge-truncation replaces edges with elongated bipyramid cells. Alternation or partial truncation only removes some of the original vertices, a partial truncation or alternation - Half of the vertices and connecting edges are completely removed. The operation only applies to polytopes with even-sided faces, faces are reduced to half as many sides, and square faces degenerate into edges
16.
Area
–
Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the surface of a three-dimensional object. It is the analog of the length of a curve or the volume of a solid. The area of a shape can be measured by comparing the shape to squares of a fixed size, in the International System of Units, the standard unit of area is the square metre, which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the area as three such squares. In mathematics, the square is defined to have area one. There are several formulas for the areas of simple shapes such as triangles, rectangles. Using these formulas, the area of any polygon can be found by dividing the polygon into triangles, for shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a motivation for the historical development of calculus. For a solid such as a sphere, cone, or cylinder. Formulas for the areas of simple shapes were computed by the ancient Greeks. Area plays an important role in modern mathematics, in addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, in general, area in higher mathematics is seen as a special case of volume for two-dimensional regions. Area can be defined through the use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers and it can be proved that such a function exists. An approach to defining what is meant by area is through axioms, area can be defined as a function from a collection M of special kind of plane figures to the set of real numbers which satisfies the following properties, For all S in M, a ≥0. If S and T are in M then so are S ∪ T and S ∩ T, if S and T are in M with S ⊆ T then T − S is in M and a = a − a. If a set S is in M and S is congruent to T then T is also in M, every rectangle R is in M. If the rectangle has length h and breadth k then a = hk, let Q be a set enclosed between two step regions S and T
17.
Parts per million
–
In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e. g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they are pure numbers with no associated units of measurement, commonly used are ppm, ppb, ppt and ppq. Parts-per notation is often used describing dilute solutions in chemistry, for instance, the unit “1 ppm” can be used for a mass fraction if a water-borne pollutant is present at one-millionth of a gram per gram of sample solution. When working with aqueous solutions, it is common to assume that the density of water is 1.00 g/mL, therefore, it is common to equate 1 kilogram of water with 1 L of water. Consequently,1 ppm corresponds to 1 mg/L and 1 ppb corresponds to 1 μg/L, similarly, parts-per notation is used also in physics and engineering to express the value of various proportional phenomena. For instance, a metal alloy might expand 1.2 micrometers per meter of length for every degree Celsius. For instance, the accuracy of distance measurements when using a laser rangefinder might be 1 millimeter per kilometer of distance, this could be expressed as “Accuracy =1 ppm. ”Parts-per notations are all dimensionless quantities, in mathematical expressions. In fractions like “2 nanometers per meter” so the quotients are pure-number coefficients with positive values less than 1, when parts-per notations, including the percent symbol, are used in regular prose, they are still pure-number dimensionless quantities. However, they take the literal “parts per” meaning of a comparative ratio. Parts-per notations may be expressed in terms of any unit of the same measure, in nuclear magnetic resonance spectroscopy, chemical shift is usually expressed in ppm. It represents the difference of a frequency in parts per million from the reference frequency. The reference frequency depends on the magnetic field and the element being measured. It is usually expressed in MHz, typical chemical shifts are rarely more than a few hundred Hz from the reference frequency, so chemical shifts are conveniently expressed in ppm. Parts-per notation gives a quantity that does not depend on the instruments field strength. One part per hundred is generally represented by the percent symbol and denotes one part per 100 parts, one part in 102, and this is equivalent to approximately one drop of water diluted into 5 milliliters or about fifteen minutes out of one day. One part per thousand should generally be spelled out in full and it may also be denoted by the millage symbol. Note however, that specific disciplines such as oceanography, as well as educational exercises, one part per thousand denotes one part per 1000 parts, one part in 103, and a value of 1 × 10−3. This is equivalent to one drop of water diluted into 50 milliliters or about one, one part per ten thousand is denoted by the permyriad symbol
18.
Neusis construction
–
The neusis is a geometric construction method that was used in antiquity by Greek mathematicians. The neusis construction consists of fitting a line element of length in between two given lines, in such a way that the line element, or its extension. That is, one end of the element has to lie on l. A neusis construction might be performed by means of a neusis ruler, in the figure one end of the ruler is marked with a yellow eye with crosshairs, this is the origin of the scale division on the ruler. A second marking on the ruler indicates the distance a from the origin, the yellow eye is moved along line l, until the blue eye coincides with line m. The position of the element thus found is shown in the figure as a dark blue bar. Point P is called the pole of the neusis, line l the directrix, or guiding line, length a is called the diastema. Neuseis have been important because they provide a means to solve geometric problems that are not solvable by means of compass. Examples are the trisection of any angle in three parts, the doubling of the cube, and the construction of a regular heptagon, nonagon. Mathematicians such as Archimedes of Syracuse and Pappus of Alexandria freely used neuseis, Sir Isaac Newton followed their line of thought, nevertheless, gradually the technique dropped out of use. Modified by the recent finding by Benjamin and Snyder that the regular hendecagon is neusis-constructible, T. L. Heath, the historian of mathematics, has suggested that the Greek mathematician Oenopides was the first to put compass-and-straightedge constructions above neuseis. One hundred years after him Euclid too shunned neuseis in his influential textbook. The next attack on the neusis came when, from the fourth century BC, under its influence a hierarchy of three classes of geometrical constructions was developed. In the end the use of neusis was deemed acceptable only when the two other, higher categories of constructions did not offer a solution, Neusis became a kind of last resort that was invoked only when all other, more respectable, methods had failed. Using neusis where other methods might have been used was branded by the late Greek mathematician Pappus of Alexandria as a not inconsiderable error. R. Boeker, Neusis, in, Paulys Realencyclopädie der Classischen Altertumswissenschaft, the most comprehensive survey, however, the author sometimes has rather curious opinions. T. L. Heath, A history of Greek Mathematics, H. G. Zeuthen, Die Lehre von den Kegelschnitten im Altertum. MathWorld page Angle Trisection by Paper Folding
19.
Pierpont prime
–
A Pierpont prime is a prime number of the form 2 u 3 v +1 for some nonnegative integers u and v. That is, they are the prime numbers p for which p −1 is 3-smooth. They are named after the mathematician James Pierpont, who introduced them in the study of regular polygons that can be constructed using conic sections. It is possible to prove that if v =0 and u >0, then u must be a power of 2, if v is positive then u must also be positive, and the Pierpont prime is of the form 6k +1. Empirically, the Pierpont primes do not seem to be rare or sparsely distributed. There are 36 Pierpont primes less than 106,59 less than 109,151 less than 1020, there are few restrictions from algebraic factorisations on the Pierpont primes, so there are no requirements like the Mersenne prime condition that the exponent must be prime. As there are Θ numbers of the form in this range. Andrew M. Gleason made this explicit, conjecturing there are infinitely many Pierpont primes. According to Gleasons conjecture there are Θ Pierpont primes smaller than N, when 2 u >3 v, the primality of 2 u 3 v +1 can be tested by Proths theorem. As part of the ongoing search for factors of Fermat numbers. The following table gives values of m, k, and n such that k ⋅2 n +1 divides 22 m +1, the left-hand side is a Pierpont prime when k is a power of 3, the right-hand side is a Fermat number. As of 2017, the largest known Pierpont prime is 3 ×210829346 +1, whose primality was discovered by Sai Yik Tang, in the mathematics of paper folding, the Huzita axioms define six of the seven types of fold possible. It has been shown that these folds are sufficient to allow the construction of the points that solve any cubic equation. It follows that they allow any regular polygon of N sides to be formed, as long as N >3 and of the form 2m3nρ and this is the same class of regular polygons as those that can be constructed with a compass, straightedge, and angle-trisector. Regular polygons which can be constructed with compass and straightedge are the special case where n =0 and ρ is a product of distinct Fermat primes, themselves a subset of Pierpont primes. In 1895, James Pierpont studied the same class of regular polygons, Pierpont generalized compass and straightedge constructions in a different way, by adding the ability to draw conic sections whose coefficients come from previously constructed points. As he showed, the regular N-gons that can be constructed with these operations are the ones such that the totient of N is 3-smooth. Since the totient of a prime is formed by subtracting one from it, however, Pierpont did not describe the form of the composite numbers with 3-smooth totients. As Gleason later showed, these numbers are exactly the ones of the form 2m3nρ given above, the smallest prime that is not a Pierpont prime is 11, therefore, the hendecagon is the smallest regular polygon that cannot be constructed with compass, straightedge and angle trisector
20.
Meditations on First Philosophy
–
Meditations on First Philosophy is a philosophical treatise by René Descartes first published in 1641. The French translation was published in 1647 as Méditations Métaphysiques, the original Latin title is Meditationes de prima philosophia, in qua Dei existentia et animæ immortalitas demonstratur. The title may contain a misreading by the printer, mistaking animae immortalitas for animae immaterialitas, as suspected already by A. Baillet. The book is made up of six meditations, in which Descartes first discards all belief in things that are not absolutely certain, Descartes metaphysical thought is also found in the Principles of Philosophy, which the author intended to be a philosophy guidebook. He further indicates how the very Scriptures say that the mind of man is sufficient to discover God and his aim is to apply a method to demonstrate these two truths, in a so clear and evident manner that result to be evident. This method he has developed for the Sciences, Preface to the reader Descartes explains how he made a mention of the two questions, the existence of God, and the soul, in his Discourse on Method. Following this, he received objections, and two of them he considers are of importance, the first is how he concludes that the essence of the soul is a thing that thinks, excluding all other nature. To this he says that he has a clear perception that he is a thing, and has no other clear perception. The second is that from the idea I have of something that is more perfect than myself, in the treatise we will see that in fact from the idea that there is something more perfect than myself, it follows that this exists. He says that we have to consider God as incomprehensible and infinite, finally says that the treatise was submitted to some men of learning to know their difficulties and objections, and are answered at the end of it. He has resolved to sweep away all he thinks he knows and to start again from the foundations and he has seated himself alone, by the fire, free of all worries so that he can demolish his former opinions with care. The Meditator reasons that he need only find some reason to doubt his present opinions in order to him to seek sturdier foundations for knowledge. Rather than doubt every one of his opinions individually, he reasons that he might cast them all into doubt if he can doubt the foundations, everything that the Meditator has accepted as most true he has come to learn from or through his senses. He acknowledges that sometimes the senses can deceive, but only with respect to objects that are small or far away. The Meditator acknowledges that people might be more deceived, but that he is clearly not one of them. However, the Meditator realizes that he is convinced when he is dreaming that he is sensing real objects. He feels certain that he is awake and sitting by the fire, though his present sensations may be dream images, he suggests that even dream images are drawn from waking experience, much like paintings in that respect. Even when a painter creates a creature, like a mermaid
21.
Myriagon
–
In geometry, a myriagon or 10000-gon is a polygon with 10000 sides. Several philosophers have used the regular myriagon to illustrate issues regarding thought, the measure of each internal angle in a regular myriagon is 179. 964°. The area of a regular myriagon with sides of length a is given by A =2500 a 2 cot π10000 The result differs from the area of its circumscribed circle by up to 40 parts per billion. Because 10000 =24 ×54, the number of sides is neither a product of distinct Fermat primes nor a power of two, thus the regular myriagon is not a constructible polygon. Indeed, it is not even constructible with the use of neusis or an angle trisector, as the number of sides is neither a product of distinct Pierpont primes, the regular myriagon has Dih10000 dihedral symmetry, order 20000, represented by 10000 lines of reflection. Dih100 has 24 dihedral subgroups, and and it also has 25 more cyclic symmetries as subgroups, and, with Zn representing π/n radian rotational symmetry. John Conway labels these symmetries with a letter and order of the symmetry follows the letter. R20000 represents full symmetry, and a1 labels no symmetry and he gives d with mirror lines through vertices, p with mirror lines through edges, i with mirror lines through both vertices and edges, and g for rotational symmetry. These lower symmetries allows degrees of freedom in defining irregular myriagons, only the g10000 subgroup has no degrees of freedom but can seen as directed edges. A myriagram is an 10000-sided star polygon, there are 1999 regular forms given by Schläfli symbols of the form, where n is an integer between 2 and 5000 that is coprime to 10000. There are also 3000 regular star figures in the remaining cases
22.
Pierre Gassendi
–
Pierre Gassendi was a French philosopher, priest, astronomer, and mathematician. While he held a position in south-east France, he also spent much time in Paris. He was also an active observational scientist, publishing the first data on the transit of Mercury in 1631, the lunar crater Gassendi is named after him. He wrote numerous works, and some of the positions he worked out are considered significant. Richard Popkin indicates that Gassendi was one of the first thinkers to formulate the scientific outlook. He clashed with his contemporary Descartes on the possibility of certain knowledge and his best known intellectual project attempted to reconcile Epicurean atomism with Christianity. Gassendi was born at Champtercier, near Digne, in France to Antoine Gassend, a youthful prodigy, at a very early age he showed academic potential and attended the college at Digne, where he displayed a particular aptitude for languages and mathematics. Soon afterwards he entered the University of Aix-en-Provence, to study philosophy under Philibert Fesaye, in 1612 the college of Digne called him to lecture on theology. Four years later he received the degree of Doctor of Theology at Avignon, in the same year he answered a call to the chair of philosophy at Aix-en-Provence University, and seems gradually to have withdrawn from theology. He lectured principally on the Aristotelian philosophy, conforming as far as possible to the traditional methods while he followed with interest the discoveries of Galileo. He came into contact with the astronomer Joseph Gaultier de la Vallette, in 1623 the Society of Jesus took over the University of Aix. They filled all positions with Jesuits, so Gassendi was required to find another institution and he left, returning to Digne, and then travelled for the chapter to Grenoble. In 1624 he printed the first part of his Exercitationes paradoxicae adversus Aristoteleos and he spent some time with his patron Nicolas Peiresc. After 1628 Gassendi travelled in Flanders and in Holland where he encountered Isaac Beeckman and he returned to France in 1631, and two years later became provost of Digne Cathedral. During this time he wrote some works, at the insistence of Marin Mersenne and they included his examination of the mystical philosophy of Robert Fludd, an essay on parhelia, and some observations on the transit of Mercury. Gassendi then spent some years travelling through Provence with the duke of Angoulême, during this period he wrote only the one literary work, his Life of Peiresc, whose death in 1637 seemed to afflict him deeply, it received frequent reprintings and an English translation. He returned to Paris in 1641, where he met Thomas Hobbes, in 1642 Mersenne engaged him in controversy with René Descartes. His objections to the propositions of Descartes appeared in print in 1642
23.
Immanuel Kant
–
Immanuel Kant was a German philosopher who is considered a central figure in modern philosophy. Kant took himself to have effected a Copernican revolution in philosophy and his beliefs continue to have a major influence on contemporary philosophy, especially the fields of metaphysics, epistemology, ethics, political theory, and aesthetics. Politically, Kant was one of the earliest exponents of the idea that peace could be secured through universal democracy. He believed that this will be the outcome of universal history. Kant wanted to put an end to an era of futile and speculative theories of human experience, Kant argued that our experiences are structured by necessary features of our minds. In his view, the shapes and structures experience so that, on an abstract level. Among other things, Kant believed that the concepts of space and time are integral to all human experience, as are our concepts of cause, Kant published other important works on ethics, religion, law, aesthetics, astronomy, and history. These included the Critique of Practical Reason, the Metaphysics of Morals, which dealt with ethics, and the Critique of Judgment, Immanuel Kant was born in 1724 in Königsberg, Prussia. His mother, Anna Regina Reuter, was born in Königsberg to a father from Nuremberg. His father, Johann Georg Kant, was a German harness maker from Memel, Immanuel Kant believed that his paternal grandfather Hans Kant was of Scottish origin. Kant was the fourth of nine children, baptized Emanuel, he changed his name to Immanuel after learning Hebrew. Young Kant was a solid, albeit unspectacular, student and he was brought up in a Pietist household that stressed religious devotion, humility, and a literal interpretation of the Bible. His education was strict, punitive and disciplinary, and focused on Latin and religious instruction over mathematics, despite his religious upbringing and maintaining a belief in God, Kant was skeptical of religion in later life, various commentators have labelled him agnostic. Common myths about Kants personal mannerisms are listed, explained, and refuted in Goldthwaits introduction to his translation of Observations on the Feeling of the Beautiful and Sublime. It is often held that Kant lived a strict and disciplined life. He never married, but seemed to have a social life — he was a popular teacher. He had a circle of friends whom he met, among them Joseph Green. A common myth is that Kant never traveled more than 16 kilometres from Königsberg his whole life, in fact, between 1750 and 1754 he worked as a tutor in Judtschen and in Groß-Arnsdorf
24.
David Hume
–
David Hume was a Scottish philosopher, historian, economist, and essayist, who is best known today for his highly influential system of radical philosophical empiricism, skepticism, and naturalism. Humes empiricist approach to philosophy places him with John Locke, Francis Bacon, beginning with his A Treatise of Human Nature, Hume strove to create a total naturalistic science of man that examined the psychological basis of human nature. Humes compatibilist theory of free will takes causal determinism as fully compatible with human freedom, Kant himself credited Hume as the spur to his philosophical thought who had awakened him from his dogmatic slumbers. Arthur Schopenhauer once declared there is more to be learned from each page of David Hume than from the collected philosophical works of Hegel, Herbart. Hume is thus regarded as a pivotal figure in the history of philosophical thought. David Hume was the second of two born to Joseph Home of Ninewells, an advocate, and his wife The Hon. Katherine. He was born on 26 April 1711 in a tenement on the side of the Lawnmarket in Edinburgh. Humes father died when Hume was a child, just after his birthday, and he was raised by his mother. He changed the spelling of his name in 1734, because of the fact that his surname Home, throughout his life Hume, who never married, spent time occasionally at his family home at Ninewells in Berwickshire, which had belonged to his family since the sixteenth century. His finances as a man were very slender. His family was not rich and, as a younger son and he was therefore forced to make a living somehow. Hume attended the University of Edinburgh at the early age of twelve at a time when fourteen was normal. He had little respect for the professors of his time, telling a friend in 1735 that there is nothing to be learnt from a Professor, which is not to be met with in Books. Aged around 18, he made a discovery that opened up to him a new Scene of Thought. He did not recount what this scene was, and commentators have offered a variety of speculations, due to this inspiration, Hume set out to spend a minimum of ten years reading and writing. He soon came to the verge of a breakdown, suffering from what a doctor diagnosed as the Disease of the Learned. Hume wrote that it started with a coldness, which he attributed to a Laziness of Temper, later, some scurvy spots broke out on his fingers. This was what persuaded Humes physician to make his diagnosis, Hume wrote that he went under a Course of Bitters and Anti-Hysteric Pills, taken along with a pint of claret every day
25.
Gottfried Wilhelm Leibniz
–
Leibnizs notation has been widely used ever since it was published. It was only in the 20th century that his Law of Continuity and he became one of the most prolific inventors in the field of mechanical calculators. He also refined the number system, which is the foundation of virtually all digital computers. Leibniz, along with René Descartes and Baruch Spinoza, was one of the three great 17th-century advocates of rationalism and he wrote works on philosophy, politics, law, ethics, theology, history, and philology. Leibnizs contributions to this vast array of subjects were scattered in various learned journals, in tens of thousands of letters and he wrote in several languages, but primarily in Latin, French, and German. There is no complete gathering of the writings of Leibniz in English, Gottfried Leibniz was born on July 1,1646, toward the end of the Thirty Years War, in Leipzig, Saxony, to Friedrich Leibniz and Catharina Schmuck. Friedrich noted in his journal,21. Juny am Sontag 1646 Ist mein Sohn Gottfried Wilhelm, post sextam vespertinam 1/4 uff 7 uhr abents zur welt gebohren, in English, On Sunday 21 June 1646, my son Gottfried Wilhelm is born into the world a quarter after six in the evening, in Aquarius. Leibniz was baptized on July 3 of that year at St. Nicholas Church, Leipzig and his father died when he was six and a half years old, and from that point on he was raised by his mother. Her teachings influenced Leibnizs philosophical thoughts in his later life, Leibnizs father had been a Professor of Moral Philosophy at the University of Leipzig, and the boy later inherited his fathers personal library. He was given access to it from the age of seven. Access to his fathers library, largely written in Latin, also led to his proficiency in the Latin language and he also composed 300 hexameters of Latin verse, in a single morning, for a special event at school at the age of 13. In April 1661 he enrolled in his fathers former university at age 15 and he defended his Disputatio Metaphysica de Principio Individui, which addressed the principle of individuation, on June 9,1663. Leibniz earned his masters degree in Philosophy on February 7,1664, after one year of legal studies, he was awarded his bachelors degree in Law on September 28,1665. His dissertation was titled De conditionibus, in early 1666, at age 19, Leibniz wrote his first book, De Arte Combinatoria, the first part of which was also his habilitation thesis in Philosophy, which he defended in March 1666. His next goal was to earn his license and Doctorate in Law, in 1666, the University of Leipzig turned down Leibnizs doctoral application and refused to grant him a Doctorate in Law, most likely due to his relative youth. Leibniz then enrolled in the University of Altdorf and quickly submitted a thesis, the title of his thesis was Disputatio Inauguralis de Casibus Perplexis in Jure. Leibniz earned his license to practice law and his Doctorate in Law in November 1666 and he next declined the offer of an academic appointment at Altdorf, saying that my thoughts were turned in an entirely different direction
26.
John Locke
–
John Locke FRS was an English philosopher and physician, widely regarded as one of the most influential of Enlightenment thinkers and commonly known as the Father of Liberalism. Considered one of the first of the British empiricists, following the tradition of Sir Francis Bacon and his work greatly affected the development of epistemology and political philosophy. His writings influenced Voltaire and Jean-Jacques Rousseau, many Scottish Enlightenment thinkers and his contributions to classical republicanism and liberal theory are reflected in the United States Declaration of Independence. Locke was the first to define the self through a continuity of consciousness and he postulated that, at birth, the mind was a blank slate or tabula rasa. This is now known as empiricism, an example of Lockes belief in Empiricism can be seen in his quote, whatever I write, as soon as I discover it not to be true, my hand shall be the forwardest to throw it into the fire. This shows the ideology of science in his observations in that something must be capable of being tested repeatedly, challenging the work of others, Locke is said to have established the method of introspection, or observing the emotions and behaviours of one’s self. Locke was born on 29 August 1632, in a thatched cottage by the church in Wrington, Somerset. He was baptised the same day, soon after Lockes birth, the family moved to the market town of Pensford, about seven miles south of Bristol, where Locke grew up in a rural Tudor house in Belluton. In 1647, Locke was sent to the prestigious Westminster School in London under the sponsorship of Alexander Popham, after completing studies there, he was admitted to Christ Church, Oxford, in the autumn of 1652 at the age of twenty. The dean of the college at the time was John Owen, although a capable student, Locke was irritated by the undergraduate curriculum of the time. He found the works of philosophers, such as René Descartes. Locke was awarded a degree in February 1656 and a masters degree in June 1658. In 1666, he met Lord Anthony Ashley Cooper, 1st Earl of Shaftesbury, Cooper was impressed with Locke and persuaded him to become part of his retinue. Locke had been looking for a career and in 1667 moved into Shaftesburys home at Exeter House in London, in London, Locke resumed his medical studies under the tutelage of Thomas Sydenham. Sydenham had an effect on Lockes natural philosophical thinking – an effect that would become evident in An Essay Concerning Human Understanding. Lockes medical knowledge was put to the test when Shaftesburys liver infection became life-threatening, Locke coordinated the advice of several physicians and was probably instrumental in persuading Shaftesbury to undergo surgery to remove the cyst. Shaftesbury survived and prospered, crediting Locke with saving his life, Shaftesbury, as a founder of the Whig movement, exerted great influence on Lockes political ideas. Locke became involved in politics when Shaftesbury became Lord Chancellor in 1672, following Shaftesburys fall from favour in 1675, Locke spent some time travelling across France as tutor and medical attendant to Caleb Banks
27.
Cyclic group
–
In algebra, a cyclic group or monogenous group is a group that is generated by a single element. Each element can be written as a power of g in multiplicative notation and this element g is called a generator of the group. Every infinite cyclic group is isomorphic to the group of Z. Every finite cyclic group of n is isomorphic to the additive group of Z/nZ. Every cyclic group is a group, and every finitely generated abelian group is a direct product of cyclic groups. A group G is called if there exists an element g in G such that G = ⟨g⟩ =. Since any group generated by an element in a group is a subgroup of that group, for example, if G = is a group of order 6, then g6 = g0, and G is cyclic. In fact, G is essentially the same as the set with addition modulo 6, for example,1 +2 ≡3 corresponds to g1 · g2 = g3, and 2 +5 ≡1 corresponds to g2 · g5 = g7 = g1, and so on. One can use the isomorphism χ defined by χ = i, the name cyclic may be misleading, it is possible to generate infinitely many elements and not form any literal cycles, that is, every gn is distinct. A group generated in this way is called a cyclic group. The French mathematicians known as Nicolas Bourbaki referred to a group as a monogenous group. The set of integers, with the operation of addition, forms a group and it is an infinite cyclic group, because all integers can be written as a finite sum or difference of copies of the number 1. In this group,1 and −1 are the only generators, every infinite cyclic group is isomorphic to this group. For every positive n, the set of integers modulo n, again with the operation of addition, forms a finite cyclic group. An element g is a generator of this group if g is relatively prime to n, thus, the number of different generators is φ, where φ is the Euler totient function, the function that counts the number of numbers modulo n that are relatively prime to n. Every finite cyclic group is isomorphic to a group Z/n, where n is the order of the group, the integer and modular addition operations, used to define the cyclic groups, are both the addition operations of commutative rings, also denoted Z and Z/n. If p is a prime, then Z/p is a finite field, every field with p elements is isomorphic to this one. For every positive n, the subset of the integers modulo n that are relatively prime to n, with the operation of multiplication
28.
John Horton Conway
–
John Horton Conway FRS is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has also contributed to many branches of mathematics, notably the invention of the cellular automaton called the Game of Life. Conway is currently Professor Emeritus of Mathematics at Princeton University in New Jersey, Conway was born in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at an early age, his mother has recalled that he could recite the powers of two when he was four years old. By the age of eleven his ambition was to become a mathematician, after leaving secondary school, Conway entered Gonville and Caius College, Cambridge to study mathematics. Conway, who was a terribly introverted adolescent in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person and he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport. Having solved the problem posed by Davenport on writing numbers as the sums of fifth powers. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos and he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University, Conway is especially known for the invention of the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, and articles. It is a staple of recreational mathematics, there is an extensive wiki devoted to curating and cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, at times Conway has said he hates the game of life–largely because it has come to overshadow some of the other deeper and more important things he has done. Nevertheless, the game did help launch a new branch of mathematics, the Game of Life is now known to be Turing complete. Conways career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner, when Gardner featured Conways Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, for instance, he discussed Conways game of Sprouts, Hackenbush, and his angel and devil problem. In the September 1976 column he reviewed Conways book On Numbers and Games, Conway is widely known for his contributions to combinatorial game theory, a theory of partisan games. This he developed with Elwyn Berlekamp and Richard Guy, and with them also co-authored the book Winning Ways for your Mathematical Plays and he also wrote the book On Numbers and Games which lays out the mathematical foundations of CGT. He is also one of the inventors of sprouts, as well as philosophers football and he developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, and Conways soldiers
29.
Directed graph
–
In mathematics, and more specifically in graph theory, a directed graph is a graph that is a set of vertices connected by edges, where the edges have a direction associated with them. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, more specifically, these entities are addressed as directed multigraphs. On the other hand, the definition allows a directed graph to have loops. More specifically, directed graphs without loops are addressed as directed graphs. Symmetric directed graphs are directed graphs where all edges are bidirected, simple directed graphs are directed graphs that have no loops and no multiple arrows with same source and target nodes. As already introduced, in case of arrows the entity is usually addressed as directed multigraph. Some authors describe digraphs with loops as loop-digraphs. Complete directed graphs are directed graphs where each pair of vertices is joined by a symmetric pair of directed arrows. It follows that a complete digraph is symmetric, oriented graphs are directed graphs having no bidirected edges. It follows that a graph is an oriented graph iff it hasnt any 2-cycle. Tournaments are oriented graphs obtained by choosing a direction for each edge in undirected complete graphs. Directed acyclic graphs are directed graphs with no directed cycles, multitrees are DAGs in which no two directed paths from a single starting vertex meet back at the same ending vertex. Oriented trees or polytrees are DAGs formed by orienting the edges of undirected acyclic graphs, rooted trees are oriented trees in which all edges of the underlying undirected tree are directed away from the roots. Rooted directed graphs are digraphs in which a vertex has been distinguished as the root, control flow graphs are rooted digraphs used in computer science as a representation of the paths that might be traversed through a program during its execution. Signal-flow graphs are directed graphs in which nodes represent system variables and branches represent functional connections between pairs of nodes, flow graphs are digraphs associated with a set of linear algebraic or differential equations. State diagrams are directed multigraphs that represent finite state machines, representations of a quiver label its vertices with vector spaces and its edges compatibly with linear transformations between them, and transform via natural transformations. If a path leads from x to y, then y is said to be a successor of x and reachable from x, the arrow is called the inverted arrow of. The adjacency matrix of a graph is unique up to identical permutation of rows. Another matrix representation for a graph is its incidence matrix. For a vertex, the number of head ends adjacent to a vertex is called the indegree of the vertex, the indegree of v is denoted deg− and its outdegree is denoted deg+
30.
Star polygon
–
In geometry, a star polygon is a type of non-convex polygon. Only the regular polygons have been studied in any depth. The first usage is included in polygrams which includes polygons like the pentagram, star polygon names combine a numeral prefix, such as penta-, with the Greek suffix -gram. The prefix is normally a Greek cardinal, but synonyms using other prefixes exist, for example, a nine-pointed polygon or enneagram is also known as a nonagram, using the ordinal nona from Latin. The -gram suffix derives from γραμμή meaning a line, alternatively for integers p and q, it can be considered as being constructed by connecting every qth point out of p points regularly spaced in a circular placement. A regular star polygon is denoted by its Schläfli symbol, where p and q are relatively prime, the symmetry group of is dihedral group Dn of order 2n, independent of k. A regular star polygon can also be obtained as a sequence of stellations of a regular core polygon. Regular star polygons were first studied systematically by Thomas Bradwardine, if p and q are not coprime, a degenerate polygon will result with coinciding vertices and edges. For example will appear as a triangle, but can be labeled with two sets of vertices 1-6 and this should be seen not as two overlapping triangles, but a double-winding of a single unicursal hexagon. For |n/d|, the vertices have an exterior angle, β. These polygons are often seen in tiling patterns, the parametric angle α can be chosen to match internal angles of neighboring polygons in a tessellation pattern. The interior of a polygon may be treated in different ways. Three such treatments are illustrated for a pentagram, branko Grunbaum and Geoffrey Shephard consider two of them, as regular star polygons and concave isogonal 2n-gons. These include, Where a side occurs, one side is treated as outside and this is shown in the left hand illustration and commonly occurs in computer vector graphics rendering. The number of times that the polygonal curve winds around a given region determines its density, the exterior is given a density of 0, and any region of density >0 is treated as internal. This is shown in the illustration and commonly occurs in the mathematical treatment of polyhedra. Where a line may be drawn between two sides, the region in which the line lies is treated as inside the figure and this is shown in the right hand illustration and commonly occurs when making a physical model. When the area of the polygon is calculated, each of these approaches yields a different answer, star polygons feature prominently in art and culture
31.
Coprime integers
–
In number theory, two integers a and b are said to be relatively prime, mutually prime, or coprime if the only positive integer that divides both of them is 1. That is, the common positive factor of the two numbers is 1. This is equivalent to their greatest common divisor being 1, the numerator and denominator of a reduced fraction are coprime. In addition to gcd =1 and =1, the notation a ⊥ b is used to indicate that a and b are relatively prime. For example,14 and 15 are coprime, being divisible by only 1. The numbers 1 and −1 are the only integers coprime to every integer, a fast way to determine whether two numbers are coprime is given by the Euclidean algorithm. The number of integers coprime to an integer n, between 1 and n, is given by Eulers totient function φ. A set of integers can also be called if its elements share no common positive factor except 1. A set of integers is said to be pairwise coprime if a and b are coprime for every pair of different integers in it, a number of conditions are individually equivalent to a and b being coprime, No prime number divides both a and b. There exist integers x and y such that ax + by =1, the integer b has a multiplicative inverse modulo a, there exists an integer y such that by ≡1. In other words, b is a unit in the ring Z/aZ of integers modulo a, the least common multiple of a and b is equal to their product ab, i. e. LCM = ab. As a consequence of the point, if a and b are coprime and br ≡ bs. That is, we may divide by b when working modulo a, as a consequence of the first point, if a and b are coprime, then so are any powers ak and bl. If a and b are coprime and a divides the product bc and this can be viewed as a generalization of Euclids lemma. In a sense that can be made precise, the probability that two randomly chosen integers are coprime is 6/π2, which is about 61%, two natural numbers a and b are coprime if and only if the numbers 2a −1 and 2b −1 are coprime. As a generalization of this, following easily from the Euclidean algorithm in base n >1, a set of integers S = can also be called coprime or setwise coprime if the greatest common divisor of all the elements of the set is 1. For example, the integers 6,10,15 are coprime because 1 is the positive integer that divides all of them. If every pair in a set of integers is coprime, then the set is said to be pairwise coprime, pairwise coprimality is a stronger condition than setwise coprimality, every pairwise coprime finite set is also setwise coprime, but the reverse is not true
32.
Polygram (geometry)
–
A regular polygram can either be in a set of regular polygons or in a set of regular polygon compounds. The polygram names combine a numeral prefix, such as penta-, the prefix is normally a Greek cardinal, but synonyms using other prefixes exist. The -gram suffix derives from γραμμῆς meaning a line, a regular polygram, as a general regular polygon, is denoted by its Schläfli symbol, where p and q are relatively prime and q ≥2. For integers p and q, it can be considered as being constructed by connecting every qth point out of p points regularly spaced in a circular placement. In other cases where n and m have a factor, a polygram is interpreted as a lower polygon, with k = gcd. These figures are called regular compound polygons, list of regular polytopes and compounds#Stars Cromwell, P. Polyhedra, CUP, Hbk. P.175 Grünbaum, B. and G. C, shephard, Tilings and Patterns, New York, W. H. Freeman & Co. Polyhedra with Hollow Faces, Proc of NATO-ASI Conference on Polytopes, etc. ed T. Bisztriczky et al. John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Robert Lachlan, london, Macmillan,1893, p.83 polygrams. Branko Grünbaum, Metamorphoses of polygons, published in The Lighter Side of Mathematics, Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History
33.
Megagon
–
A megagon or 1000000-gon is a polygon with 1 million sides. Even if drawn at the size of the Earth, a regular megagon would be difficult to distinguish from a circle. A regular megagon has an angle of 179. 99964°. The area of a regular megagon with sides of length a is given by A =250000 a 2 cot π1000000, the perimeter of a regular megagon inscribed in the unit circle is,2000000 sin π1000000, which is very close to 2π. In fact, for a circle the size of the Earths equator, with a circumference of 40,075 kilometres, the difference between the perimeter of the inscribed megagon and the circumference of this circle comes to less than 1/16 millimeters. Because 1000000 =26 ×56, the number of sides is not a product of distinct Fermat primes, thus the regular megagon is not a constructible polygon. Indeed, it is not even constructible with the use of neusis or an angle trisector, as the number of sides is neither a product of distinct Pierpont primes, nor a product of powers of two and three. Like René Descartes example of the chiliagon, the polygon has been used as an illustration of a well-defined concept that cannot be visualised. The megagon is also used as an illustration of the convergence of regular polygons to a circle, the regular megagon has Dih1000000 dihedral symmetry, order 2000000, represented by 1000000 lines of reflection. Dih100 has 48 dihedral subgroups, and and it also has 49 more cyclic symmetries as subgroups, and, with Zn representing π/n radian rotational symmetry. John Conway labels these symmetries with a letter and order of the symmetry follows the letter. R2000000 represents full symmetry and a1 labels no symmetry and he gives d with mirror lines through vertices, p with mirror lines through edges, i with mirror lines through both vertices and edges, and g for rotational symmetry. These lower symmetries allows degrees of freedom in defining irregular megagons, only the g1000000 subgroup has no degrees of freedom but can seen as directed edges. A megagram is a star polygon. There are 199,999 regular forms given by Schläfli symbols of the form, there are also 300,000 regular star figures in the remaining cases
34.
Philosophy of mind
–
Philosophy of mind is a branch of philosophy that studies the nature of the mind. The mind–body problem is an issue in philosophy of mind, although other issues are addressed, such as the hard problem of consciousness. Dualism and monism are the two schools of thought on the mind–body problem, although nuanced views have arisen that do not fit one or the other category neatly. Dualism is seen even in the Eastern tradition, in the Sankhya and Yoga schools of Hindu philosophy, and Plato, monism is the position that mind and body are not ontologically distinct kinds of entities. This view was first advocated in Western philosophy by Parmenides in the 5th century BC and was later espoused by the 17th century rationalist Baruch Spinoza. Physicalists argue that only entities postulated by physical theory exist, physicalists maintain various positions on the prospects of reducing mental properties to physical properties, and the ontological status of such mental properties remains unclear. Idealists maintain that the mind is all that exists and that the world is either mental itself. The most common monisms in the 20th and 21st centuries have all been variations of physicalism, these positions include behaviorism, most modern philosophers of mind adopt either a reductive or non-reductive physicalist position, maintaining in their different ways that the mind is not something separate from the body. These approaches have been influential in the sciences, especially in the fields of sociobiology, computer science, evolutionary psychology. Reductive physicalists assert that all states and properties will eventually be explained by scientific accounts of physiological processes and states. Continued neuroscientific progress has helped to some of these issues, however. Modern philosophers of mind continue to ask how the subjective qualities, the mind–body problem concerns the explanation of the relationship that exists between minds, or mental processes, and bodily states or processes. The main aim of working in this area is to determine the nature of the mind and mental states/processes. Someones desire for a slice of pizza, for example, will tend to cause that person to move his or her body in a specific manner and in a specific direction to obtain what he or she wants. The question, then, is how it can be possible for conscious experiences to arise out of a lump of gray matter endowed with nothing, a related problem is how someones propositional attitudes cause that individuals neurons to fire and his muscles to contract. These comprise some of the puzzles that have confronted epistemologists and philosophers of mind from at least the time of René Descartes, Dualism is a set of views about the relationship between mind and matter. It begins with the claim that mental phenomena are, in some respects, One of the earliest known formulations of mind–body dualism was expressed in the eastern Sankhya and Yoga schools of Hindu philosophy, which divided the world into purusha and prakriti. Specifically, the Yoga Sutra of Patanjali presents an approach to the nature of the mind
35.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker
36.
Monogon
–
In geometry a monogon is a polygon with one edge and one vertex. Since a monogon has only one side and only one vertex, in Euclidean geometry a monogon is a degenerate polygon because its endpoints must coincide, unlike any Euclidean line segment. Most definitions of a polygon in Euclidean geometry do not admit the monogon, in spherical geometry, a monogon can be constructed as a vertex on a great circle. This forms a dihedron, with two hemispherical monogonal faces which share one 360° edge and one vertex and its dual, a hosohedron, has two antipodal vertices at the poles, one 360 degree lune face, and one edge between the two vertices. Digon Herbert Busemann, The geometry of geodesics, new York, Academic Press,1955 Coxeter, H. S. M, Regular Polytopes
37.
Digon
–
In geometry, a digon is a polygon with two sides and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved, a regular digon has both angles equal and both sides equal and is represented by Schläfli symbol. It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, the digon is the simplest abstract polytope of rank 2. A truncated digon, t is a square, an alternated digon, h is a monogon. A straight-sided digon is regular even though it is degenerate, because its two edges are the length and its two angles are equal. As such, the regular digon is a constructible polygon, some definitions of a polygon do not consider the digon to be a proper polygon because of its degeneracy in the Euclidean case. A digon as a face of a polyhedron is degenerate because it is a degenerate polygon, but sometimes it can have a useful topological existence in transforming polyhedra. A spherical lune is a digon whose two vertices are antipodal points on the sphere, a spherical polyhedron constructed from such digons is called a hosohedron. The digon is an important construct in the theory of networks such as graphs. Topological equivalences may be established using a process of reduction to a set of polygons. The digon represents a stage in the simplification where it can be removed and substituted by a line segment. The cyclic groups may be obtained as rotation symmetries of polygons, monogon Demihypercube Herbert Busemann, The geometry of geodesics. New York, Academic Press,1955 Coxeter, Regular Polytopes, Dover Publications Inc,1973 ISBN 0-486-61480-8 Weisstein, a. B. Ivanov, Digon, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 Media related to Digons at Wikimedia Commons
38.
Triangle
–
A triangle is a polygon with three edges and three vertices. It is one of the shapes in geometry. A triangle with vertices A, B, and C is denoted △ A B C, in Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. This article is about triangles in Euclidean geometry except where otherwise noted, triangles can be classified according to the lengths of their sides, An equilateral triangle has all sides the same length. An equilateral triangle is also a polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length, some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides. The latter definition would make all equilateral triangles isosceles triangles, the 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths, equivalently, it has all angles of different measure. Hatch marks, also called tick marks, are used in diagrams of triangles, a side can be marked with a pattern of ticks, short line segments in the form of tally marks, two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is no more than 3 ticks. Similarly, patterns of 1,2, or 3 concentric arcs inside the angles are used to indicate equal angles, triangles can also be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°, the side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti of the triangle, special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 +42 =52, in this situation,3,4, and 5 are a Pythagorean triple. The other one is a triangle that has 2 angles that each measure 45 degrees. Triangles that do not have an angle measuring 90° are called oblique triangles, a triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, a triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, a triangle with an interior angle of 180° is degenerate